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This paper introduces a novel event-triggered scheme into networked control systems which is used to determine when to transmit
the newly sampled state information to the controller. Considering the effect of the network transmission delay and probabilistic
actuator fault with different failure rates, a new actuator fault model is proposed under this event-triggered scheme. Then, criteria
for the exponential mean square stability (EMSS) and criteria for codesigning both the feedback and the trigger parameters are
derived by using Lyapunov functional method. These criteria are obtained in the form of linear matrix inequalities. A simulation
example is employed to show that our event-triggered scheme can lead to a larger release period than some existing ones.

1. Introduction

Nowadays, more and more attention has been paid to the
study of stability analysis and control design of networked
control systems (NCSs). NCSs have a relatively new structure
where the links from sensor to controller and from controller
to actuator are not connected directly, but through a network
[1, 2]. The application of networks into control systems can
be advantageous in terms of simplicity scalability, and cost-
effectiveness. However, the introduction of a communication
network can also bring about many problems, such as
network-induced delay and packet dropout. Therefore, the
tasks in traditional systems, such as the control problems
and signal estimation problem, should be reconsidered. In
recent years, the stability analysis and control design for
NCS have been invested, and lots of outstanding results have
been obtained [3, 4]. In these works, most are based on the
periodic triggered control method, which is called a time-
trigged control. In this triggering scheme, the fixed sampling
period is determined under worst conditions such as external
disturbances, uncertainties, and time-delays. However, in

practical systems, the worst cases seldom occur. Thus, this
kind of triggering method may often lead to transmitting
many unnecessary signals through the network, which in
turn will increase the load of network transmission and waste
the network bandwidth. Hence, it is an important problem to
reduce communication requirements.

Recently, event-triggered scheme for control design,
advocating the use of actuation only when some function
of the system state exceeds a threshold, has received con-
siderable attention, and many important results have been
reported [5–9]. Event triggering method provides a useful
way of determining when the sampling action is carried out,
compared with periodic sampling methods, and it has the
following advantages: (1) it only samples when necessary; (2)
the burden of the network communication is reduced; (3) the
computation cost of the controller and the occupation of the
sensor and actuator are reduced.

More specifically, a networked estimator problem for
event-triggered sampling systems with packet dropouts was
solved in [7]. Refrence[9] studied event design in event-
triggered feedback systems, and a novel event triggering
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scheme was presented to ensure exponential stability of the
resulting sampled-data system. Refrence [8] studied how the
event triggered as well as the self-triggered control systems
could be reformed in the case of discrete-time systems.
The methods for design or implication of controllers in the
event-triggered form based on dissipation inequalities were
proposed for both linear and nonlinear systems in [6]. The
work in [5] examined event-triggered data transmission in
distributed networked control systems with packet loss and
transmission delays.

Moreover, in NCSs, the temporary measurements failure
and probabilistic distortion are usually unavoidable for a vari-
ety of reasons, for example, networked delay, sensor/actuators
aging, electromagnetic interference, and zero shift, which
may lead to intolerable system performance [10]. Therefore,
from a safety as well as performance point of view, it is
required to design a reliable controller that can tolerate
actuators failures as well as networked delay. Recently, the
fault model has received a lot of interest, and lots of outstand-
ing results have been obtained [11–13]. In [11], the authors
considered the problem of delay-dependent adaptive reliable
𝐻
∞

controller design against actuator faults for linear time-
varying delay systems. By using a linear matrix inequality
technique and an adaptive method, they established a new
delay-dependent reliable 𝐻

∞
controller, which guaranteed

the stability and adaptive 𝐻
∞

performance of closed-loop
systems in normal and faulty cases. Considering the different
failure rates of each sensor or actuator, the authors studied the
reliable controller for networked control systems in [12, 13],
reliable controllers were designed, and sufficient conditions
for the exponentially mean square stability of NCS were
obtained. Up to now, to the best of authors’ knowledge,
there are no papers to deal with the reliable control for
event-triggered networked control systems with probabilistic
actuator faults, which still remains as a challenging problem.

In this paper, firstly, an new event-triggered scheme is
introduced to networked control systems, which can reduce
the burden of the network communication. Then, consider-
ing different failure rates of actuators and the measurements
distortion of every actuator, a new probabilistic actuator
fault model is proposed under the proposed event-triggered
scheme. By using Lyapunov functional method, criteria for
the exponential stability and criteria for codesigning both the
feedback and the trigger parameters are derived in terms of
linear matrix inequalities. A simulation example is given to
show that the proposed event-triggered scheme is superior to
some existing ones.

Notation. R𝑛 and R𝑛×𝑚 denote the n-dimensional Euclidean
space and the set of 𝑛 × 𝑚 real matrices; the superscript
“𝑇” stands for matrix transposition; 𝐼 is the identity matrix
of appropriate dimension; ‖ ⋅ ‖ stands for the Euclidean
vector normor the inducedmatrix 2-normas appropriate; the
notation 𝑋 > 0 (resp., 𝑋 ≥ 0) for 𝑋 ∈ R𝑛×𝑛 means that the
matrix 𝑋 is real symmetric positive definite (resp., positive
semi definite). When 𝑥 is a stochastic variable, E{𝑥} stands
for the expectation of 𝑥. For a matrix 𝐵 and two symmetric
matrices 𝐴 and 𝐶, [ 𝐴 ∗

𝐵 𝐶
] denotes a symmetric matrix, where

∗ denotes the entries implied by symmetry.

2. System Description

In this paper, we consider the following system:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) , (1)

where 𝑥(𝑡) ∈ R𝑛 and 𝑢(𝑡) ∈ R𝑚 denote the state vector and
control vector, respectively; 𝐴 and 𝐵 are parameter matrices
with appropriate dimensions.

Throughout this paper, we assume that the system (1) is
controlled though a network.

As is well known, periodic samplingmechanism has been
widely used in practical systems; however, it may often lead to
transmitting many unnecessary signals through the network,
which in turn increases the load of network transmission
and wastes the network bandwidth.Therefore, for the control
of networked control systems shown in Figure 1, in order
to save network resources such as network bandwidth, it is
significant to introduce an event triggered mechanism which
decides whether the newly sampled state should be sent out
to the controller. As is shown in Figure 1, the state are sampled
regularly by the sampler of the smart sensor with period
ℎ and feeds into an event generator that decides when to
transmit the states to the controller via a network medium by
a specified trigger condition, which will be given in sequel.
The following function of network architecture in Figure 1 is
expected.

(1) The states are sampled at time 𝑘ℎ by sampler with a
given period ℎ. The next state is at time (𝑘 + 1)ℎ.

(2) As is shown in Figure 1, the event generator is con-
structed between the sensor and the controller which
is used to determine whether the newly sampled state
will be sent out to the controller or not by using the
following judgement algorithm:

[𝑥 ((𝑘 + 𝑗) ℎ) − 𝑥 (𝑘ℎ)]
𝑇

Ω[𝑥 ((𝑘 + 𝑗) ℎ) − 𝑥 (𝑘ℎ)]

≤ 𝜌𝑥
𝑇

((𝑘 + 𝑗) ℎ)Ω𝑥 ((𝑘 + 𝑗) ℎ) .

(2)

(3) Under the event-triggered scheme (2), the release
times are assumed to be 𝑡

0
ℎ, 𝑡
1
ℎ, 𝑡
2
ℎ, . . ., where 𝑡

0

is the initial time. 𝑠
𝑖
ℎ = 𝑡

𝑖+1
ℎ − 𝑡

𝑖
ℎ denotes the

release period of event generator in (2). Considering
the effect of the transmission delay on the network
system, we suppose that the time-varying delay in
the network communication is 𝜏

𝑘
and 𝜏

𝑘
∈ [0, 𝜏),

where 𝜏 is a positive real number.Therefore, the states
𝑥(𝑡
0
ℎ), 𝑥(𝑡

1
ℎ), 𝑥(𝑡

2
ℎ), . . . will arrive at the controller

side at the instants 𝑡
0
ℎ + 𝜏

0
, 𝑡
1
ℎ + 𝜏

1
, 𝑡
2
ℎ + 𝜏

2
, . . .,

respectively. Notice that the set of the release instants,
that is, {𝑡

0
, 𝑡
1
, 𝑡
2
, . . .} is a subset of {0, 1, 2, . . .}. The

amount of {𝑡
0
, 𝑡
1
, 𝑡
2
, . . .}, depends on not only the

value of 𝜌, but also the variation of the state. When
𝜌 = 0, {𝑡

0
, 𝑡
1
, 𝑡
2
, . . .} = {0, 1, 2, . . .}, it reduces to the

case with periodic release times.
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Figure 1: The structure of an event-triggered networked control
system.

Based on the previous analysis, considering the effect of
the transmission delay, the system model under the event
generator with (2) can be described as

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡
𝑘
ℎ) , 𝑡 ∈ [𝑡

𝑘
ℎ + 𝜏
𝑘
, 𝑡
𝑘+1
ℎ + 𝜏
𝑘+1
) .

(3)

Assumption 1. The actuators in the closed-loop systems have
different failure rates because of different working conditions.
Furthermore, the measurements distortion of every actuator
is also take into consideration.

Under Assumption 1, the control 𝑢(𝑡) = 𝐾𝑥(𝑡) can be
described as

𝑢
𝐹

(𝑡) = Ξ𝐾𝑥 (𝑡) =

𝑚

∑
𝑖=1

𝜉
𝑖
𝐶
𝑖
𝐾𝑥 (𝑡) , (4)

where Ξ = diag{𝜉
1
, . . . , 𝜉

𝑚
} and 𝜉

𝑖
(𝑖 = 1, 2, . . . , 𝑚) are 𝑚

unrelated variables taking values on the interval [0, 𝜃], where
𝜃 ≥ 1, the mathematical expectation and variance of 𝜉

𝑖
are 𝜇
𝑖

and 𝜎2
𝑖
(𝑖 = 1, 2, . . . , 𝑚), and 𝐶

𝑖
= diag{0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖−1

, 1, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚−𝑖

}.

Define Ξ = diag{𝜇
1
, . . . , 𝜇

𝑚
} = ∑

𝑚

𝑖=1
𝜇
𝑖
𝐶
𝑖
, and obviously,

E(Ξ) = Ξ, E(Ξ − Ξ) = 0, E(𝜉
𝑖
− 𝜇
𝑖
)
2

= 𝜎
2

𝑖
.

Under (4), for 𝑡 ∈ [𝑡
𝑘
ℎ + 𝜏

𝑘
, 𝑡
𝑘+1
ℎ + 𝜏

𝑘+1
), (3) can be

rewritten as

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵Ξ𝐾𝑥 (𝑡
𝑘
ℎ) . (5)

Remark 2. 𝑢(𝑡) is the control input without actuator failure,
and 𝑢𝐹(𝑡) is the control input after actuator failures occur. 𝜉

𝑖
=

0 and 𝜉
𝑖
= 1 represent the meaning of completely failure or

completely normal [14]. 0 < 𝜉
𝑖
< 1 means partial failure [15,

16]. 𝜉
𝑖
> 1 represents the condition of data distortion [12, 13].

Remark 3. 𝜇
𝑖
= 1 does not represent that the 𝑖th actuator

is always in good work condition, but it means that the
expectation of 𝑖th actuator is 1.

For technical convenience, consider the following two
cases.

Case 1. If 𝑡
𝑘
ℎ + ℎ + 𝜏 ≥ 𝑡

𝑘+1
ℎ + 𝜏
𝑘+1

, where 𝜏 = max 𝜏
𝑘
, define

a function 𝜏(𝑡) as

𝜏 (𝑡) = 𝑡 − 𝑡
𝑘
ℎ, 𝑡 ∈ [𝑡

𝑘
ℎ + 𝜏
𝑘
, 𝑡
𝑘+1
ℎ + 𝜏
𝑘+1
) ; (6)

clearly,

𝑡
𝑘
≤ 𝜏 (𝑡) ≤ (𝑡

𝑘+1
− 𝑡
𝑘
) ℎ + 𝜏

𝑘+1
≤ ℎ + 𝜏. (7)

Case 2. If 𝑡
𝑘
ℎ + ℎ + 𝜏 < 𝑡

𝑘+1
ℎ + 𝜏
𝑘+1

, consider the following
two intervals:

[𝑡
𝑘
ℎ + 𝜏
𝑘
, 𝑡
𝑘
ℎ + ℎ + 𝜏) , [𝑡

𝑘
ℎ + 𝑖ℎ + 𝜏, 𝑡

𝑘
ℎ + 𝑖ℎ + ℎ + 𝜏) .

(8)

Since 𝜏
𝑘
≤ 𝜏, it can be easily shown that there exists 𝑑

𝑀
such

that

𝑡
𝑘
ℎ + 𝑑
𝑀
ℎ + 𝜏 < 𝑡

𝑘+1
ℎ + 𝜏
𝑘+1
≤ 𝑡
𝑘
ℎ + 𝑑
𝑀
ℎ + ℎ + 𝜏. (9)

Moreover, 𝑥(𝑡
𝑘
ℎ) and 𝑡

𝑘
ℎ+ 𝑖ℎwith 𝑖 = 1, 2, . . . , 𝑑

𝑀
satisfy (2).

Let

𝐼
0
= [𝑡
𝑘
ℎ + 𝜏
𝑘
, 𝑡
𝑘
ℎ + ℎ + 𝜏) ,

𝐼
𝑖
= [𝑡
𝑘
ℎ + 𝑖ℎ + 𝜏, 𝑡

𝑘
ℎ + 𝑖ℎ + ℎ + 𝜏) ,

𝐼
𝑑𝑀
= [𝑡
𝑘
ℎ + 𝑑
𝑀
ℎ + 𝜏, 𝑡

𝑘+1
ℎ + 𝜏
𝑘+1
) ,

(10)

where 𝑖 = 1, 2, . . . , 𝑑
𝑀
− 1. One can see that

[𝑡
𝑘
ℎ + 𝜏
𝑘
, 𝑡
𝑘+1
ℎ + 𝜏
𝑘+1
) =

𝑖=𝑑𝑀

⋃
𝑖=0

𝐼
𝑖
. (11)

Define

𝜏 (𝑡) =

{{

{{

{

𝑡 − 𝑡
𝑘
ℎ, 𝑡 ∈ 𝐼

0
,

𝑡 − 𝑡
𝑘
ℎ − 𝑖ℎ, 𝑡 ∈ 𝐼

𝑖
, 𝑖 = 1, 2, . . . , 𝑑

𝑀
− 1,

𝑡 − 𝑡
𝑘
ℎ − 𝑑
𝑀
ℎ, 𝑡 ∈ 𝐼

𝑑𝑀
.

(12)

then, we have

𝑡
𝑘
≤ 𝜏 (𝑡) < ℎ + 𝜏, 𝑡 ∈ 𝐼

0
,

𝑡
𝑘
≤ 𝜏 ≤ 𝜏 (𝑡) < ℎ + 𝜏, 𝑡 ∈ 𝐼

𝑖
, 𝑖 = 1, 2, . . . , 𝑑

𝑀
− 1,

𝑡
𝑘
≤ 𝜏 ≤ 𝜏 (𝑡) < ℎ + 𝜏, 𝑡 ∈ 𝐼

𝑑𝑀
,

(13)

where the third row in (13) holds because 𝑡
𝑘+1
ℎ+𝜏
𝑘+1
≤ 𝑡
𝑘
ℎ+

(𝑑
𝑀
+ 1)ℎ + 𝜏. Obviously,

0 ≤ 𝜏
𝑘
≤ 𝜏 (𝑡) ≤ ℎ + 𝜏 ≜ 𝜏

𝑀
,

𝑡 ∈ [𝑡
𝑘
ℎ + 𝜏
𝑘
, 𝑡
𝑘+1
ℎ + 𝜏
𝑘+1
) .

(14)

In Case 1, for 𝑡 ∈ [𝑡
𝑘
ℎ + 𝜏
𝑘
, 𝑡
𝑘+1
ℎ + 𝜏
𝑘+1
), define 𝑒

𝑘
(𝑡) = 0.

In Case 2, define

𝑒
𝑘
(𝑡) =

{

{

{

0, 𝑡 ∈ 𝐼
0
,

𝑥 (𝑡
𝑘
ℎ) − 𝑥 (𝑡

𝑘
ℎ + 𝑖ℎ) , 𝑡 ∈ 𝐼

𝑖
, 𝑖 = 1, 2, . . . , 𝑑

𝑀
− 1,

𝑥 (𝑡
𝑘
ℎ) − 𝑥 (𝑡

𝑘
ℎ + 𝑑
𝑀
ℎ) , 𝑡 ∈ 𝐼

𝑑𝑀
.

(15)
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From the definition of 𝑒
𝑘
(𝑡) and the triggering algorithm

(2), it can be easily seen that, for 𝑡 ∈ [𝑡
𝑘
ℎ + 𝜏
𝑘
, 𝑡
𝑘+1
ℎ + 𝜏
𝑘+1
),

𝑒
𝑇

𝑘
(𝑡) Ω𝑒

𝑘
(𝑡) ≤ 𝜌𝑥

𝑇

(𝑡 − 𝜏 (𝑡))Ω𝑥 (𝑡 − 𝜏 (𝑡)) . (16)

Utilizing 𝜏(𝑡) and 𝑒
𝑘
(𝑡), (5) can be rewritten as

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵Ξ𝐾 [𝑥 (𝑡 − 𝜏 (𝑡)) + 𝑒
𝑘
(𝑡)]

= 𝐴𝑥 (𝑡) + 𝐵Ξ𝐾𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐵Ξ𝐾𝑒
𝑘
(𝑡)

+ 𝐵 (Ξ − Ξ)𝐾𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐵 (Ξ − Ξ)𝐾𝑒
𝑘
(𝑡) ,

(17)

where 𝑡 ∈ [𝑡
𝑘
ℎ + 𝜏
𝑘
, 𝑡
𝑘+1
ℎ + 𝜏
𝑘+1
).

For the system (17), we supplement the initial condition
of the state 𝑥(𝑡) on [𝜏

𝑀
, 0] as

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [𝜏
𝑀
, 0] , (18)

where 𝜙(𝑡) is a continuous function on [𝜏
𝑀
, 0].

Remark 4. If 𝜏
𝑘
= 0, itmeans that no transmission delay exists

or transmission delay can be ignored, and the maximum
sampling period is 𝜏

𝑀
. Note that 𝜏

𝑀
= ℎ + 𝜏. If 𝜏

𝑘
> 0,

the selecting sampling period ℎ < 𝜏
𝑀
, 𝜏 = 𝜏

𝑀
− ℎ, is the

allowable maximum transmission delay.

Remark 5. Notice that if 𝜌 = 0, then 𝑒
𝑘
(𝑡) = 0; in this

situation, the model (17) reduces to a model for a networked
control system with a time-triggered scheme. It means that,
if 𝜌 → 0

+, the dynamic of the system under event-
triggered scheme will approach to the one with a time-
triggered scheme.

In the following, we will introduce the following defini-
tions and lemmas, which are needed in the next section.

Definition 6. For a given function 𝑉 : 𝐶𝑏
𝐹0

([−𝜏
𝑀
, 0],R𝑛) × 𝑆,

its infinitesimal operatorL is defined as

L (𝑉𝜂 (𝑡)) = lim
Δ→0

+

1

Δ
[E (𝑉 (𝜂

𝑡
+ Δ) | 𝜂

𝑡
) − 𝑉 (𝜂

𝑡
)] . (19)

Definition 7. System (17) is said to be exponentially of mean
square stability (EMSS) if there exist constants 𝛼 > 0 and 𝜖 >
0 such that for 𝑡 ≥ 0,

E {‖𝑥 (𝑡)‖
2

} ≤ 𝛼𝑒
−𝜖𝑡

E{ sup
−𝜏𝑀≤𝑠≤0

𝜓 (𝑠)

2

} . (20)

Lemma 8 (see [17]). For any vectors 𝑥,𝑦 ∈ 𝑅𝑛 and positive
definite matrix 𝑄 ∈ 𝑅𝑛×𝑛, the following inequality holds:

2𝑥
𝑇

𝑦 ≤ 𝑥
𝑇

𝑄𝑥 + 𝑦
𝑇

𝑄
−1

𝑦. (21)

Lemma 9 (see [18]). Ξ
1
, Ξ
2
, and Ω are matrices with appro-

priate dimensions, 𝜏(𝑡) is a function of 𝑡, and 0 ≤ 𝜏(𝑡) ≤ 𝜏
𝑀
;

then

𝜏 (𝑡) Ξ
1
+ (𝜏
𝑀
− 𝜏 (𝑡)) Ξ

2
+ Ω < 0 (22)

if and only if

𝜏
𝑀
Ξ
1
+ Ω < 0,

𝜏
𝑀
Ξ
2
+ Ω < 0.

(23)

3. Main Results

In this section, the following theorem provides the EMSS
criteria for system (17) with the controller (4) under the event
generator (2).

Theorem 10. For given 𝜇
𝑖
, 𝜎
𝑖
(𝑖 = 1, . . . , 𝑚), 𝜌, and matrix𝐾,

the system described by (17) is EMSS, if there exists matrices
𝑃 > 0,𝑄 > 0, 𝑅 > 0,Ω > 0, and𝑁,𝑀with which appropriate
dimensions such that for 𝑠 = 1, 2,

Σ (𝑠) =
[
[
[

[

Σ
11
+ Γ + Γ𝑇 ∗ ∗ ∗

Σ
21

−𝑅 ∗ ∗

Σ
31

0 Σ
33

∗

Σ
41
(𝑠) 0 0 −𝑅

]
]
]

]

< 0, 𝑠 = 1, 2, (24)

where

Σ
11
=

[
[
[
[

[

𝑃𝐴 + 𝐴
𝑇𝑃 + 𝑄 ∗ ∗ ∗

𝐾𝑇Ξ
𝑇

𝐵𝑇𝑃 𝜌Ω ∗ ∗

0 0 −𝑄 ∗

𝐾𝑇Ξ
𝑇

𝐵𝑇𝑃 0 0 −Ω

]
]
]
]

]

,

Γ = [𝑁 −𝑁 +𝑀 −𝑀 0] ,

Σ
21
= [√𝜏𝑀𝑅𝐴 √𝜏𝑀𝑅𝐵Ξ𝐾 0 √𝜏𝑀𝑅𝐵Ξ𝐾] ,

Σ
31
= [
0 Π 0 0

0 0 0 Π
] ,

Π =

[
[
[
[

[

𝜎
1√𝜏𝑀𝑅𝐵𝐶1𝐾

𝜎
2√𝜏𝑀𝑅𝐵𝐶2𝐾

...
𝜎
𝑚√𝜏𝑀𝑅𝐵𝐶𝑚𝐾

]
]
]
]

]

,

Σ
33
= diag{−𝑅, . . . , −𝑅⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑚

} ,

Σ
41
(1) = √𝜏

𝑀
𝑁
𝑇

, Σ
41
(2) = √𝜏

𝑀
𝑀
𝑇

.

(25)

Proof. Choose the following Lyapunov functional candidate
as

𝑉 (𝑥
𝑡
) = 𝑉
1
(𝑥
𝑡
) + 𝑉
2
(𝑥
𝑡
) + 𝑉
3
(𝑥
𝑡
) , (26)

where

𝑉
1
(𝑥
𝑡
) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2
(𝑥
𝑡
) = ∫
𝑡

𝑡−𝜏𝑀

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) 𝑑𝑠,

𝑉
3
(𝑥
𝑡
) = ∫
𝑡

𝑡−𝜏𝑀

∫
𝑡

𝑠

�̇�
𝑇

(V) 𝑅�̇� (V) 𝑑V 𝑑𝑠,

(27)

inwhich𝑃,𝑄, and𝑅 are symmetric positive definitematrices.
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From the definition of Ξ, it can be concluded that E{Ξ −
Ξ} = diag{0, . . . , 0}, and using the infinitesimal operator (19)
for 𝑉(𝑥

𝑡
) and taking expectation on it, we obtain

E {L𝑉
1
(𝑥
𝑡
)} = 2𝑥

𝑇

(𝑡) 𝑃Υ (𝑡) ,

E {L𝑉
2
(𝑥
𝑡
)} = 𝑥

𝑇

(𝑡) 𝑄𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑥 (𝑡 − 𝜏 (𝑡)) ,

E {L𝑉
3
(𝑥
𝑡
)} = E [𝜏

𝑀
�̇�
𝑇

(𝑡) 𝑅�̇� (𝑡)] − ∫
𝑡

𝑡−𝜏𝑀

�̇�
𝑇

(𝑠) 𝑅�̇� (𝑠) 𝑑𝑠,

(28)

where Υ(𝑡) = 𝐴𝑥(𝑡) + 𝐵Ξ𝐾𝑥(𝑡 − 𝜏(𝑡)) + 𝐵Ξ𝐾𝑒
𝑘
(𝑡).

Notice that

E [𝜏
𝑀
�̇�
𝑇

(𝑡) 𝑅�̇� (𝑡)] = 𝜏
𝑀
Υ
𝑇

(𝑡) 𝑅Υ (𝑡)

+

𝑚

∑
𝑖=1

𝜏
𝑀
𝜎
2

𝑖
𝑒
𝑇

𝑘
(𝑡) 𝐾
𝑇

𝐶
𝑇

𝑖
𝐵
𝑇

𝑅𝐵𝐶
𝑖
𝐾𝑒
𝑘
(𝑡)

+

𝑚

∑
𝑖=1

𝜏
𝑀
𝜎
2

𝑖
𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝐾
𝑇

𝐶
𝑇

𝑖
𝐵
𝑇

𝑅𝐵𝐶
𝑖

× 𝐾𝑥 (𝑡 − 𝜏 (𝑡)) .

(29)

Combining (28) and (29), we obtain

E {L𝑉 (𝑥
𝑡
)} = 2𝑥

𝑇

(𝑡) 𝑃Υ (𝑡) + 𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝜏
𝑀
Υ
𝑇

(𝑡) 𝑅Υ (𝑡)

+

𝑚

∑
𝑖=1

𝜏
𝑀
𝜎
2

𝑖
𝑒
𝑇

𝑘
(𝑡) 𝐾
𝑇

𝐶
𝑇

𝑖
𝐵
𝑇

𝑅𝐵𝐶
𝑖
𝐾𝑒
𝑘
(𝑡)

+

𝑚

∑
𝑖=1

𝜏
𝑀
𝜎
2

𝑖
𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝐾
𝑇

𝐶
𝑇

𝑖
𝐵
𝑇

𝑅𝐵𝐶
𝑖

× 𝐾𝑥 (𝑡 − 𝜏 (𝑡))

− ∫
𝑡

𝑡−𝜏𝑀

�̇�
𝑇

(𝑠) 𝑅�̇� (𝑠) 𝑑𝑠 + Γ
1
+ Γ
2
,

(30)

where Γ
1
and Γ

2
are introduced by employing free weight

matrix method [19, 20]

Γ
1
= 2𝜁
𝑇

(𝑡)𝑁[𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏 (𝑡)) − ∫
𝑡

𝑡−𝜏(𝑡)

�̇� (𝑠) 𝑑𝑠] = 0,

Γ
2
=2𝜂
𝑇

(𝑡)𝑀[𝑥 (𝑡 − 𝜏 (𝑡))−𝑥 (𝑡 − 𝜏
𝑀
)−∫
𝑡−𝜏(𝑡)

𝑡−𝜏𝑀

�̇� (𝑠) 𝑑𝑠]=0,

(31)

where 𝑁 and 𝑀 are matrices with appropriate dimensions,
and

𝜁
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑥
𝑇

(𝑡 − 𝜏
𝑀
) 𝑒
𝑇

𝑘
(𝑡)] . (32)

By Lemma 8, we have

−2𝜁
𝑇

(𝑡)𝑁∫
𝑡

𝑡−𝜏(𝑡)

�̇� (𝑠) 𝑑𝑠 ≤ 𝜏 (𝑡) 𝜁
𝑇

(𝑡)𝑁𝑅
−1

𝑁
𝑇

𝜁 (𝑡)

+ ∫
𝑡

𝑡−𝜏(𝑡)

�̇�
𝑇

(𝑠) 𝑅�̇� (𝑠) 𝑑𝑠,

−2𝜁
𝑇

(𝑡)𝑀∫
𝑡−𝜏(𝑡)

𝑡−𝜏𝑀

�̇� (𝑠) 𝑑𝑠 ≤ (𝜏
𝑀
− 𝜏 (𝑡)) 𝜁

𝑇

(𝑡)𝑁𝑅
−1

𝑀
𝑇

𝜁 (𝑡)

+ ∫
𝑡−𝜏(𝑡)

𝑡−𝜏𝑀

�̇�
𝑇

(𝑠) 𝑅�̇� (𝑠) 𝑑𝑠.

(33)

Combining (16), substitute (33) into (30), and we obtain
that

E {L𝑉 (𝑥
𝑡
)} ≤ 2𝑥

𝑇

(𝑡) 𝑃Υ (𝑡) + 𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝜏
𝑀
Υ
𝑇

(𝑡) 𝑅Υ (𝑡)

+

𝑚

∑
𝑖=1

𝜏
𝑀
𝜎
2

𝑖
𝑒
𝑇

𝑘
(𝑡) 𝐾
𝑇

𝐶
𝑇

𝑖
𝐵
𝑇

𝑅𝐵𝐶
𝑖
𝐾𝑒
𝑘
(𝑡)

+

𝑚

∑
𝑖=1

𝜏
𝑀
𝜎
2

𝑖
𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝐾
𝑇

𝐶
𝑇

𝑖
𝐵
𝑇

𝑅𝐵𝐶
𝑖

× 𝐾𝑥 (𝑡 − 𝜏 (𝑡))

+2𝜁
𝑇

(𝑡)𝑁 [𝑥 (𝑡)−𝑥 (𝑡 − 𝜏 (𝑡))]+2𝜁
𝑇

(𝑡)𝑀

× [𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥 (𝑡 − 𝜏
𝑀
)]

− 𝑒
𝑇

𝑘
(𝑡) Ω𝑒

𝑘
(𝑡)+𝜌𝑥

𝑇

(𝑡 − 𝜏 (𝑡)) Ω𝑥 (𝑡 − 𝜏 (𝑡))

+ (𝜏
𝑀
− 𝜏 (𝑡)) 𝜁

𝑇

(𝑡)𝑀𝑅
−1

𝑀
𝑇

𝜁 (𝑡)

+ 𝜏 (𝑡) 𝜁
𝑇

(𝑡)𝑁𝑅
−1

𝑁
𝑇

𝜁 (𝑡) ;

(34)

that is,

E {L𝑉 (𝑥
𝑡
)} ≤ 𝜁

𝑇

(𝑡) Θ𝜁 (𝑡) , (35)

where Θ = Σ
11
+ Γ + Γ𝑇 + Σ𝑇

21
𝑅−1Σ
21
− Σ𝑇
31
Σ−1
31
Σ
31
+ (𝜏
𝑀
−

𝜏(𝑡))𝑀𝑅−1𝑀𝑇 + 𝜏(𝑡)𝑁𝑅−1𝑁𝑇.
By using Schur complement and Lemma 9, we have Θ <

0, if and only if the following holds:

[
Σ
11
+ Γ + Γ𝑇 + Σ𝑇

21
𝑅−1Σ
21
− Σ𝑇
31
Σ−1
31
Σ
31

∗

Σ
41
(𝑠) −𝑅

] < 0,

𝑠 = 1, 2.

(36)

By using Schur complement, we can obtain that (36) is
equivalent to (24). Furthermore,

E {L𝑉 (𝑥
𝑡
)} ≤ −𝜆𝜁

𝑇

(𝑡) 𝜁 (𝑡) , (37)
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where 𝜆 = min{𝜆min[Θ]}. Define a new function as

𝑊(𝑥
𝑡
) = 𝑒
𝜖𝑡

𝑉 (𝑥
𝑡
) . (38)

Its infinitesimal operatorL is given by

L𝑊(𝑥
𝑡
) = 𝜖𝑒

𝜖𝑡

𝑉 (𝑥
𝑡
) + 𝑒
𝜖𝑡

L𝑉 (𝑥
𝑡
) . (39)

From (39), we can obtain that

E𝑊(𝑥
𝑡
) − E𝑊(𝑥

0
) = ∫

𝑡

0

𝜖𝑒
𝜖𝑠

E {𝑉 (𝑥
𝑠
)}

+ ∫
𝑡

0

𝑒
𝜖𝑠

E {L𝑉 (𝑥
𝑠
)} .

(40)

Thenusing the similarmethod of [15], we can observe that
there exists a positive number 𝛼 such that for 𝑡 ≥ 0

E {𝑉 (𝑥
𝑡
)} ≤ 𝛼 sup

−𝜏𝑀≤𝑠≤0

𝑒
−𝜖𝑠

E {
𝜓 (𝑠)


2

} . (41)

Since 𝑉(𝑥
𝑡
) ≥ 𝜆min(𝑃)𝑥

𝑇(𝑡)𝑥(𝑡), it can be shown from
(41) that, for 𝑡 ≥ 0,

E {𝑥
𝑇

(𝑡) 𝑥 (𝑡)} ≤ 𝛼𝑒
−𝜖𝑡 sup
−𝜏𝑀≤𝑠≤0

E {
𝜓 (𝑠)


2

} , (42)

where 𝛼 = 𝛼/𝜆min(𝑃). The proof can be completed.

In the following, based onTheorem 10, we will design the
feedback gain 𝐾 in (4) under the event-trigger (2).

Theorem 11. For given 𝜇
𝑖
, 𝜎
𝑖
(𝑖 = 1, . . . , 𝑚), 𝜌 and 𝜀, system

(17) with the feedback gain 𝐾 = 𝑌𝑋−1 under the event trigger
condition (2) is EMSS if there exist matrices 𝑋 > 0, 𝑄 > 0,
�̃� > 0, Ω̃ > 0, and �̃�, �̃� with appropriate dimensions such
that 𝑠 = 1, 2

[
[
[

[

Σ̃
11
+ Γ̃ + Γ̃𝑇 ∗ ∗ ∗

Σ̃
21

−2𝜀𝑋 + 𝜀2�̃� ∗ ∗

Σ̃
31

0 Σ̃
33

∗

Σ̃
41
(𝑠) 0 0 −2𝜀𝑋 + 𝜀2�̃�

]
]
]

]

< 0,

𝑠 = 1, 2,

(43)

where

Σ̃
11
=

[
[
[
[

[

𝐴𝑋 + 𝑋𝐴
𝑇 + 𝑄 ∗ ∗ ∗

𝑌𝑇Ξ
𝑇

𝐵𝑇 𝜌Ω̃ ∗ ∗

0 0 −𝑄 ∗

𝑌𝑇Ξ
𝑇

𝐵𝑇 0 0 −Ω̃

]
]
]
]

]

,

Γ̃ = [�̃� −�̃� + �̃� −�̃� 0] ,

Σ̃
21
= [√𝜏𝑀𝐴𝑋 √𝜏𝑀𝐵Ξ𝑌 0 √𝜏𝑀𝐵Ξ𝑌] ,

Σ̃
31
= [
0 Π̃ 0 0

0 0 0 Π̃
] , Π̃ =

[
[
[
[

[

𝜎
1√𝜏𝑀𝐵𝐶1𝑌

𝜎
2√𝜏𝑀𝐵𝐶2𝑌

...
𝜎
𝑚√𝜏𝑀𝐵𝐶𝑚𝑌

]
]
]
]

]

,

Σ̃
33
= diag{−2𝜀𝑋 + 𝜀2�̃�, . . . , −2𝜀𝑋 + 𝜀2�̃�⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑚

} ,

Σ̃
41
(1) = √𝜏

𝑀
�̃�
𝑇

, Σ̃
41
(2) = √𝜏

𝑀
�̃�
𝑇

.

(44)

Proof. By using Schur complement, we can obtain that the
following is equivalent to (24):

[
[
[

[

Σ
11
+ Γ + Γ𝑇 ∗ ∗ ∗

Φ
21

−𝑃𝑅−1𝑃 ∗ ∗

Φ
31

0 Φ
33

∗

Σ
41
(𝑠) 0 0 −𝑅

]
]
]

]

< 0, 𝑠 = 1, 2, (45)

where

Φ
21
= [√𝜏𝑀𝑃𝐴 √𝜏𝑀𝑃𝐵Ξ𝐾 0 √𝜏𝑀𝑃𝐵Ξ𝐾] ,

Φ
31
= [
0 Π1 0 0

0 0 0 Π1
] , Π

1

=

[
[
[
[

[

𝜎
1√𝜏𝑀𝑃𝐵𝐶1𝐾

𝜎
2√𝜏𝑀𝑃𝐵𝐶2𝐾

...
𝜎
𝑚√𝜏𝑀𝑃𝐵𝐶𝑚𝐾

]
]
]
]

]

,

Φ
33
= diag{−𝑃𝑅−1𝑃, . . . , −𝑃𝑅−1𝑃⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑚

} .

(46)

Due to (𝑅 − 𝜀−1𝑃)𝑅−1(𝑅 − 𝜀−1𝑃) ≥ 0, we have

−𝑃𝑅
−1

𝑃 ≤ −2𝜀𝑃 + 𝜀
2

𝑅. (47)

Substituting −𝑃𝑅−1𝑃with −2𝜀𝑃+𝜀2𝑅 into (45), we obtain

[
[
[

[

Σ
11
+ Γ + Γ𝑇 ∗ ∗ ∗

Φ
21

−2𝜀𝑃 + 𝜀2𝑅 ∗ ∗

Φ
31

0 Φ̂
33

∗

Σ
41
(𝑠) 0 0 −𝑅

]
]
]

]

< 0, 𝑠 = 1, 2,

(48)

where Φ̂
33
= diag{−2𝜀𝑃 + 𝜀2𝑅, . . . , −2𝜀𝑃 + 𝜀2𝑅⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑚

}.

Denoting 𝑋 = 𝑃−1, 𝑄 = 𝑋𝑄𝑋, �̃� = 𝑋𝑅𝑋, �̃� =

𝑋𝑁𝑋, �̃� = 𝑋𝑀𝑋, Ω̃ = 𝑋Ω𝑋, and 𝑌 = 𝐾𝑋, then pre-
and postmultiplying (48) with diag{𝑋, . . . , 𝑋⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑚+5

, 𝐼}, (43) can be

obtained.

Remark 12. Theorem 11 shows that, for given 𝜌 and 𝜀, we can
obtain the feedback gain 𝐾 by solving a set of LMIs in (43);
on the other hand, using Theorem 11, for the preselected Ω
and the feedback gain𝐾, event-triggered parameter 𝜌 can be
obtained. Therefore, we can use Theorem 11 to codesign the
the feedback gain 𝐾 and the event-triggered parameter.
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Remark 13. Notice that (43) includes the information trans-
mission delay, and we can use (43) to obtain the feedback
gain and the event-triggered parameter, which can be used
to guarantee the required performance even though the
transmission delay exists.

4. Simulation Examples

Example 14. To illustrate the effectiveness and application of
the proposed method, we consider an inverted pendulum on
top of a moving cart.The plants linearized state is depicted as
the following system [21]:

�̇� (𝑡) =

[
[
[
[
[

[

0 1 0 0

0 0
−𝑚𝑔

𝑀
0

0 0 0 1

0 0
𝑔

𝑙
0

]
]
]
]
]

]

𝑥 (𝑡) +

[
[
[
[
[
[

[

0
1

𝑀
0
−1

𝑀𝑙

]
]
]
]
]
]

]

𝑢 (𝑡) , (49)

where 𝑥𝑇 = [𝑥
1
𝑥
2
𝑥
3
𝑥
4
] = [𝑦 ̇𝑦 𝜃 ̇𝜃] is the system state,

𝑦 is the carts position, and 𝜃 is the pendulum bob’s angle with
respect to the vertical.𝑀 = 10 kg is the cart mass, 𝑚 = 1 kg
is the mass of the pendulum bob, 𝑙 = 3m is the length of the
pendulum arm, and 𝑔 = 10m/s2 is gravitational acceleration.
The initial state is the vector 𝑥

0
= [0.98 0 0.2 0].

In the following, we will give two cases. Case 1 is used to
show how the upper bound of 𝜏

𝑀
varies along the values of 𝜌,

under given feedback gain𝐾 as (50), when there is no failure
in the actuator. In Case 2, we consider that the actuators have
probabilistic failure rates; firstly, we give an example to design
both the feedback and the trigger parameters, and the upper
bound of 𝜏

𝑀
and the release interval for 𝑡 ∈ [𝑜, 40] are also

derived; secondly, we suppose that the feedback gain 𝐾 is
given as (50) and study how the upper bound of 𝜏

𝑀
varies

along the values of 𝜌.

Case 1. When Ξ = 1, that is, there is no failure in the actuator,
let

𝐾 = [2 12 378 210] (50)

which is the same as the one in [22].
For given 𝜎

1
= 0, 𝜀 = 0.53, and 𝜌 = 0.2, by using

Theorem 10, we can have 𝜏
𝑀
= 0.1270 and

Ω =
[
[
[

[

0.0001 0.0003 0.0112 0.0062

0.0003 0.0023 0.0666 0.0376

0.0112 0.0666 2.1100 1.1662

0.0062 0.0376 1.1662 0.6510

]
]
]

]

. (51)

Also, we can obtain Table 1 and Figure 2, which describe the
upper bound of 𝜏

𝑀
varying along the values of 𝜌 and the state

response of (17).
With feedback gain𝐾 as (50), fromTable 1, we can see that

when 𝜌 = 0.53 and 𝜎 = 0.2, the upper bound of 𝜏
𝑀
is 0.1270.

Suppose that 𝜏
𝑘
= 0; since 𝜏

𝑀
= ℎ + 𝜏, it can be known that

the maximum sampling period is 0.1270. Moreover, under
our event-trigger scheme, the maximum release period is 2.3.
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Figure 2: The state response of (49) with the feedback gain (50) for
given Ξ = 1, 𝜎

1
= 0, 𝜀 = 0.53, and 𝜌 = 0.2.

Table 1: The computation results of the upper bound 𝜏
𝑀
for given

Ξ = 1, 𝜎 = 0 and 𝜀 = 0.53.

𝜌 0 0.05 0.1 0.15 0.2

The upper bound of 𝜏
𝑀
0.1987 0.1582 0.1445 0.1349 0.1270

It can be seen that under the same conditions, our scheme
can provide a larger release interval than some existing ones
in [21, 22].

Case 2. When Ξ = 0.6 and 𝜎
1
= 0.02, that is, the actuators

have probabilistic failure rate, setting 𝜀 = 0.53 and 𝜌 = 0.2, by
using Theorem 11, we can obtain the feedback gain 𝐾 of (4)
as follows:

𝐾 = [5.0696 23.2085 594.9876 331.9409] ,

Ω =
[
[
[

[

162.1817 72.523 −13.8855 −11.9519

72.5232 525.4131 −67.738 −32.7170

−13.8855 −67.7382 52.8001 −70.5906

−11.9519 −32.7170 −70.5906 132.2203

]
]
]

]

.
(52)

For given Ξ = 0.6, 𝜎 = 0.02, and 𝜀 = 0.53, under different
values of 𝜌, the upper bound of 𝜏

𝑀
and the release interval for

𝑡 ∈ [0, 40] are given in Table 2. Figures 3 and 4, respectively,
represent the release instants and release interval and the
probabilistic actuator failures, when Ξ = 0.6, 𝜎 = 0.02,
𝜀 = 0.53, 𝜌 = 0.1, and 𝜏

𝑀
= 0.2399.

When 𝐾 is given as (50), let Ξ = 0.6, Ξ = 1, 𝜎
1
= 0, and

𝜀 = 0.53, and the upper bound of 𝜏
𝑀

varies along the values
of 𝜌, which is shown in Table 3.

Remark 15. For given 𝜌 and 𝜀, we can obtain the upper bound
of 𝜏
𝑀
. we can see that the larger 𝜌, the larger average release

period; Thus, the load of network communication delay is
reduced and the transmission delay is decreased.This fact can
be illustrated by Tables 1, 2 and 3.
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Figure 3:The release instants and release interval for given Ξ = 0.6,
𝜎 = 0.02, and 𝜀 = 0.53.
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Figure 4: The probabilistic actuator failures.

Table 2: Some computation results for given Ξ = 0.6, 𝜎 = 0.02, and
𝜀 = 0.53.

𝜌 0 0.1 0.2 0.3 0.4

The upper bound of
𝜏
𝑀

0.3556 0.2399 0.1789 0.1394 0.1085

Themaximum release
interval for 𝑡 ∈ [0, 40] 0.1 2.3 1.1 1.2 2.3

The total trigger times
for 𝑡 ∈ [0, 40] 401 57 78 111 122

Table 3: The computation results of the upper bound 𝜏
𝑀
for given

Ξ = 0.6, 𝜎 = 0.02, and 𝜀 = 0.53.

𝜌 0 0.05 0.1 0.15 0.2

The upper bound of 𝜏
𝑀
0.2963 0.2197 0.1479 0.0546 0

5. Conclusion

In order to save the communication network bandwidth, a
novel event triggering scheme is used to determine when to
transmit the sampled state information. Under this event-
triggered scheme, this paper considers networked systems
with probabilistic actuators faults. In terms of different failure

rates and the measurements distortion of every actuator, a
new probabilistic actuator fault model for event-triggered
networked control systems is proposed. By using Lyapunov
functional method, criteria for the EMSS and criteria for
codesigning both the feedback and the trigger parameters are
derived in the formof linearmatrix inequalities. A simulation
example is given to illustrate that our event-triggered scheme
can lead to a larger release period than some existing works.
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