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In this paper, we give a characterization of Nikol'skii-Besov type classes of functions, given by integral representations of moduli of
smoothness, in terms of series over the moduli of smoothness. Also, necessary and sufficient conditions in terms of monotone or
lacunary Fourier coefficients for a function to belong to such a class are given. In order to prove our results, we make use of certain
recent reverse Copson-type and Leindler-type inequalities.

1. Introduction

Let f € L,[0,27],1 < p < 00, be a 27r-periodic function. We
say that the function f has monotone Fourier coeflicients if
it has a cosine Fourier series with

f(x)~ ian cosnx, a,|O0. 1)
n=0

We say that the function f has lacunary Fourier coeffi-
cients if

f(x)~ Z/\V COS VX, 2)
v=1
where
a,>0 forv=2"
Ay = (3)
0 for v # 24
that is,
o0
f(x)~ Zoa# cos 2¥x, a, > 0. (4)
=

By wi(f,1), we denote the modulus of smoothness of
order k in L, metrics of a function f € L ,, 1 < p < co:

@ (1), = sup [ 1], (5)

where

k k
A f ) =Y (D) (v) f(x+vh) (6)

=0

is the kth-order shift operator.

By E,( f)fD we denote the best approximation in L,
metrics of a function f € L,, 1 < p < ©co, by means of
trigonometric polynomials whose degree is not greater than
n — 1; that is,

En (f)p = %}f "f - Tn—l“p > (7)

where T,_; = Z:;é (o, cosvx + B, sinvx) and «, and f3, are
arbitrary real numbers.

We say that a 2m-periodic function f belongs to the
Nikol'skii-Besov class N(p,0,7,4,¢), 1 < p < o0, if the
following conditions are satisfied:

(1) f € L,l0,27).
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(2) Numbers 0, 7, and A belong to the interval (0, co), and
k is an integer satisfying k > r + A.

(3) The following inequality holds true:

o 0
(J 7w (Fo) dt
0 p
1 o (8)
+ 6" L £ (f t)f, dt) <Co(9),

while the function ¢ satisfies the following conditions:

(4) @ is a nonnegative continuous function on (0, 1) and

¢ +0.

(5) For every §, and §,, where 0 < 8, < 8, < 1, ¢(6;) <
C,9(8,) holds.

(6) For every &, where 0 < § < 1/2, ¢(28) < C,9(5)
holds.

Constants (without mentioning it explicitly, we will consider
all the constants positive) C, C;, and C, do not depend on §,,
d,, and 4.

A more detailed approach to the classes N(p, 0,7, A, ¢)
is given in [1, 2] (see also [3]). In the paper, we give a
characterization of N(p,0,7,A,¢) classes of functions in
terms of series over their moduli of smoothness. Then we give
the necessary and sufficient conditions in terms of monotone
or lacunary Fourier coeflicients for a function f € L »10,27]
to belong to a class N(p, 0,7, A, ¢). In the process of proving
the results, we make use of certain recent reverse /,-type
inequalities [4], closely related to Copsons and Leindler’s
inequalities.

Finally, by making use of our results, we construct an
example of a function having a lacunary Fourier series, which
shows that N(p,0,7,A,¢) classes are properly embedded
between the appropriate Nikol’skii classes and Besov classes.

2. Statement of Results

Now we formulate our results.

Theorem 1. A function f belongs to the class N(p, 0,1, A, ¢)
if and only if (here and below we assume that the parameters
0, r, A, and k satisfy condition (2) and the function ¢ satisfies
conditions (4)-(6) of the definition of the class N(p, 0,1, A, ¢))

($ae2)m

v=n+1

n 10 1 1
-A0 (r+A)0-1
+ , — <C <—>
Y1) v ) 9

€)
n
where constant C does not depend on n.

Theorem 2. For a function f € L,[0,2r], 1 < p < 00, such
that

f(x)~ Ozolav cosvx, a, |0, (10)
v=1
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to belong to the class N(p,0,r,A, @), it is necessary and
sufficient that its Fourier coefficients satisfy the condition

00 n 1/6
( Z afvr6+9—9/p—l + n—/\ﬂzafvr9+/\9+6—9/p—1)

v=n+1 v=1

afl)
n

where constant C does not depend on n.

(11)

Regarding Theorem 1, a very interesting open question
on its analogue for functions with general monotone Fourier
coeflicients generalized in the sense of [5, 6] remains.

Corollary 3. Puttingp(8) = 6%, 0 < a < A, in the definition of
the class N(p, 0,1, A, ), we obtain [1] the Nikolskii class H;J“".

Thus Theorems I and 2 give the single coefficient condition

- C
4y = yroa+l-1/p

(12)

for f € H;“", given in [7], where the function f is given by
(10).

Corollary 4. If ¢(8) > C, then we obtain [1] the Besov class

Or . .
B,’. Thus Theorems 1 and 2 give the necessary and sufficient
condition

(&)
Zagvr%e—@/p—l < o0 (13)
r=1

for f € Bf:, given in [8], where the function f is given by (10).

Theorem 5. For a function f € L, 1 < p < 00, such that

f(x)~ ilv COS VX, (14)
=1

(15)

- a,>20 forv=2"
’ 0 for v #2¢,

to belong to the class N(p,0,r,A, @), it is necessary and
sufficient that its Fourier coefficients satisfy the condition (here
and below we assume that the parameters 0, r, A, and k satisfy
condition (2) and the function ¢ satisfies conditions (4)-(6).)

[ee] m 1/9
1
29970 4 0N 10,10 <C (_) 16
(szm;ﬂ o(L). 0o

v=m+1

where constant C does not depend on m.

Corollary 6. Putting(8) = 8%, 0 < a < A, in the definition of
the class N(p, 0,1, A, ), we obtain [1] the Nikolskii class H;J“".
Thus Theorem 5 gives the single coefficient condition

a, < C27H*e (17)

for f € HJ™, where the function f is given by (14).
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Corollary 7. If (8) = C, then we obtain [1] the Besov class
Bff. Thus Theorem 5 gives the necessary and sufficient condition

)
Y a2 < oo (18)
u=1

for f € B?;, given in [8], where the function f is given by (14).

Example 8. Let
f(x)~ Zaﬂ cos 2¥x, (19)
u=0

where

(a+1/6)

a,=2" (u+1) , a>0. (20)

Then, we have

- 1/6
Cin "< < Z azz’"e) <Gy,

u=n+1

(21)
n 1/6
C3n—(¢x+1/9) < (211/\9 Zazzy(rﬂ\)@) < C4n—(oc+l/9)’
u=0

thus implying (see the proof of Theorem 5) that f ¢
N(p,0,7, A, @) for p(8) = (In(1/8))"“. This means that classes
N are classes of embedding between classes H and B.

3. Auxiliary Statements

In order to establish our results, we use the following lemmas.

Lemma9. Let 0 < « < 3 < 0o and a, > 0. The following
inequality holds true:

n 1/B n 1/
(Zaf) < (Za‘:) . (22)
=1 r=1

Proof of the lemma is due to Jensen [9, p. 43].

Lemma10. Let {a,};°, be a sequence of nonnegative numbers,
let o > 0, let A be a real number, and let m and n be positive
integers such that m < n. Then

(1) for 1 < p < o0, the following equalities hold:

p=m = p=m
(23)
n u p n
S (Sor) =6 Tu (aa)'
u=m Y=m pu=m
(2) for 0 < p < 1, the following equalities hold:
p n
ava> >, Z u 1 (%P‘AH)P i
p=m V=i =
(24)

where constants C,, C,, Cs, and C4 depend only on numbers
«, A, and p and do not depend on m and n as well as on the
sequence {a,},2;.

Proof of the lemma is given in [9, p. 308].

Lemmas 11 and 12 state certain [,-type inequalities which
are reversed to the ones given in Lemma 10 and closely related
to Copson’s and Leindler’s inequalities (see, e.g., [10-13]).

We write a, | if {a,};2; is a monotone-decreasing
sequence of nonnegative numbers, that is, if a, > a,,; >
0(v=12,...).

Lemma 11. Leta, |, let « > 0, let A be a real number, and let
m and n be positive integers. Then

(1) for 1 < p < co and n = 16m, the following equalities

hold:
n n P n
Z #a—l <Zaﬂ'\> >, Z Hoc—l (aHH)Hl)P i
p=m =y u=8m
. (25)
n 143 n
Z‘u—vc—l <Zavva) > C, Z u 1 (awu"“)p;
p=m v=m p=4m

hold:
n n I3 n
$ (50 w0y
u=4m =y u=m (26)
n I3 n
S (§r) ceigpm oy
u=4m v=4m pu=m

where constants C,, C,, Cs, and C, depend only on numbers
&, A, and p and do not depend on m and n as well as on the
sequence {a,} .

Proof of the lemma is given in [4].

Lemma 12. Let a, |, let « > 0, let A be a real number, and
let m and n be positive integers. For 0 < p < 00, the following
inequalities hold:

n n n P
C, Zﬂoc—l (amu)Hl)P < Zuoc—l <Zav”A>
V=u

u=1 u=1

< Cziua—l (aMM)Hl)P i
u=1

n n u p
C3ZP‘_a_l (%HAH)P < Z#—a—l (zavv)t)
u=1

(27)

< C4§n:1[°‘_1 (a”#AH)P)
u=1

where constants C,, C,, Cs, and C, depend only on numbers
a, A, and p and do not depend on m and n as well as on the
sequence {a,} .



The lemma is also proven in [4].

Lemma 13. Let f € L,[0,27] for fixed p from the interval
1 < p < ooand let

f(x)~ iav cosvx, a, | 0. (28)
v=1

The following inequalities hold:

1/p 00 1/p
p. (k+1)p-2 p.p2
Cln (Zav ) +<vz a,v )

v=1 =n+1
1
<a (1) (29)
n’p
1 n (k y 1/p 0 1/p
+1)p-2 —2
y=1 v=n+1

where constants C, and C, do not depend on n and f.
The lemma is proven in [8].

Lemma 14. A function f belongs to the class N(p,0,r, A, @) if
and only if

( i 20y (f)) +27

u=n+1

).

where constant C does not depend on n.

; 1/6
nAo Z 2#(r+A)0E (f)9 )
24 P
#=0 (30)

Proof of the lemma is given in [1].

Lemmal5. Let f € L, 1< p <00, and

(e}
fx)~ Y a,cos2x, a,>0. (31)
u=0

The following inequalities hold:

o 172 o 12
c1<za;> g||f||pgc2(za;> @
u=0 u=0

where constants C, and C, do not depend on f.
Proof of the lemma is due to Zygmund [14, vol. I, p. 326].

Corollary 16. Lemma 15 yields the following estimate:

. 1/2 . 1/2
c1<za;> sEzn(f)psCZ(Zaﬁ) R
i ii=n

where constants C, and C, do not depend on n and f.
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4. Proofs

Now we prove our results.

Proof of Theorem 1. Put

1/(n+1)
I, = J £y (it dt
0

1 (34)
I :J —r+D0-1, (£
. W (1)) d
We have [9, p. 55]
1/(n+1)
I, = L £ wy (fit) dt
00 1/v
=y J 0w (1) dt
yam1 I+ P
00 1 6 r1/v 0-1 (35)
< wk<f,—) I £ de
v:;d V/p J1/(v+1)
. 1\? o
< Cl Z wk (f-, —> 'Vr -
y=n+1 v p

and, taking into account properties of modulus of smooth-
ness [15],

1/v

L> Y w ( —) J 70 dt
' v:;-l Y v+ 1/p iy
(36)
N 1\ o
ZCZZwk<f,—> 'Vri.
y=n+1 v p
In an analogous way, we estimate
i AN A
L < wk<f,—) J £ e
=1 V/p Ji/(v+1)
n 1 0
< C3Zwk <f> _) V(HMG_I,
y=1 V/p
(37)

t—(r+/\)9—1dt

n 1 0 r1/v
L>)w ( , ) j
Lk f”+1 p ey

c 1\? (e
> C4Z(Uk (f, ;)p v .

v=1

Let f € N(p,0,r,A,¢). For a positive integer n, we put § =
1/(n + 1). Then we have

) 26 © 1\?
I'=IL+6 IZZCS(Zwk<f,—) ,o-1
P

v=n+1 v

Sl )

(38)
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Hence, we obtain

I-(Sa(r

0 0-1
) VT
v=n+1

p

=R |~

0

n
Y 1
+n wk<f,—
VZI ‘y

> H(rrp-1 > <C.I (39)
1
SC7‘P(5):C7‘P( ><C8‘P< )
which proves inequality (9).
Now we suppose that inequality (9) holds. For § € (0, 1),
we choose the positive integer n satisfying 1/(n+1) < § < 1/n.
Then, taking into consideration the estimates from above for
I, and I,, we have

p

1/(n+1)
1 = L £, ( f,t)i dt

o 6
+ J 0w (o), dt

1/(n+1)

+ % L CON g (f0de <1+, (a0)

0 o
< C9< Z Wy (f,%)pvre—l

v=n+1

S (s)

Hence

1 1
ISCIOJSCII(P(;> SCIZ?’(E) <Cpup(d), (41

implying that f € N(p, 0,1, 1, 9).
Proof of Theorem 1 is completed. O

Proof of Theorem 2. Theorem 1 implies that the condition f €
N(p,0,r, A, ¢) is equivalent to the condition

N 1\ 01 aex 1\? (r+1)6-1
y;lwk (f,;)pv +n ;wk (f,;)pv
o (42)
<co(,)

where constant C; does not depend on n. Lemma 13 yields
that the last estimate is equivalent to the estimate

oo o/p
Z v(r —k)O Zap (k+1)p-2
v=n+1 u=1

LS (See)

5
n y 0/p
+ n—AGZy(HA—k)B—l ( Z (k+1)p >
r=1 =1
0/p
AGZ (r+1)0— l(zap p- 2>
1 6
()

n

(43)

where constant C, does not depend on n. Hence, if we denote
the terms on the left-hand side of the inequality by J;, J,,
5, and J,, respectively, then condition f € N(p,0,r,A,¢) is
equivalent to the condition

1 0
To4 T+ Ty + ], SCz(p(;) . (44)

Now we estimate the terms J;, J,, J5, and J, from below
and above by means of expression taking part in the condition
of the theorem.

First we estimate J; and ], from below. We have

k-1 [N p (kD) e
_ r—k)0-1 p +1)p-2
= Z v ZILW
e

v=n+1
(45)
00 v 0/p
—(k-r)6-1 p, (k+1)p-2
= Z v ( Z a,u ) .
v=n+1 u=n+1

For k — r > 0, making use of Lemmas 10 and 11, we obtain

)
J,>C, (k+1)p—2v) /p

v=4(n+1)

=G, Z

v=4(n+1)

y—(k—r)e—l (afv

(46)
asvremfe/ p1

In an analogous way, for r0 > 0, we get

0/p
b= 3 ()
v=n+1
Lo §

v=8(n+1)

(47)
af 7/r6+9—t9/p—1 )

We estimate the term J, from above:

< 0 0/p
-1 -2
J, < Cs VO (a7
v=[(n+1)/4]
(48)
_ CS afvrme—@/p—l.

v=[(n+1)/4]



For J,, we have

N (k) b (k+) e
—(k-r)0-1 p (k+1)p-2
v Z apu

v=n+1 u=n+1
(49)
0/p
+ Z ~(k-r)6~ 1<Za (k+1)p— 2) ,
v=n+1
and applying once more Lemmas 10 and 11, we obtain
]1 < C7 asvrem—e/p—l
v=[(n+1)/4]
) o/ (50)
<Z p (k+1)p- 2) )
Put
n
~(k-)0 (k+1)p-2
=m0y O, (5)
u=1
Then, for
L, = 1%, (52)

taking into account the fact that (k + 1)p -2 >0anda, | 0,
we get

n
_ (k+1)p-2
L= D apu
p=1

[n/2] n
p, (k+1)p-2 p (k+1)p-2
SICAT Halpn Y, M
u=1 u=[n/2]+1
(53)
[n/2]

(k+1)p-2 (k+1)p-1_p
Z a + Cgn )41
u=1

& (k+1)p-2
<Gy Z aﬁ proEE,
u=1

Since k —r — A > 0, we have

0/ (k=)0 & (k+1) "
P —(k- +1)p-2
LY <Cgn ™ < Z abu )

p=1
. k+1)p—2 i
E (54)

<C111’l/w Z Vo (k—r—21)6"
v=[n/2]

< Cu” /\92 —(k-r-1)0

) 0/p
< z (k+1)p—2)
v=1 =1

Applying Lemma 12, we obtain

AN —(k-r-1)0- PN
119/17 < Cpn Aozy (k=r=2)6 l(afv(lﬁl)p 21/) p

v=1

n
_ Clzn—)tﬂZafv(r+/\)9+6—9/p—1'

v=1
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From (50), it follows that

(o)
]1 < C13 < z afvr9+9—6/p—1
v=[(n+1)/4]

(56)

=1

n
Y Zasv(m\)me—e/ p-1 > .

This way, inequalities (46), (47), (48), and (56) yield

o0
Cu )

v=8(n+1)

o0
6 r6+0-6/p—
< C15< Z a, "’ et (57)
v=[(n+1)/4]

0_r6+0-0/p-1
a,v <5+

n
nf)tﬂ Zafy(rﬁt)é)#)f@/pfl ) )

y=1
Now we estimate J; and J,. Put

0/p

y
<Z p, (k+1)p— 2)

|
ek
]
3
>a
>\~

A=, =
(58)

A, =,

n o/p
(r+1)6-1 p, p2

2 (Z au ) :

v=1 u=v

Applying Lemma 12, for r + A — k < 0, we get

n
< Clézavev(ru)me—e/ p-1 (59)

v=1
We estimate A, in an analogous way:

n 6/p
AZ < C17 (Zy(rﬁ\)@l (Z 5.“}7 2>

=1 w=v

n o0 O/P
+ ZV(HA)G—I < Z aﬁyp2>
v=1

u=n+l

(60)
v=1

o o/p
(r+1)0 p, p-2
n < z awu > >
u=n+1

We estimate the series

0 o/p
B:< Z aﬁyp_z) . (61)

u=n+1

n
< C18 <Zasv(r+)l)9+9—6/p—l
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Firstlet 6/p > 1. Applying Hélder’s inequality, we have

0 0o plo
P, P2 p, p=1+rp=p/0
¥ e ( 3 (o))

u=n+1 u=n+1

. ©-p)/0
><< Z #—(rp—p/eﬂ)e/(@—p)) .

u=n+1

Since (rp — p/6 + 1)(0/(8 - p)) = rp(8/(6 — p)) + 1 > 1, we
get

-2 - 6 0-6 6-1
$ ot < Cyn rp(zw oo ) @

u=n+l u=n+1
So, for 8/p > 1, we have proven that
0 N 0 r6+0-0
- -6/p-1
B<Cyn " Z au 0-6lp1, (64)
u=n+1

Let 8/p < 1. For given n, we choose the positive integer
N such that 2V < n + 1 < 2N*!, Then, we have

o 0/p . g 6/p
B< ( y aﬁyp_2> < <Zapv D ,up—2>

=N v=N u=2"
! (65)

- o/p

<Cy ( Za;Z”(P‘l)) .
v=N

Making use of Lemma 9, we obtain

2"-1

o0 (e8]
0 5v(6-6/p) 0 6-6/p-1
B<Cy Y 2@ <, 3 Yty

=N v=N y=2""1

o0 o0
=C,, Z afve_e/"_l <Cy, Z afve_e/l’_l (66)
y=2N-1 v=[(n+1)/4]

n+117" i 0/ p—
< C22 [ ] Z afvr9+9 olp 1.
4 v=[(n+1)/4]

Since, for n > 3, [(n + 1)/4] > n/12 holds, we get

(e}
—r0 0_r6+0-0/p—
B<Cyun™® Y alyoort, (67)
v=[(n+1)/4]

This way, for 0 < 6/p < 0o, we proved that

(o]
B Sczw—re Z afvr0+9—6/p—1' (68)
v=[(n+1)/4]

Hence, (60) yields

n
A2 < C25 (Zafv(rw\)@w—@/p—l
=1

(69)

o0
o Z aferJrGG/pl)'
v=[(n+1)/4]

7
Now, from (59), it follows that
Y
Ji+]y=n" (A +A,)
n
<Cy (n—w Zasv(r+/\)9+e—9/p—1
v=1 (70)
(o)
+ Z asvr6+6—9/p71 > )
v=[(n+1)/4]
Further, we estimate the series
A3 _ afvr9+9—6/p—1
v=[(n+1)/4]
(71)
(o]
_ A4 + Z afyr9+9—9/p—1’
v=n+1
where
0 r6+6-6/p-1 0 0+0-6/
Ay = V" P70 < Cyryupy !
v=[(n+1)/4]
Sl 0 (r+1)0+6-0
< Cyn” alyr+V00-0p=1 (72)
v=1
n
< ngn—w Zai)v(n)t)ewfe/ Pl
v=1
Hence
n
Ay <Cy (n/\e Zafv(m\)ewfe/pq
v=1
(73)
o0
+ Z afvr6+06/pl> .
v=n+1
Making use of (73) and (70), we have
n
]3 + ]4 < C30 (nwzasv(m\)eme/pl
v=1
(74)
(o)
+ Z afvr6+9—9/p—l>'
y=n+1
Hence, applying (73) in (57), we obtain
n
]1 + ]2 + ]3 + ]4 < C31 (n'wZafv(rM)me@/Pl
v=1
(75)

N 6_r6+0-0
+ Zavv“'_/}’_l).

v=n+1

Now we estimate A, and A, from below. Making use of
Lemma 12, we get

n
A, >Cy Zafv(r+/\)9+9—9/p—l, (76)

=1



and, in an analogous way,

wedr (Bee)

n
0. (r+1)0+6-6/p-1
> Cy; Zav v .

=1

(77)

Hence,
n
A +A, > C34Za§v(r”)e+9_e/p_l. (78)
v=1

This way the following inequality holds:

n
A C35n-w Zafv(rw\)ﬂ-fe—@/p—l. (79)

=1

From (57), it follows that

0_ro+6-0

-6/p-1
E aly0r0-0lp
v=8(n+1)

L+ +]; +]42C36<

n
+ n—A@ Zafv(r+/l)9+9—9/p—l ) )

v=1

Since

=8(n+1)-1

as vr9+9—9/ p-1 r0+0-9/p

0
< Cyra,n
v=n+l

< Cyn wzae (r+1)0+6-6/p-1

v=1
holds, we have

1 1
Z aﬂvr9+6 0/p- +n wzae (r+1)0+0-6/ p—

v=n+1 v=1

0_r0+6-0/p-1
sC39< Z alyr®e-0lp- (82)
v=8(n+1)

n
Y Zafv(r+}t)0+9—9/p—l ) .

=1

Now, estimates (80) and (75) imply that

( Z a9 r0+6—-0/ p— 1+Tl M)Zae (r+1)0+0-6/ p— 1)

v=n+1 v=1

<h+h+]3+],<Cy ( Z “3”r9+9_9/p_1 (83)

v=n+1

n
n—/\@ Zafv(ﬁ)t)@w—e/p—l ) )

=1

This way we proved that condition (9) is equivalent to the
condition of the theorem. Since condition (9) is equivalent
to the condition f € N(p,0,r,A,¢), proof of Theorem 2 is
completed. O
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Proof of Theorem 5. Considering Lemma 14, condition f €
N(p, 0,1, A, 9) is equivalent to the condition

v -nAf vr/\@ 0
Zz Ezv(f) +2 Zz A » (),

v=n+1

1 9
<Cut(5)

where constant C does not depend on n. Corollary 16 yields
that the last estimate is equivalent to the estimate

0 0 6/2

@ 2 -nAf y(r+A
Y2 <Zaﬂ> +279% 2
v=n+1 u=v

n . 0/2
v=0 uw=v (85)
1 9
<Cup(5) -

where constant C,; does not depend on n.
Put

(84)

(o] 0 6/2
]1 — Z zvrﬂ(zaﬁ> ,
v=n+1 U=y

(86)
n . 0/2
_ A-nAf v(r+1)0 2 X
per S (Sa)
=0 u=v

we estimate J; and J, from below and above.
Let 0 < 6/2 < 1. Using Lemma 9, changing the order of
summation, we get

i weza _ Z Z 2w6 (87)
y=n+1 u=n+1 v n+1

Therefrom, taking into consideration the fact that r6 > 0
while computing the second sum, we obtain

[ee]
J1 < Cyy Z aﬁzme- (88)

u=n+1

Let1 < 0/2 < coand 0 < ¢ < r. Applying Holder’s
inequality, we have

oo oo 210/ oo 1/6'
_ 2 0 Hued —2ued’
_zaﬂs<zaﬂz ) <Zz ) L ®
= p=v

=

where2/0+1/6' = 1. Computing the second sum, we obtain

c - 2/6
<2 Yapa) . (90)
22 \ &
Now we have

<C46 Z 97 (r— SGZ 92;459

v=n+1
1)
[e) U 00
=Cy Y a2"? Y 2P <, Y a2t
u=n+1 v=n+1 u=n+l1
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This way, for 0 < 6 < 0o, we have Let0 < 6/2 < 1 and € > 0. Applying Holder’s inequality,
o we get
J1 = Cyg Z 0221”9> (92)
u=n+1

where constant C,g does not depend on #.

" " 62 , , 1/6'
0 —ued 2 —uedd’
Now we estimate J; from below.

Let 1 < 60/2 < co. Making use of Lemma 9, we get

(101)
0/2
Css [ % 2

S} ) S} H = ved <Zaﬂ >

hz 22"y a2 9y PEN

v=n+1 u=v u=n+l v=n+l
Computing the second sum, we get where 8/2 + 1/0' = 1. The last estimate implies that
\ 0 Aurt n n
Ji2Cy ) a2 (94) Jy 2 Cgy2 M0y 2" A0y i hed, (102)
u=n+1 =0 uw=v
Let0 < 6/2 < 1 and € > 0. Applying Holder’s inequality,
we have

Changing the order of summation and computing the second

, sum, we have
0 0 2 L 00’ v
o (Fa) (S
Za”Z < a, 2
p=v p=v u=v

n b
-nAf 0 —ued v(r+A+e)0
95 J, 2 Cs2™0 Y a2ty 2
C 0 0/2 ( ) u=0 v=0
< 50 <Z 2> , (103)
21/59 U n
u=v > Cssz—n}te Zaezy(rw\)@
> " .
where 6/2 + 1/6' = 1. The last estimate implies that u=0
o0 o0
J, > Cs Z Y(r+e)0 Z a0 wed (96) Thus, for every 0 < 0 < 0o, the following holds:
v=n+1 H=v !
n
Changing the order f)f summation and then computing the J, > Cg2 ™ Z azzﬂ(rﬂ\)e_ (104)
second sum, we obtain =0
o) 14 o)
Jy2Cs Y a2 Yy 200 N alat (97)
u=n+1 v=n+1 u=n+1

Now we estimate ], from above. Taking into considera-
tion the fact that (r + 1)0 > 0, we have
where constant Cs, does not depend on #.

Consequently, for every 0 < 6 < o0, the following
estimate holds:

n n 0/2
]2 < C602—nAGZZV(r+A)0 <(zai>
=0 u=v
©0 0
Cs; Y a2 <], <Csy ) a2,

(98)
u=n+l u=n+1 ( i 2 )6/2
+ a
where constants Cs; and Cs, do not depend on . p=ntl !
Now we estimate J,. Obviously, (105)
6/2 0N (00 [ X "
n n < C zfn 21/ r+ tZZ
J, > zanGZZV(HA)G <Zai> ) (99) 61 720 [;, w
=0 uw=v

Let 1 < 0/2 < 0o. Applying Lemma 9, changing the order

o 6/2

nro 2
of summation and then computing the second sum, we obtain +2 < Z a, ) >

u=n+1
u
5> 2—nAGZn:2v(r+A)G Zn:ae _ e Zn:ae sz(w\)@

2= w [
=0 u=v u=0 »=0

Since

(100)
n
> Cssz—n}te Z aﬁZM(HMG.

. 0/2 . . 0/2
P 2nr9 ( Z aﬁ) < Z Zer < Z a;) = ]l (106)
- u=n+1 =
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holds and an upper bound for J, is already found, we estimate
from above the expression

n n 6/2

Jy= Y200 (za;> . (107)
=0 w=v

Let 0 < 6/2 < 1. Applying Lemma 9, we obtain
n n n 14
Ty < sz(m\)ezaz _ Zazzzv(m\)e
=0 =7 u=0 =0
(108)

n
< Cy Y a2,
u=0

Let1 < 8/2 < coand 0 < & < r + A. Then, applying
Holder’s inequality, we have

" " 200 , 1/6'
2 0, ued —2ueb
Ya, < (Z%Z > <Zz ) , (109)
u=v u=v u=v
where 2/0 + 1/6' = 1. Using the last estimate, we get
n [e's) 9/291 n
»(r+1)0 —2ued’ 0 ued
Jy< )2 <Zz ) Y a2
v=0 u=v u=v (110)

n n

A—¢£)0 0 Auch

< v(r+ Z s

<Cg ) 2 a2
v=0 u=v

Changing the order of summation and computing the second
sum, we obtain

n u n
J3 < Ces y @280y 2790 < O, N a2t
u=0 v=0 u=0

Therefore, for every 0 < 6 < 00, the following estimate
holds:

n
05 p(r+1)0
J5 < C652a[42"(r+ 9. 112)
u=0

Now, making use of inequalities (105) and (98), we have

n (o)
J, < Ces (2‘”925[22"(’*”9 + ) azZ”m). (113)

u=0 pu=n+1

This way, inequalities (98) and (104) and the last inequal-
ity imply the estimate

(o) n
C67( Yl 2‘”“’2(132“(’*’”9) <+

u=n+1 u=0
(114)

(] n
< Cyg < Z aﬁZ“re + 2_"’192“:122”(”}09) ,
u=n+l1 u=0

Abstract and Applied Analysis

where constants Cg, and Cgg do not depend on n. Hence,
considering condition (85), we conclude that condition f €
N(p,0,r, A, @) is equivalent to the condition

&) n
A = Z aezme +2—n)u92a92/4(r+)t)9
n u U
u=n+1 u=0

(115)
1 9
<Cor(5:)
where constant C¢q does not depend on 7.
We put

(¢ m
D, = Y AW +m™0Y A%, (116)

v=m+1 v=1

For given m, we choose the positive integer # such that 2" <
m+1< 2",
First we consider the case 2" < m + 1 < 2!, We have
00 2] 2"-1
Dp= S A0+ T A% 40 Y A0y 00
y=1

y=2n+1 v=m+1

117)
m
+ m—/\@ Z sz(r+A)0.
y=2"

Since A, = 0 for v # 2%, we get

O 20 10
D, = Z A7 +m
y=pntl

A 10 (reh)d
- Z)va(ﬁ)
v=1

4 m—w/\gn 2n(r+/\)9

co 2¢t1-1 n-12¢"1-1

Z Z Aevreer—wZ Z AGV(H)L)G
v v

u=n+l y=2# u=0 y=2# (118)

+ mﬂw/\gn 2n(r+/\)9

00 n—1
_ Z AZ” zyre + m—w Z)‘ZM 2‘u(r+/\)9
pu=n+1 =0

+ m—w/\gn 2n(r+/\)9‘

Further, since A,. = a,,, we get
o0 n
D, = Z aﬁz’”e + m_wZaiZH(H’w. (119)
u=n+l u=0
Hence, for 2" < m + 1 < 2™, we obtain

0 n
C70< Z aﬁzp.rQ +2—n/\eza22y(r+)t)6> < Dm
u=n+1 u=0

(120)

[ee] n
<C» < Y a2 2‘”“’20122*“””9) ,

u=n+1 u=0

where constants C,, and C;; do not depend on m and n.
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Let us assume now that m + 1 = 2". In an analogous way,
we have

0 2"-1
0_ro —nAg 0_(r+1)6
D, Z ALY +2 Z Ay
=1

y=2"

00 n—1
0 urd -nA0 0 ,u(r+1)0
l;ayz +2 ZaHZ (121)

#=0

o) n
_ Z agzyre +2—n)t92a22y(r+A)9 - A
pu=n+1 u=0

ne

Thus, for 2" < m+1 < 2™, the following estimate holds:

C,A, <D, <CsA, (122)
where constants C,, and C,; do not depend on m and
n. Hence, considering condition (115), we conclude that
condition f € N(p,0,r, A, ¢) is equivalent to the condition

119
D, < Cpup (2—) : (123)
where constant C,, does not depend on m and n.
Since 1/2" < 2/(m + 1) < 2/m, we get
1 2 2
(L) <eonls2)<euw(2). oo

where constant C¢ does not depend on m and »; and since
1/2" > 1/(m+1) = 1/2m, we get

1 1 1
4’(27) z C”"’(%) z Cm‘f’(;)’

where constant C,4 does not depend on m and n. This way,
condition (123) is equivalent to the condition

(125)

6
D,, < Coop (l) , (126)
m
where constant C.4 does not depend on m.
This completes the proof of Theorem 5. O

Remark 17. Notice that another way of proving Theorems 2
and 5 is presented in [2]. Our approach here is similar to that
used in [16].
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