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We present an acceleration technique for the Secantmethod.The Secantmethod is a root-searching algorithm for a general function
𝑓. We exploit the fact that the combination of two Secant steps leads to an improved, so-called first-order approximant of the root.
The original Secant algorithm can be modified to a first-order accelerated algorithm which generates a sequence of first-order
approximants. This process can be repeated: two 𝑛th order approximants can be combined in a (𝑛 + 1)th order approximant and
the algorithm can be modified to an (𝑛 + 1)th order accelerated algorithm which generates a sequence of such approximants. We
show that the sequence of 𝑛th order approximants converges to the root with the same order as methods using polynomial fits of
𝑓 of degree 𝑛.

1. Introduction

TheSecant algorithm is a textbook algorithm to find a numer-
ical approximation of the root of a function 𝑓(𝑥). A root 𝛼 is
a solution of the equation 𝑓(𝑥) = 0. Other such algorithms
are, for example, the bisection algorithm, inverse quadratic
interpolation, the regula-falsi algorithm,Muller’smethod, the
Newton-Raphson algorithm, Steffensen’s method, the Brent
algorithm, and many more. These methods are discussed in
many books and articles; see, for example, [1–11]. All the
algorithms mentioned are intended for a general function 𝑓.
They all take one, two, or more initial estimates of 𝛼 as input
and iteratively generate a sequence {𝑥

𝑛
} of approximants of

𝛼. The sequence converges to the root 𝛼 for suitably chosen
initial estimates and a function 𝑓 meeting particular regu-
larity requirements at and around 𝛼. The exact requirements
differ from method to method. Root-finding plays a role in
many problems, also when this is not immediately apparent.
An example is the problem of solving a set of linear equations
[12].

The Secant algorithm has the characteristics that (a) it is
“derivative-free;” that is, it does not require the evaluation
of a derivative of 𝑓 and (b) it requires only one evaluation
of 𝑓 per iteration. The generated sequence {𝑥

𝑛
} converges

superlinearly with order 𝜓
0
= (1 +√5)/2 ≈ 1.6180 for a large

class of functions 𝑓.

It is important to stress that only one evaluation of 𝑓
per iteration is needed. Situations which require an efficient
root-finding algorithm are typically situations in which the
execution time of the algorithm is dominated by the time
needed to calculate the value of 𝑓. In these situations it
is important that as few evaluations of 𝑓 as possible are
needed to estimate the root with a certain accuracy. An
algorithm which requires 𝑚 evaluations of 𝑓 per iteration is
therefore only competitive with the Secant algorithm if one
iteration produces a better estimate than𝑚 subsequent Secant
iterations. In other words, it must converge with an order
larger than 𝜓𝑚

0
. To the best of our knowledge, there are no

derivative-free algorithms which achieve this, except for the
generalizations of the Secant algorithm discussed below.

In this paper we derive a generalization of the Secant
method with the following properties: (a) it is derivative-free,
(b) it requires one evaluation of 𝑓 per iteration, and (c) it
achieves an order of convergence arbitrarily close to 2 for
analytic functions 𝑓. The first two properties are the same
as for the Secant algorithm. The last property shows that the
method presented here will converge faster than the Secant
method if 𝑓 is sufficiently regular.

Other generalizations of the Secant algorithm with the
same three properties are themethod of inverse interpolation
[2] and Sidi’s method [13]. These two methods are based on
polynomial fits to either the inverse of 𝑓 (in the case of the
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method of inverse interpolation) or to 𝑓 itself (in the case
of Sidi’s method). Whereas the Secant method is based on
straight-line fits to𝑓, the polynomial fits of thesemethods can
be of an arbitrary degree 𝑛.The resulting order of convergence
is𝜓
𝑛−1

for bothmethods. Hence the order is𝜓
0
for the Secant

method and 𝜓
1

≈ 1.8393 when a polynomial of degree 2
is used. By taking the order of the fitting polynomial large
enough, the order of convergence becomes asymptotically
quadratic if the function is sufficiently regular.

Another method which satisfies the three properties is
the method of direct interpolation [2]. However this method
requires that the root(s) of a polynomial of degree 𝑛 are
calculated in every iteration. This is not an attractive scheme
except possibly for the case 𝑛 = 2 which is known as Muller’s
method [1].

Our method is not based on polynomial fits. It was noted
in [14, 15] that the results of two Secant steps can be combined
into a better approximant of the root𝛼 in away reminiscent of
Aitken’s delta-squaredmethod [16] or Shank’s transformation
[17]. We take this idea further. We show that the process of
combining approximants can be repeated. If we call the result
of a Secant step an approximant of order zero, we demonstrate
that two approximants of order 𝑛 can be combined into an
approximant of order 𝑛 + 1. We devise an algorithm which
generates these approximants. The 𝑛th order version of the
algorithm generates a sequence of 𝑛th order approximants.
We show that this sequence converges with order 𝜓

𝑛
to the

root 𝛼 if 𝑓 is sufficiently regular.
Although our algorithm offers no specific advantage

over the method of inverse interpolation or Sidi’s method
(all are derivative-free, require one evaluation of 𝑓 per
iteration, and achieve orders of convergence 𝜓

𝑛
), we think

it is noteworthy that the Secant method can be sped up to
higher orders of convergence without the use of polynomial
fits. We suspect that the same acceleration technique can be
applied to a broader set of iterative algorithms. We also see
a possibility that our technique can lead to a parallel root-
solving algorithm.These venues are however not explored in
this paper.

The paper is organized as follows. We discuss preliminar-
ies and recall the basic properties of the Secant sequence in
Sections 2 and 3. We introduce the approximants in Section
4.The algorithmwhich generates these approximants is given
in Section 5 and its convergence properties are derived in
Section 6. We end with conclusions in Section 7.

2. Preliminaries

2.1. Order of Convergence. When a sequence {𝑥
𝑛
} converges

to a limit 𝛼 and the sequence has the property

lim
𝑛→∞

󵄨󵄨󵄨󵄨𝑥𝑛 − 𝛼
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥𝑛−1 − 𝛼
󵄨󵄨󵄨󵄨
𝜓

= 𝐴 (1)

with 𝐴 ̸= 0, then 𝜓 is called the “order of convergence” or
“order” of the sequence. The condition 𝐴 ̸= 0 is necessary
to define the order of convergence uniquely. 𝐴 is called the
“asymptotic error constant” [2, 18, 19]. The larger the order of
convergence, the faster the sequence converges.

2.2. Divided Differences. Throughout this paper we use
“divided differences.”We remind the reader of their definition
and two important properties.

Let 𝐼 be an open interval of real values and let 𝑓 be a
function 𝑓 : 𝐼 → R. Let 𝑥

1
, . . . , 𝑥

𝑛
∈ 𝐼 with 𝑥

𝑖
̸= 𝑥
𝑗

if 𝑖 ̸= 𝑗. The “𝑛th divided difference” 𝑓[𝑥
1
, . . . , 𝑥

𝑛
] of 𝑓 is

defined recursively as

𝑓 [𝑥
1
, . . . , 𝑥

𝑛
] =

𝑓 [𝑥
1
, . . . , 𝑥

𝑛−1
] − 𝑓 [𝑥

2
, . . . , 𝑥

𝑛
]

𝑥
1
− 𝑥
𝑛

(2)

with

𝑓 [𝑥] = 𝑓 (𝑥) (3)

to terminate the recursion.
We use the following two properties of divided differ-

ences.

(i) If 𝑓 ∈ 𝐶𝑛−2(𝐼) and the (𝑛 − 2)th derivative 𝑓(𝑛−2)

is Lipschitz continuous on 𝐼, then 𝑓[𝑥
1
, . . . , 𝑥

𝑛
] is

bounded on 𝐼𝑛.
This follows from the property that there exist a
𝜁
1
, 𝜁
2
∈ [min(𝑥

1
, . . . , 𝑥

𝑛
),max(𝑥

1
, . . . , 𝑥

𝑛
)] such that

𝑓 [𝑥
1
, . . . , 𝑥

𝑛
] =

1

(𝑛 − 1)!

𝑓(𝑛−2) (𝜁
1
) − 𝑓(𝑛−2) (𝜁

2
)

𝜁
1
− 𝜁
2

(4)

if 𝑓 ∈ 𝐶𝑛−2(𝐼).
(ii) If 𝑓 ∈ 𝐶𝑛−1(𝐼) and 𝛼 ∈ 𝐼 then 𝑓[𝑥

1
, . . . , 𝑥

𝑛
] is

continuous in the point (𝑥
1
, . . . , 𝑥

𝑛
) = (𝛼, . . . , 𝛼) with

lim
𝑥
1
,...,𝑥
𝑛
→𝛼

𝑓 [𝑥
1
, . . . , 𝑥

𝑛
] =

𝑓(𝑛−1) (𝛼)

(𝑛 − 1)!
. (5)

This property is cited in many text books [2, 5, 18, 20].
It follows, for example, from the previous property in
combination with the mean value theorem.

3. The Secant Algorithm

Suppose we have an open interval 𝐼 of real values and a
function 𝑓 : 𝐼 → R. Suppose 𝛼 ∈ 𝐼 and 𝑓(𝛼) = 0. A Secant
step 𝑆 is defined as

𝑆 (𝑥
1
, 𝑥
2
) = 𝑥
1
− 𝑓 (𝑥

1
)

𝑥
1
− 𝑥
2

𝑓 (𝑥
1
) − 𝑓 (𝑥

2
)

=
−𝑓 (𝑥

2
) 𝑥
1
+ 𝑓 (𝑥

1
) 𝑥
2

𝑓 (𝑥
1
) − 𝑓 (𝑥

2
)

.

(6)

The Secant algorithm generates a sequence {𝑥
𝑛
}∞
𝑛=−1

which
starts with two initial values 𝑥

−1
, 𝑥
0
∈ 𝐼 and develops as

𝑥
𝑛
= 𝑆 (𝑥

𝑛−1
, 𝑥
𝑛−2

) . (7)

We can develop the sequence as long as 𝑥
𝑛

∈ 𝐼. It can be
shown [2, 5] that

𝑥
𝑛
− 𝛼 = (𝑥

𝑛−1
− 𝛼) (𝑥

𝑛−2
− 𝛼)

𝑓 [𝛼, 𝑥
𝑛−1

, 𝑥
𝑛−2

]

𝑓 [𝑥
𝑛−1

, 𝑥
𝑛−2

]
. (8)
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It can also be shown [2, 5] that if𝑓 ∈ 𝐶2(𝐼), the first derivative
𝑓(1)(𝛼) and second derivative 𝑓(2)(𝛼) are not equal to zero,
and the start values 𝑥

−1
and 𝑥

0
are chosen close enough to 𝛼,

then the Secant sequence {𝑥
𝑛
}∞
𝑛=−1

converges to 𝛼 with

lim
𝑛→∞

󵄨󵄨󵄨󵄨𝑥𝑛 − 𝛼
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥𝑛−1 − 𝛼
󵄨󵄨󵄨󵄨
𝜓
0

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓(2) (𝛼)

2𝑓(1) (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
0
−1

, (9)

where 𝜓
0
= (1 + √5)/2.

This means that the sequence converges with order 𝜓
0

under the conditions stated. It can be expected [10] that the
sequence converges with a higher order if 𝑓(2)(𝛼) = 0. In
case 𝑓(1)(𝛼) = 0 the sequence still converges but no longer
superlinearly [21].

4. General Order Approximant

We define what we call an approximant of general order of
the root 𝛼 of a function 𝑓 in this section. This definition is
recursive. To study this approximant, we express the approx-
imant directly in terms of 𝑓 in Section 4.1. Two expressions
are obtained: one involving𝑓 andpolynomials in Section 4.1.1
and one involving divided differences in Section 4.1.2. These
forms allows us to cast the approximant in a form which
exposes its properties when we are close to 𝛼 in Lemmas 3
and 4.

We define an 𝑛th order approximant 𝑆
𝑛
as follows.

Definition 1. Let 𝐼 ⊂ R be an open interval of real values and
𝑓 a function 𝑓 : 𝐼 → R. Define the 𝑛th order approximant
𝑆
𝑛
for 𝑛 = 1, 2, 3, . . . as

𝑆
𝑛
(𝑥
1
, . . . , 𝑥

𝑛+2
)

=
𝑆
𝑛−1

(𝑥
1
, . . . , 𝑥

𝑛+1
) 𝑥
𝑛+2

− 𝑥
1
𝑆
𝑛−1

(𝑥
2
, . . . , 𝑥

𝑛+2
)

𝑆
𝑛−1

(𝑥
1
, . . . , 𝑥

𝑛+1
) + 𝑥
𝑛+2

− 𝑥
1
− 𝑆
𝑛−1

(𝑥
2
, . . . , 𝑥

𝑛+2
)
(10)

for all values 𝑥
1
, . . . , 𝑥

𝑛+2
∈ 𝐼 for which 𝑆

𝑛−1
(𝑥
1
, . . . , 𝑥

𝑛+1
) and

𝑆
𝑛−1

(𝑥
2
, . . . , 𝑥

𝑛+2
) are defined and for which the denominator

is unequal to zero. 𝑆
0
(𝑥
1
, 𝑥
2
) is the Secant step 𝑆(𝑥

1
, 𝑥
2
)

defined in (6).

The reason why we call this an approximant will become
clear shortly.

4.1. The Approximant in Terms of the Function 𝑓

4.1.1. First Form. From (6) we can write 𝑆
0
as

𝑆
0
(𝑥
1
, 𝑥
2
) =

−𝑥
1
/𝑓 (𝑥
1
) + 𝑥
2
/𝑓 (𝑥
2
)

−1/𝑓 (𝑥
1
) + 1/𝑓 (𝑥

2
)

(11)

for 𝑓(𝑥
1
), 𝑓(𝑥

2
) ̸= 0 and 𝑓(𝑥

1
) ̸= 𝑓(𝑥

2
). Working out 𝑆

1
with

our recursive definition for 𝑆
𝑛
we obtain

𝑆
1
(𝑥
1
, 𝑥
2
, 𝑥
3
)

= (−
𝑥
1

𝑓 (𝑥
1
)
(𝑥
2
− 𝑥
3
) +

𝑥
2

𝑓 (𝑥
2
)
(𝑥
1
− 𝑥
3
)

−
𝑥
3

𝑓 (𝑥
3
)
(𝑥
1
− 𝑥
2
))

⋅ (−
1

𝑓 (𝑥
1
)
(𝑥
2
− 𝑥
3
) +

1

𝑓 (𝑥
2
)
(𝑥
1
− 𝑥
3
)

−
1

𝑓 (𝑥
3
)
(𝑥
1
− 𝑥
2
))

−1

(12)

for 𝑓(𝑥
1
), 𝑓(𝑥

2
), 𝑓(𝑥

3
) ̸= 0 and the denominator not equal to

zero.
We show in Appendix A that the general form of (11) and

(12) is

𝑆
𝑛
(𝑥
1
, . . . , 𝑥

𝑛+2
)

=
∑
𝑛+2

𝑖=1
(𝑥
𝑖
/𝑓 (𝑥
𝑖
)) 𝑎
𝑛,𝑖

(𝑥
1
, . . . , 𝑥

𝑛+2
)

∑
𝑛+2

𝑖=1
(1/𝑓 (𝑥

𝑖
)) 𝑎
𝑛,𝑖

(𝑥
1
, . . . , 𝑥

𝑛+2
)

(13)

for 𝑓(𝑥
1
), . . . , 𝑓(𝑥

𝑛+2
) ̸= 0 and the denominator not equal to

zero. The 𝑎
𝑛,𝑖
are polynomials and are given by

𝑎
𝑛,𝑖

(𝑥
1
, . . . , 𝑥

𝑛+2
) = (−1)

𝑖

𝑛+2

∏
𝑗=1

𝑗 ̸=𝑖

𝑛+2

∏
𝑘=𝑗+1

𝑘 ̸=𝑖

(𝑥
𝑗
− 𝑥
𝑘
) (14)

for 𝑛 = 0, 1, 2, . . . and 𝑖 = 1, . . . , 𝑛 + 2. Throughout the paper
we follow the convention that∏𝑘

𝑖=𝑗
(⋅ ⋅ ⋅ ) = 1 for 𝑘 < 𝑗.

The condition 𝑓(𝑥
𝑖
) ̸= 0 for all 𝑖must be imposed for the

form (13) but can be lifted bymultiplying both numerator and
denominator with the product∏𝑛+2

𝑖=1
𝑓(𝑥
𝑖
).

Examples of 𝑎
𝑛,𝑖
for 𝑛 = 0, 1, 2 are

𝑎
0,1

(𝑥
1
, 𝑥
2
) = −1,

𝑎
0,2

(𝑥
1
, 𝑥
2
) = 1,

𝑎
1,1

(𝑥
1
, 𝑥
2
, 𝑥
3
) = − (𝑥

2
− 𝑥
3
) ,

𝑎
1,2

(𝑥
1
, 𝑥
2
, 𝑥
3
) = (𝑥

1
− 𝑥
3
) ,

𝑎
1,3

(𝑥
1
, 𝑥
2
, 𝑥
3
) = − (𝑥

1
− 𝑥
2
) ,

𝑎
2,1

(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = − (𝑥

2
− 𝑥
3
) (𝑥
2
− 𝑥
4
) (𝑥
3
− 𝑥
4
) ,

𝑎
2,2

(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = (𝑥

1
− 𝑥
3
) (𝑥
1
− 𝑥
4
) (𝑥
3
− 𝑥
4
) ,

𝑎
2,3

(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) = − (𝑥

1
− 𝑥
2
) (𝑥
1
− 𝑥
4
) (𝑥
2
− 𝑥
4
) ,

...

(15)
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4.1.2. Second Form. Wederive a second expression for 𝑆
𝑛
with

the help of the lemma below.

Lemma 2. Let S
𝑛
be defined as

S
𝑛
(𝑥
1
, . . . , 𝑥

𝑛+2
) =
𝑛+2

∑
𝑖=1

𝑔 (𝑥
𝑖
) 𝑎
𝑛,𝑖

(𝑥
1
, . . . , 𝑥

𝑛+2
) (16)

for some function 𝑔(𝑥). Then

S
𝑛
(𝑥
1
, . . . , 𝑥

𝑛+2
)

= −
{
{
{

𝑛+2

∏
𝑖=1

𝑛+2

∏
𝑗=𝑖+1

(𝑥
𝑖
− 𝑥
𝑗
)
}
}
}

𝑔 [𝑥
1
, . . . , 𝑥

𝑛+2
] .

(17)

Proof. The proof can be obtained by elementary manipula-
tions if we remember [18] that

𝑔 [𝑥
1
, . . . , 𝑥

𝑛+2
] =
𝑛+2

∑
𝑖=1

𝑔 (𝑥
𝑖
)

∏
𝑛+2

𝑗=1

𝑗 ̸=𝑖

(𝑥
𝑖
− 𝑥
𝑗
)
. (18)

Application of Lemma 2 to (13) with 𝑔(𝑥) = 𝑥/𝑓(𝑥) for
the numerator and 𝑔(𝑥) = 1/𝑓(𝑥) for the denominator of
(13) brings 𝑆

𝑛
in the form

𝑆
𝑛
(𝑥
1
, . . . , 𝑥

𝑛+2
) =

(𝑥/𝑓) [𝑥
1
, . . . , 𝑥

𝑛+2
]

(1/𝑓) [𝑥
1
, . . . , 𝑥

𝑛+2
]

(19)

provided that 𝑓(𝑥
𝑖
) ̸= 0 for all 𝑖 = 1, . . . , 𝑛 + 2 and

that the denominator is not equal to zero. The numerator
(𝑥/𝑓)[𝑥

1
, . . . , 𝑥

𝑛+2
] in (19) is the (𝑛 + 2)th divided difference

of the function 𝑥/𝑓(𝑥). The denominator (1/𝑓)[𝑥
1
, . . . , 𝑥

𝑛+2
]

is (𝑛 + 2)th divided difference of the function 1/𝑓(𝑥).

4.2. The Approximant Near the Root. Suppose the function
𝑓 in the definition of 𝑆

𝑛
has a root at 𝛼 ∈ 𝐼: 𝑓(𝛼) = 0. We

study 𝑆
𝑛
in the case that all its arguments 𝑥

1
, . . . , 𝑥

𝑛+2
are in

the neighbourhood of 𝛼. We write 𝑥 = 𝛼 + 𝑦 and 𝑓
𝑌
(𝑦) =

𝑓(𝛼 + 𝑦). The function 𝑓
𝑌
is the function 𝑓 in the coordinate

frame𝑌.The root is at 𝑦 = 0 in this coordinate frame:𝑓
𝑌
(0) =

0. We can express 𝑓(𝑥) in the second divided difference of 𝑓
𝑌

as 𝑓(𝑥) = 𝑦𝑓
𝑌
[0, 𝑦].

Substituting 𝑥
𝑖
= 𝛼 + 𝑦

𝑖
in (13) we have

𝑆
𝑛
(𝛼 + 𝑦

1
, . . . , 𝛼 + 𝑦

𝑛+2
)

= 𝛼 + {
𝑛+2

∏
𝑖=1

𝑦
𝑖
}𝐾
𝑌𝑛

(𝑦
1
, . . . , 𝑦

𝑛+2
)

(20)

with

𝐾
𝑌𝑛

(𝑦
1
, . . . , 𝑦

𝑛+2
)

=
∑
𝑛+2

𝑖=1
(1/𝑓
𝑌
[0, 𝑦
𝑖
]) 𝑎
𝑛,𝑖

(𝑦
1
, . . . , 𝑦

𝑛+2
)

∑
𝑛+2

𝑖=1
(∏
𝑛+2

𝑗=1,𝑗 ̸=𝑖
𝑦
𝑗
/𝑓
𝑌
[0, 𝑦
𝑖
]) 𝑎
𝑛,𝑖

(𝑦
1
, . . . , 𝑦

𝑛+2
)
.

(21)

𝐾
𝑌𝑛

is defined in the coordinate frame 𝑌. The corresponding
𝐾
𝑛
in the original coordinate frame is

𝐾
𝑛
(𝑥
1
, . . . , 𝑥

𝑛+2
)

=
∑
𝑛+2

𝑖=1
(1/𝑓 [𝛼, 𝑥

𝑖
]) 𝑎
𝑛,𝑖

(𝑥
1
, . . . , 𝑥

𝑛+2
)

∑
𝑛+2

𝑖=1
(∏
𝑛+2

𝑗=1,𝑗 ̸=𝑖
(𝑥
𝑗
− 𝛼) /𝑓 [𝛼, 𝑥

𝑖
]) 𝑎
𝑛,𝑖

(𝑥
1
, . . . , 𝑥

𝑛+2
)
.

(22)

If we can show that 𝐾
𝑌𝑛

is bounded for small values of
the 𝑦
𝑖
, we see from (20) that 𝑆

𝑛
is a good approximation of 𝛼.

Establishing the boundedness of 𝐾
𝑌𝑛

is therefore the major
task of the remainder of this section.

Application of Lemma 2 with 𝑔(𝑦) = 1/𝑓
𝑌
[0, 𝑦] in

the numerator and 𝑔(𝑦) = (∏
𝑛+2

𝑖=1
𝑦
𝑖
)/(𝑦𝑓
𝑌
[0, 𝑦]) in the

denominator of (21) brings𝐾
𝑌𝑛

in the form

𝐾
𝑌𝑛

(𝑦
1
, . . . , 𝑦

𝑛+2
)

=
(1/𝑓
𝑌
[0, 𝑦]) [𝑦

1
, . . . , 𝑦

𝑛+2
]

{∏
𝑛+2

𝑖=1
𝑦
𝑖
} (1/𝑦𝑓

𝑌
[0, 𝑦]) [𝑦

1
, . . . , 𝑦

𝑛+2
]
.

(23)

The numerator is a divided difference of 1/𝑓[0, 𝑦]. The
denominator contains a divided difference of 1/(𝑦𝑓[0, 𝑦]).
Call the denominatorD. We express the divided difference of
1/(𝑦𝑓[0, 𝑦]) in divided differences of 1/𝑓[0, 𝑦] with the use
of Leibniz rule for divided differences [22–24]

D (𝑦
1
, . . . , 𝑦

𝑛+2
)

= {
𝑛+2

∏
𝑖=1

𝑦
𝑖
}

1

𝑦𝑓
𝑌
[0, 𝑦]

[𝑦
1
, . . . , 𝑦

𝑛+2
]

= {
𝑛+2

∏
𝑖=1

𝑦
𝑖
}
𝑛+2

∑
𝑖=1

1

𝑦
[𝑦
1
, . . . , 𝑦

𝑖
]

1

𝑓
𝑌
[0, 𝑦]

[𝑦
𝑖
, . . . , 𝑦

𝑛+2
] .

(24)

Using

1

𝑦
[𝑦
1
, . . . , 𝑦

𝑖
] = (−1)

𝑖+1

𝑖

∏
𝑗=1

1

𝑦
𝑗

, (25)

we arrive at
D (𝑦
1
, . . . , 𝑦

𝑛+2
)

=
𝑛+2

∑
𝑖=1

(−1)
𝑖+1

{
{
{

𝑛+2

∏
𝑗=𝑖+1

𝑦
𝑗

}
}
}

1

𝑓
𝑌
[0, 𝑦]

[𝑦
𝑖
, . . . , 𝑦

𝑛+2
] .

(26)

We are now in a position to establish the properties of𝐾
𝑛

in the following two lemmas.

Lemma 3. Let 𝐼 ⊂ R be an open interval of real values and𝑓 a
function 𝑓 : 𝐼 → R with 𝑓 ∈ 𝐶𝑛+1(𝐼). Let 𝑓(𝑛+1) be Lipschitz
continuous on 𝐼. Let 𝛼 ∈ 𝐼, 𝑓(𝛼) = 0, and 𝑓(1)(𝛼) ̸= 0. Then
the 𝑛th order approximant 𝑆

𝑛
takes the form

𝑆
𝑛
(𝑥
1
, . . . , 𝑥

𝑛+2
)

= 𝛼 + {
𝑛+2

∏
𝑖=1

(𝑥
𝑗
− 𝛼)}𝐾

𝑛
(𝑥
1
, . . . , 𝑥

𝑛+2
) ,

(27)
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where there exists an 𝜖 > 0 such that𝐾
𝑛
is bounded if |𝑥

𝑖
−𝛼| <

𝜖 for all 𝑖 = 1, . . . , 𝑛 + 2.

Proof. We have already shown the form of 𝑆
𝑛
in (20). All that

remains to be done is to show that𝐾
𝑌𝑛

is bounded in an (𝑛 +
2)-dimensional hypercube around the point (𝑦

1
, . . . , 𝑦

𝑛+2
) =

(0, . . . , 0). Denote this point by 0⃗.
From the properties of divided differences we know

that the numerator in (23) is bounded in a hypercube
around 0⃗ if the function 1/(𝑓

𝑌
[0, 𝑦]) is 𝑛-times continuously

differentiable around 𝑦 = 0 and the 𝑛th derivative is Lipschitz
continuous.

This is also a sufficient condition for all divided differ-
ences that appear in (26) to be bounded. Therefore all terms
in (26) can be made arbitrarily small by choosing the 𝑦

𝑖

small enough, except for the last term. The last term has a
limiting value (−1)𝑛+3/𝑓(1)

𝑌
(0) ̸= 0 if all 𝑦

𝑖
become equal to

zero; compare or confer (35). This shows that there is a lower
bound 𝐷 such that 0 < 𝐷 < |D| on a hypercube around 0⃗.
Combining this with the bound on the numerator proves that
𝐾
𝑌𝑛

is bounded.
It remains to be shown that 1/(𝑓

𝑌
[0, 𝑦]) is 𝑛-times

continuously differentiable with the 𝑛th order derivative
Lipschitz continuous around 𝑦 = 0.

Let 𝐽 be the interval around 𝑦 = 0 corresponding to the
interval 𝐼 around 𝑥 = 𝛼: 𝐽 = {𝑦 ∈ R | 𝑦 + 𝛼 ∈ 𝐼}. Because
𝑓 ∈ 𝐶𝑛+1(𝐼) and 𝑓(𝑛+1) is Lipschitz continuous on 𝐼 we have
𝑓
𝑌
∈ 𝐶𝑛+1(𝐽) and 𝑓(𝑛+1)

𝑌
is Lipschitz continuous on 𝐽.

Because 𝑓(1)(𝛼) ̸= 0 there is an finite open interval 𝐽󸀠 ⊂ 𝐽
with 0 ∈ 𝐽󸀠 such that inf{|𝑓

𝑌
[0, 𝑦]| | 𝑦 ∈ 𝐽󸀠} > 0. Because

𝑓(𝑛+1)
𝑌

is Lipschitz continuous on 𝐽󸀠 and 𝐽󸀠 is finite, 𝑓(𝑛+1)
𝑌

is
bounded on 𝐽󸀠. Because 𝑓(𝑛+1)

𝑌
is bounded on 𝐽󸀠, all lower-

order derivatives 𝑓(𝑘)
𝑌

(𝑘 = 1, . . . , 𝑛) and 𝑓
𝑌
itself will be

bounded on 𝐽󸀠.
First we show that 1/(𝑓

𝑌
[0, 𝑦]) is 𝑛-times continuously

differentiable on 𝐽󸀠. We use [18]

𝜕

𝜕𝑦
𝑓
𝑌

[

[

0, 𝑦, . . . , 𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘 times

]

]

= 𝑘𝑓
𝑌

[

[

0, 𝑦, . . . , 𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑘+1) times

]

]

(28)

which is defined if 𝑓
𝑌
is 𝑘-times differentiable in the point 𝑦

and 𝑦 ̸= 0. If we allow 𝑦 = 0 as well then 𝑓
𝑌
must be (𝑘 + 1)-

times differentiable in 𝑦. Hence we find

𝜕

𝜕𝑦

1

𝑓
𝑌
[0, 𝑦]

= −
𝑓
𝑌
[0, 𝑦, 𝑦]

𝑓
𝑌
[0, 𝑦]
2

(29)

if 𝑦 ∈ 𝐽󸀠 (which includes 𝑦 = 0) and 𝑓
𝑌
∈ 𝐶2(𝐽󸀠), and

𝜕2

𝜕𝑦2
1

𝑓
𝑌
[0, 𝑦]

= 2
−𝑓
𝑌
[0, 𝑦, 𝑦, 𝑦] 𝑓

𝑌
[0, 𝑦] + 𝑓

𝑌
[0, 𝑦, 𝑦]

2

𝑓
𝑌
[0, 𝑦]
3

.

(30)

if 𝑦 ∈ 𝐽󸀠 and 𝑓
𝑌
∈ 𝐶3(𝐽󸀠). Continuing the differentiation we

easily see that 1/(𝑓
𝑌
[0, 𝑦]) ∈ 𝐶𝑛(𝐽󸀠) if 𝑓

𝑌
∈ 𝐶𝑛+1(𝐽󸀠).

Next we show that the 𝑛th derivative to 𝑦 of 1/(𝑓
𝑌
[0, 𝑦])

is Lipschitz continuous on 𝐽󸀠. As we see from examples (29)
and (30), the derivative can be expressed as a nonlinear
combination of 𝑓

𝑌
[0, 𝑦, . . . , 𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘 times

] for 𝑘 = 1, . . . , 𝑛 + 1. Combine

the following to see that the derivative is Lipschitz continuous
on 𝐽󸀠.

(i) 𝑓
𝑌
[0, 𝑦, . . . , 𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘 times

] is Lipschitz continuous on 𝐽󸀠 for 𝑘 =

1, . . . , 𝑛+1. To show this take 𝑦
1
, 𝑦
2
∈ 𝐽󸀠 and consider

the difference of the divided difference between the
two points:

𝑓
𝑌

[

[

0, 𝑦
1
, . . . , 𝑦

1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘 times

]

]

− 𝑓
𝑌

[

[

0, 𝑦
2
, . . . , 𝑦

2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘 times

]

]

=
1

(𝑘 − 1)!

⋅ {(
𝜕𝑘−1

𝜕𝑦𝑘−1
𝑓
𝑌
[0, 𝑦])

𝑦=𝑦
1

− (
𝜕𝑘−1

𝜕𝑦𝑘−1
𝑓
𝑌
[0, 𝑦])

𝑦=𝑦
2

}

=
1

(𝑘 − 1)!
(𝑦
1
− 𝑦
2
) (

𝜕𝑘

𝜕𝑦𝑘
𝑓
𝑌
[0, 𝑦])

𝑦=𝜁

= 𝑘 (𝑦
1
− 𝑦
2
) 𝑓
𝑌

[

[

0, 𝜁, . . . , 𝜁⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑘+1) times

]

]

(31)

for some 𝜁 ∈ (min(𝑦
1
, 𝑦
2
),max(𝑦

1
, 𝑦
2
)). Since

𝑓
𝑌

∈ 𝐶(𝑛+1)(𝐽󸀠) and 𝑓(𝑛+1)
𝑌

Lipschitz continuous on
𝐽󸀠,𝑓
𝑌
[0, 𝜁, . . . , 𝜁⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑘+1) times

] is bounded on 𝐽󸀠 for 𝑘 = 1, . . . , 𝑛+1.

(ii) Because𝑓
𝑌
[0, 𝑦] is Lipschitz continuous on 𝐽󸀠 and the

infimum of its absolute value on 𝐽󸀠 is larger than zero,
1/(𝑓
𝑌
[0, 𝑦]) is Lipschitz continuous on 𝐽󸀠.

(iii) If two functions 𝑓
1
and 𝑓

2
are Lipschitz continuous

and bounded on 𝐽󸀠, then 𝑓
1
+ 𝑓
2
and 𝑓

1
𝑓
2
are also

Lipschitz continuous on 𝐽󸀠. This is easy to see for the
sum of the two functions. For the product we have

󵄨󵄨󵄨󵄨𝑓1 (𝑦1) 𝑓2 (𝑦1) − 𝑓
1
(𝑦
2
) 𝑓
2
(𝑦
2
)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨(𝑓1 (𝑦1) − 𝑓

1
(𝑦
2
)) 𝑓
2
(𝑦
1
) − 𝑓
1
(𝑦
2
) (𝑓
2
(𝑦
2
) − 𝑓
2
(𝑦
1
))
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑓2 (𝑦1)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓1 (𝑦1) − 𝑓

1
(𝑦
2
)
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓1 (𝑦2)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓2 (𝑦1) − 𝑓

2
(𝑦
2
)
󵄨󵄨󵄨󵄨

≤ 𝑀 (𝐿
1
+ 𝐿
2
)
󵄨󵄨󵄨󵄨𝑦1 − 𝑦

2

󵄨󵄨󵄨󵄨 ,

(32)

where𝑀 is themaximum of the suprema of𝑓
1
and𝑓
2

on 𝐽󸀠 and 𝐿
𝑖
is the Lipschitz constant of 𝑓

𝑖
on 𝐽󸀠.

This concludes the proof.

Lemma 4. Let 𝐼 ⊂ R be an open interval of real values and 𝑓

a function 𝑓 : 𝐼 → R with 𝑓 ∈ 𝐶𝑛+2(𝐼). Let 𝛼 ∈ 𝐼, 𝑓(𝛼) = 0,
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and 𝑓(1)(𝛼) ̸= 0. Then 𝐾
𝑛
(𝑥
1
, . . . , 𝑥

𝑛
) as defined in Lemma 3

is continuous in (𝑥
1
, . . . , 𝑥

𝑛+2
) = (𝛼, . . . , 𝛼) with

lim
𝑥
1
,...,𝑥
𝑛+2
→𝛼

𝐾
𝑛
(𝑥
1
, . . . , 𝑥

𝑛+2
)

=
(−1)𝑛+1

(𝑛 + 1)!
𝑓(1) (𝛼) (

𝜕𝑛+1

𝜕𝑥𝑛+1
1

𝑓 [𝛼, 𝑥]
)
𝑥=𝛼

.

(33)

Proof. Taking the limit for the numerator of (23) we find

lim
𝑦
1
,...,𝑦
𝑛+2
→0

1

𝑓
𝑌
[0, 𝑦]

[𝑦
1
, . . . , 𝑦

𝑛+2
]

=
1

(𝑛 + 1)!
(

𝜕𝑛+1

𝜕𝑦𝑛+1
1

𝑓
𝑌
[0, 𝑦]

)
𝑦=0

=
1

(𝑛 + 1)!
(

𝜕𝑛+1

𝜕𝑥𝑛+1
1

𝑓 [𝛼, 𝑥]
)
𝑥=𝛼

.

(34)

Taking the limit for the denominatorD in (26) we obtain

lim
𝑦
1
,...,𝑦
𝑛+2
→0

D (𝑦
1
, . . . , 𝑦

𝑛+2
) =

(−1)𝑛+1

𝑓
𝑌
[0, 0]

=
(−1)𝑛+1

𝑓(1) (𝛼)
. (35)

Dividing the result for numerator by the result for the deno-
minator yields the proof.

5. The Algorithm

We construct an algorithmwhich generates a sequence of 𝑛th
order approximants 𝑆

𝑛
. The algorithm starts with two initial

approximants 𝑥
−1

and 𝑥
0
of the root 𝛼. In the first iteration

we simply carry out a Secant step:

𝑥
−1

𝑥
0

𝑥
1,0

= 𝑆 (𝑥
0
, 𝑥
−1
) .

(36)

The second iteration also starts with a Secant step:

𝑥
−1

𝑥
0

𝑥
1,0

= 𝑆 (𝑥
0
, 𝑥
−1
)

𝑥
2,0

= 𝑆 (𝑥
1,0

, 𝑥
0
) ,

(37)

but next we combine the two Secant steps in a first-order
approximant using the iterative definition of the 𝑛th order
approximants:

𝑥
−1

𝑥
0

𝑥
1,0

= 𝑆 (𝑥
0
, 𝑥
−1
)

𝑥
2,0

= 𝑆 (𝑥
1,0

, 𝑥
0
) 𝑥
2,1

= 𝑆
1
(𝑥
1,0

, 𝑥
0
, 𝑥
−1
) .

(38)

The third iteration first carries out a Secant step 𝑥
3,0
, then

combines this Secant stepwith the previous step 𝑥
2,0

in a first-
order approximant 𝑥

3,1
, and finally combines 𝑥

2,1
and 𝑥

3,1
in

a second-order approximant 𝑥
3,2
:

𝑥
−1

𝑥
0

𝑥
1,0

= 𝑆 (𝑥
0
, 𝑥
−1
)

𝑥
2,0

= 𝑆 (𝑥
1,0

, 𝑥
0
) 𝑥
2,1

= 𝑆
1
(𝑥
1,0

, 𝑥
0
, 𝑥
−1
)

𝑥
3,0

= 𝑆 (𝑥
2,1

, 𝑥
1,0

) 𝑥
3,1

= 𝑆
1
(𝑥
2,1

, 𝑥
1,0

, 𝑥
0
) 𝑥
3,2

= 𝑆
2
(𝑥
2,1

, 𝑥
1,0

, 𝑥
0
, 𝑥
−1
) .

(39)

We continue this way with the fourth and the following
iterations and generate a scheme which looks like

𝑥
−1

𝑥
0

𝑥
1,0

𝑥
2,0

𝑥
2,1

𝑥
3,0

𝑥
3,1

𝑥
3,2

𝑥
4,0

𝑥
4,1

𝑥
4,2

𝑥
4,3

...
...

...
... d

𝑥
𝑛,0

𝑥
𝑛,1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑥
𝑛,𝑛−1

𝑥
𝑛+1,0

𝑥
𝑛+1,1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑥
𝑛+1,𝑛−1

𝑥
𝑛+1,𝑛

𝑥
𝑛+2,0

𝑥
𝑛+2,1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑥
𝑛+2,𝑛−1

𝑥
𝑛+2,𝑛

...
...

...
...

...
...

...

(40)
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Since we aim at generating a sequence of 𝑛th order approxi-
mants, we calculate at most 𝑛+1 columns in an iteration.The
first iteration in which we calculate all 𝑛 + 1 columns is the
(𝑛 + 1)th iteration.

If we parametrize 𝑥
−1

as 𝑥
−1,0

and 𝑥
0
as 𝑥
0,0

we have
parametrized all values in our scheme as 𝑥

𝑝,𝑖
with 𝑝 running

over the values 𝑝 = −1, 0, 1, . . . and 𝑖 running over the values
𝑖 = 0, . . . , 𝑖max(𝑝) with

𝑖max (𝑝) =
{{
{{
{

0, 𝑝 = −1, 0,

𝑝 − 1, 𝑝 = 1, . . . , 𝑛,

𝑛, 𝑝 > 𝑛.

(41)

For simplicity we will denote 𝑥
𝑝,𝑖max(𝑝)

by 𝑥
𝑝,𝑖max

. This means
that, for example, 𝑥

𝑝−1,𝑖max
must be read as 𝑥

𝑝−1,𝑖max(𝑝−1)
.

The choice of 𝑛 in (41) sets the order of the algorithm.
Choosing 𝑛 = 0 results in the Secant algorithm, choosing 𝑛 =
1 results in the first-order accelerated Secant algorithm, 𝑛 = 2
results in the second-order accelerated Secant algorithm, and
so forth. An 𝑛th order accelerated Secant algorithm generates
a sequence of 𝑛th order approximants.

The algorithm described above can be formulated as
𝑥
𝑝,𝑖

= {
𝑆 (𝑥
𝑝−1,𝑖max , 𝑥𝑝−2,𝑖max) , 𝑖 = 0,

𝑥
𝑝−1,𝑖−1
𝑥
𝑝−1,𝑖max − 𝑥𝑝,𝑖−1𝑥𝑝−𝑖−2,𝑖max

𝑥
𝑝−1,𝑖−1
+ 𝑥
𝑝−1,𝑖max − 𝑥𝑝,𝑖−1 − 𝑥𝑝−𝑖−2,𝑖max

𝑖 = 1, . . . , 𝑖max (𝑝) ,

(42)

with start values 𝑥
−1,0

and 𝑥
0,0
.

Note that with 𝑥
𝑝,0

= 𝑆(𝑥
𝑝−1,𝑖max

, 𝑥
𝑝−2,𝑖max

) we have

𝑥
𝑝,1

=
𝑥
𝑝−1,0

𝑥
𝑝−1,𝑖max

− 𝑥
𝑝,0

𝑥
𝑝−3,𝑖max

𝑥
𝑝−1,0

+ 𝑥
𝑝−1,𝑖max

− 𝑥
𝑝,0

− 𝑥
𝑝−3,𝑖max

= 𝑆
1
(𝑥
𝑝−1,𝑖max

, 𝑥
𝑝−2,𝑖max

, 𝑥
𝑝−3,𝑖max

) ,

(43)

and by recursion we easily show that

𝑥
𝑝,𝑖

= 𝑆
𝑖
(𝑥
𝑝−1,𝑖max

, . . . , 𝑥
𝑝−𝑖−2,𝑖max

) (44)

for 𝑖 = 2, . . . , 𝑖max(𝑝).
Each Secant step 𝑆 after the first Secant step 𝑥

1,0
=

𝑆(𝑥
0
, 𝑥
−1
) requires exactly one evaluation of 𝑓. Namely, the

calculation of 𝑥
𝑝,0

requires the calculation 𝑓(𝑥
𝑝−1,𝑖max

) while
𝑓(𝑥
𝑝−2,𝑖max

) has already been calculated when we evaluated
𝑥
𝑝−1,0

. The calculation of 𝑥
𝑝,𝑖

for 𝑖 > 0 does not require
a calculation of 𝑓. Hence one iteration of the algorithm
requires one evaluation of 𝑓, except for the first iteration
which requires the evaluation of 𝑓(𝑥

−1
) and 𝑓(𝑥

0
).

According to Brezinski and Zaglia [16] it is recommended
to calculate the second line in (42) in the following form. It is
mathematically equivalent to the second line in (42) but less
susceptible to round-off errors according to [16]:

𝑥
𝑝,𝑖

= 𝑥
𝑝,𝑖−1

+
(𝑥
𝑝−1,𝑖max

− 𝑥
𝑝,𝑖−1

) (𝑥
𝑝−1,𝑖−1

− 𝑥
𝑝,𝑖−1

)

𝑥
𝑝−1,𝑖−1

+ 𝑥
𝑝−1,𝑖max

− 𝑥
𝑝,𝑖−1

− 𝑥
𝑝−𝑖−2,𝑖max

(45)

for 𝑖 = 1, . . . , 𝑖max(𝑝). Alternative forms in which the leading
term is 𝑥

𝑝−1,𝑖−1
, 𝑥
𝑝−1,𝑖max

, or 𝑥
𝑝−𝑖−2,𝑖max

are also readily derived.

A pseudocode for the accelerated Secant algorithm is
provided in Appendix B. Examples of sequences generated by
this algorithm are given in the tables in Appendix C.

6. Convergence Properties

6.1. Basic Convergence. The following lemma establishes
sufficient conditions under which the algorithm generates a
convergent sequence.

Lemma 5. Let 𝐼 ⊂ R be an open interval of real values and
𝑓 a function 𝑓 : 𝐼 → R with 𝑓 ∈ 𝐶𝑛+1(𝐼). Let 𝑓(𝑛+1)

be Lipschitz continuous on 𝐼. Let 𝛼 ∈ 𝐼, 𝑓(𝛼) = 0 and
𝑓(1)(𝛼) ̸= 0. Then there exists an 𝜖 > 0 such that the sequence
{𝑥
𝑝,𝑛

}∞
𝑝=𝑛+1

generated by the 𝑛th order accelerated Secant algo-
rithm converges to 𝛼 if the start values 𝑥

−1
and 𝑥

0
are within a

distance 𝜖 of 𝛼.

Proof. We develop our proof in the coordinate frame𝑌. With
𝑦
𝑝,𝑖

= 𝑥
𝑝,𝑖

− 𝛼 (44) reads in the coordinate frame 𝑌:

𝑦
𝑝,𝑖

= 𝑆
𝑌𝑖
(𝑦
𝑝−1,𝑖max

, . . . , 𝑦
𝑝−𝑖−2,𝑖max

) (46)

with

𝑆
𝑌𝑖
(𝑦
1
, . . . , 𝑦

𝑖+2
) = 𝑆
𝑖
(𝛼 + 𝑦

1
, . . . , 𝛼 + 𝑦

𝑖+2
) − 𝛼. (47)

We have to prove that the sequence {𝑦
𝑝,𝑛

}∞
𝑝=𝑛+1

converges to
zero if 𝑦

−1
and 𝑦

0
are chosen close enough to zero.

Putting 𝑖 = 𝑖max in (46) we obtain a closed recursion for
𝑦
𝑝,𝑖max

:

𝑦
𝑝,𝑖max

= 𝑆
𝑌𝑖max(𝑝)

(𝑦
𝑝−1,𝑖max

, . . . , 𝑦
𝑝−𝑖−2,𝑖max

) . (48)

For 𝑝 ≥ 𝑛 + 1 we have 𝑖max(𝑝) = 𝑛 and hence

𝑦
𝑝,𝑖max

= 𝑆
𝑌𝑛

(𝑦
𝑝−1,𝑖max

, . . . , 𝑦
𝑝−𝑛−2,𝑖max

)

=
{
{
{

𝑛+2

∏
𝑗=1

𝑦
𝑝−𝑗,𝑖max

}
}
}

𝐾
𝑌𝑛

(𝑦
𝑝−1,𝑖max

, . . . , 𝑦
𝑝−𝑛−2,𝑖max

) .

(49)

Starting at 𝑝 = 𝑛 + 1 (49) generates a sequence {𝑦
𝑝,𝑛

}∞
𝑝=𝑛+1

from a set of start values 𝑉 = {𝑦
−1,0

, 𝑦
0,0

, 𝑦
1,0

, 𝑦
2,1

, 𝑦
3,2

, . . . ,
𝑦
𝑛,𝑛−1

} = {𝑦
𝑝,𝑖max

| 𝑝 = −1, . . . , 𝑛}. It must first be noted that
all values in the set can be made arbitrarily small by choosing
𝑦
−1

= 𝑦
−1,0

and 𝑦
0
= 𝑦
0,0

close enough to zero. We can see
this for 𝑦

1,0
because 𝑦

1,0
= 𝑦
−1
𝑦
0
𝐾
𝑌1
(𝑦
−1
, 𝑦
0
) and |𝐾

𝑌1
| is

bounded in a 2-dimension volume around (0, 0) according
to Lemma 3. In the same way we can see this for 𝑦

2,1
because

𝑦
2,1

= 𝑦
−1
𝑦
0
𝑦
1,0

𝐾
𝑌2
(𝑦
−1
, 𝑦
0
, 𝑦
1,0

) and |𝐾
𝑌2
| is bounded in a 3-

dimension volume around (0, 0, 0). Continuing the argument
we find that all values in the set 𝑉 can be made arbitrarily
small.

Lemma 3 states that there is an 𝜖 > 0 such that
󵄨󵄨󵄨󵄨𝐾𝑌𝑛 (𝑦1, . . . , 𝑦𝑛+2)

󵄨󵄨󵄨󵄨 < 𝐾 (50)
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if |𝑦
𝑗
| < 𝜖 for all 𝑗 = 1, . . . , 𝑛 + 2. Define the interval 𝐽 = {𝑦 ∈

R | |𝑦| < min(𝜖, 𝐾−1/(𝑛+1))}. Choose 𝑦
−1

and 𝑦
0
small enough

such that 𝑦
𝑝,𝑖max

∈ 𝐽 for all 𝑦
𝑝,𝑖max

∈ 𝑉.
From (49) with 𝑝 = 𝑛 + 1 we see
󵄨󵄨󵄨󵄨𝑦𝑛+1,𝑛

󵄨󵄨󵄨󵄨

=
{
{
{

𝑛+2

∏
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑦𝑛+1−𝑗,𝑖max

󵄨󵄨󵄨󵄨󵄨

}
}
}

󵄨󵄨󵄨󵄨󵄨𝐾𝑌𝑛 (𝑦𝑛,𝑖max
, . . . , 𝑦

−1,𝑖max
)
󵄨󵄨󵄨󵄨󵄨

<
{
{
{

𝑛+2

∏
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑦𝑛+1−𝑗,𝑖max

󵄨󵄨󵄨󵄨󵄨

}
}
}

𝐾

<
󵄨󵄨󵄨󵄨󵄨𝑦𝑛,𝑖max

󵄨󵄨󵄨󵄨󵄨

{
{
{

𝑛+2

∏
𝑗=2

𝐾
−1/(𝑛+1)}

}
}

𝐾 =
󵄨󵄨󵄨󵄨󵄨𝑦𝑛,𝑖max

󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝑦𝑛,𝑛−1

󵄨󵄨󵄨󵄨 .

(51)

Since 𝑦
𝑛,𝑛−1

∈ 𝐽 this guarantees that also 𝑦
𝑛+1,𝑛

∈ 𝐽. Repeating
the argument recursively we see that |𝑦

𝑝+1,𝑛
| < |𝑦

𝑝,𝑛
| for

all 𝑝 ≥ 𝑛 + 1. This means that the sequence {|𝑦
𝑝,𝑛

|}∞
𝑝=𝑛+1

is
monotonically decreasing. Since it is bounded from below it
must converge.

It remains to show that the sequence converges to zero.
Suppose |𝑦

𝑝,𝑛
| → 𝑎 > 0 for 𝑝 → ∞. Since |𝑦

𝑝,𝑛
| ∈ 𝐽 and the

sequence is decreasing we must have 𝑎 ∈ 𝐽. From (49) we see
|𝐾
𝑌𝑛
(𝑦
𝑝−1,𝑖max

, . . . , 𝑦
𝑝−𝑛−2,𝑖max

)| ≡ 𝐾
𝑝

→ 𝑎−(𝑛+1) for 𝑝 → ∞.
However 𝐾

𝑝
< 𝐾 < 𝑎−(𝑛+1) where the last inequality follows

from the fact 𝑎 ∈ 𝐽.This is a contradictionwith𝐾
𝑝

→ 𝑎−(𝑛+1)

and therefore we must have 𝑎 = 0.

6.2. Order of Convergence. Our main result regarding the
convergence of the sequence generated by the algorithm is
the following theorem.

Theorem6. Let 𝐼 ⊂ R be an open interval of real values and𝑓

a function 𝑓 : 𝐼 → R with 𝑓 ∈ 𝐶𝑛+2(𝐼). Let 𝛼 ∈ 𝐼, 𝑓(𝛼) = 0,
and 𝑓(1)(𝛼) ̸= 0. Define

𝐾
∞𝑛

=
(−1)𝑛+1

(𝑛 + 1)!
𝑓(1) (𝛼) (

𝜕𝑛+1

𝜕𝑥𝑛+1
1

𝑓 [𝛼, 𝑥]
)
𝑥=𝛼

(52)

and let 𝐾
∞𝑛

̸= 0. Then there is an 𝜖 > 0 such that the
sequence {𝑥

𝑝,𝑛
}∞
𝑝=𝑛+1

generated by the 𝑛th order accelerated
Secant algorithm converges to 𝛼 if the start values 𝑥

−1
and 𝑥

0

are within a distance 𝜖 of 𝛼. The sequence converges with order
𝜓
𝑛
:

lim
𝑝→∞

󵄨󵄨󵄨󵄨󵄨𝑥𝑝,𝑛 − 𝛼
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨𝑥𝑝−1,𝑛 − 𝛼
󵄨󵄨󵄨󵄨󵄨
𝜓
𝑛

=
󵄨󵄨󵄨󵄨𝐾∞𝑛

󵄨󵄨󵄨󵄨
(𝜓
𝑛
−1)/(𝑛+1)

, (53)

where 𝜓
𝑛
is the real, positive solution of 𝑡𝑛+2 − ∑

𝑛+1

𝑖=0
𝑡𝑖 = 0.

Proof. First of all note that if 𝑓 ∈ 𝐶𝑛+2(𝐼) then 𝑓 ∈ 𝐶𝑛+1(𝐽)

with 𝑓(𝑛+1) Lipschitz continuous on 𝐽 for any finite interval
𝐽 ⊂ 𝐼. Convergence of the sequence {𝑥

𝑝,𝑛
}∞
𝑝=𝑛+1

is therefore
guaranteed by Lemma 5.

Reverting to the coordinate frame𝑌, we see from (49) that

𝑦
𝑝,𝑛

=
{
{
{

𝑛+2

∏
𝑗=1

𝑦
𝑝−𝑗,𝑛

}
}
}

𝐾
𝑝,𝑛

(54)

with

𝐾
𝑝,𝑛

= 𝐾
𝑌𝑛

(𝑦
𝑝−1,𝑛

, . . . , 𝑦
𝑝−𝑛−2,𝑛

) (55)

for 𝑝 ≥ 2𝑛+3. Since lim
𝑝→∞

𝑦
𝑝,𝑛

= 0we have from Lemma 4
that lim

𝑝→∞
𝐾
𝑝,𝑛

= 𝐾
∞𝑛

. Therefore we satisfy the conditions
of Theorem 3-3 in [2]. This theorem proves the result for the
order of convergence and the asymptotic error term.

Note that the theorem encompasses the convergence
property (9) of the Secant sequence for 𝑛 = 0.

The sequence {𝜓
𝑛
}∞
𝑛=0

is monotonically increasing and
converges to 2 [2, 13]. As examples we have𝜓

0
= (1+√5)/2 ≈

1.6180, 𝜓
1
≈ 1.8393, 𝜓

2
≈ 1.9276, and 𝜓

3
≈ 1.9659.

If we define

𝐶
𝑛
=

𝑓(𝑛) (𝛼)

𝑛!𝑓(1) (𝛼)
(56)

we have as examples for 𝐾
∞𝑛

𝐾
∞0

= 𝐶
2
,

𝐾
∞1

= −𝐶
3
+ 𝐶2
2
,

𝐾
∞2

= 𝐶
4
− 2𝐶
2
𝐶
3
+ 𝐶3
2
.

(57)

7. Conclusions

We have devised an accelerated Secant algorithm which
requires one function evaluation per iteration, does not
require the evaluation of a derivative, and can achieve
an order of convergence arbitrarily close to two. As such
the algorithm is an alternative for the method of inverse
interpolation [2] or for Sidi’s method [13]. The accelerated
algorithm is not much more complicated than the original
Secant algorithm.

The algorithm is formulated in (42) but can also be
formulated as follows. Start with initial estimates 𝑥

−1
, . . . , 𝑥

𝑛

and generate the sequence as 𝑥
𝑘+1

= 𝑆
𝑛
(𝑥
𝑘
, . . . , 𝑥

𝑘−𝑛−1
) with

𝑆
𝑛
calculated as in, for example, (13) or (19). This formulation

shows that the algorithm is a “one-point iteration function
with memory” in the classification of Traub [2]. The form
(42) seems easier to implement though and requires only two
initial estimates.

It is possible that our approach can be applied to other
algorithms than the Secant algorithm.We think in particular
of algorithms generating a sequence {𝑥

𝑛
} with the property

(𝑥
𝑛
− 𝛼) = 𝐾

𝑛
∏
𝑚

𝑖=1
(𝑥
𝑛−𝑖

− 𝛼).
We also note that the our algorithm appears to lend itself

for parallelization, which is not obvious for algorithms based
on polynomial fits. Multiple evaluations of 𝑓 per iteration
result in larger orders of convergence [2, 25–28]. It is not hard
to see that our first-order algorithm can be modified into
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a faster converging algorithm in case where two calculation
cores are available. It remains to be investigated what the
order of convergence is (assuming an order is defined) and
whether or not this can be generalized to an arbitrary number
of cores.

We have only studied the convergent behaviour of the
subsequence {𝑥

𝑝,𝑛
}∞
𝑝=𝑛+1

of the 𝑛th order algorithm. One may
wonder about the subsequences {𝑥

𝑝,𝑖
}∞
𝑝=𝑖+1

for 𝑖 < 𝑛. A
study of the first- and second-order accelerated versions of
the algorithm [29] revealed that they converge with the same
order as {𝑥

𝑝,𝑛
}∞
𝑝=𝑛+1

butwith a different asymptotic error term.
This is likely the case for all orders of the algorithm.

A different approach to judge the efficiency of the algo-
rithm is to estimate the average computational cost of the
algorithm by statistical means [30]. In this approach one
averages the cost over a set of functions with a suitable
probability measure. Although interesting, such a study is
outside of the scope of the current article.

Appendices

A. The Approximant Directly Expressed in 𝑓

Weprove that 𝑆
𝑛
takes the form (13).Wehave seen that it takes

this form for 𝑛 = 0 (11) and 𝑛 = 1 (12) and we prove it for
𝑛 > 1 by induction.

Suppose (13) is true for 𝑆
𝑛
. We calculate 𝑆

𝑛+1
from the

recursive definition 𝑆
𝑛+1

= N/D with

N = 𝑆
𝑛
(𝑥
1
, . . . , 𝑥

𝑛+2
) 𝑥
𝑛+3

− 𝑥
1
𝑆
𝑛
(𝑥
2
, . . . , 𝑥

𝑛+3
) , (A.1)

D = 𝑆
𝑛
(𝑥
1
, . . . , 𝑥

𝑛+2
) + 𝑥
𝑛+3

− 𝑥
1

− 𝑆
𝑛
(𝑥
2
, . . . , 𝑥

𝑛+3
) .

(A.2)

The calculation will show that they take the form

N =
𝐹
1

𝐹
2

𝑛+3

∑
𝑖=1

𝑥
𝑖

𝑓
𝑖

𝑎
𝑛+1,𝑖

(𝑥
1
, . . . , 𝑥

𝑛+3
)

D =
𝐹
1

𝐹
2

𝑛+3

∑
𝑖=1

1

𝑓
𝑖

𝑎
𝑛+1,𝑖

(𝑥
1
, . . . , 𝑥

𝑛+3
)

(A.3)

with

𝐹
1
=

1

(𝑥
1
− 𝑥
𝑛+3

)∏
𝑛+2

𝑖=2
(𝑥
1
− 𝑥
𝑖
) (𝑥
𝑖
− 𝑥
𝑛+3

)

×
𝑛+2

∑
𝑗=2

(𝑥
1
− 𝑥
𝑗
) (𝑥
𝑗
− 𝑥
𝑛+3

)

𝑓
𝑗

𝑎
𝑛+1,𝑗

(𝑥
1
, . . . , 𝑥

𝑛+3
) ,

𝐹
2
=
𝑛+2

∑
𝑖=1

𝑛+3

∑
𝑗=2

1

𝑓
𝑖
𝑓
𝑗

𝑎
𝑛,𝑖

(𝑥
1
, . . . , 𝑥

𝑛+2
) 𝑎
𝑛,𝑗−1

(𝑥
2
, . . . , 𝑥

𝑛+3
) .

(A.4)

Taking the ratioN/D completes the proof.

define imax(p)

if p = −1 or p = 0

return 0

else if p ≤ n

return p − 1

else

return n

Algorithm 1

Throughout this appendix we use the following identities:

{
{
{

𝑛+2

∏
𝑗=2

(𝑥
𝑗
− 𝑥
𝑛+3

)
}
}
}

𝑎
𝑛,𝑖

(𝑥
1
, . . . , 𝑥

𝑛+2
)

=
𝑥
𝑖
− 𝑥
𝑛+3

𝑥
1
− 𝑥
𝑛+3

𝑎
𝑛+1,𝑖

(𝑥
1
, . . . , 𝑥

𝑛+3
)

(A.5)

which holds for 𝑖 = 1, . . . , 𝑛 + 2, and

{
{
{

𝑛+2

∏
𝑗=2

(𝑥
1
− 𝑥
𝑗
)
}
}
}

𝑎
𝑛,𝑖−1

(𝑥
2
, . . . , 𝑥

𝑛+3
)

= −
𝑥
1
− 𝑥
𝑖

𝑥
1
− 𝑥
𝑛+3

𝑎
𝑛+1,𝑖

(𝑥
1
, . . . , 𝑥

𝑛+3
)

(A.6)

which holds for 𝑖 = 2, . . . , 𝑛 + 3. If we take 𝑖 = 1 in (A.5) and
𝑖 = 𝑛 + 3 in (A.6) we obtain in particular

{
{
{

𝑛+2

∏
𝑗=2

(𝑥
𝑗
− 𝑥
𝑛+3

)
}
}
}

𝑎
𝑛,1

(𝑥
1
, . . . , 𝑥

𝑛+2
)

= 𝑎
𝑛+1,1

(𝑥
1
, . . . , 𝑥

𝑛+3
) ,

{
{
{

𝑛+2

∏
𝑗=2

(𝑥
1
− 𝑥
𝑗
)
}
}
}

𝑎
𝑛,𝑛+2

(𝑥
2
, . . . , 𝑥

𝑛+3
)

= −𝑎
𝑛+1,𝑛+3

(𝑥
1
, . . . , 𝑥

𝑛+3
) .

(A.7)

For a more compact notation we will write 𝑎
𝑛,𝑖
(𝑥
1
,

. . . , 𝑥
𝑛+2

) ≡ 𝑎
𝑛,𝑖;1,...,𝑛+2

in the remainder of this appendix.
We prove (A.3) for the numerator N. The result for the
denominatorD can be obtained following the same steps.

A.1. Numerator. We start with the numerator N. Inserting
(13) in (A.1) we obtain

N = 𝑆
𝑛
(𝑥
1
, . . . , 𝑥

𝑛+2
) 𝑥
𝑛+3

− 𝑥
1
𝑆
𝑛
(𝑥
2
, . . . , 𝑥

𝑛+3
)

=
1

𝐹
2

{
{
{

𝑥
𝑛+3

𝑛+2

∑
𝑖=1

𝑥
𝑖

𝑓
𝑖

𝑎
𝑛,𝑖;1,...,𝑛+2

𝑛+3

∑
𝑗=2

1

𝑓
𝑗

𝑎
𝑛,𝑗−1;2,...,𝑛+3

− 𝑥
1

𝑛+3

∑
𝑖=2

𝑥
𝑖

𝑓
𝑖

𝑎
𝑛,𝑖−1;2,...,𝑛+3

𝑛+2

∑
𝑗=1

1

𝑓
𝑗

𝑎
𝑛,𝑗;1,...,𝑛+2

}
}
}

(A.8)
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define x(p, i)

if p < −1 or i < 0 or i > imax(p)

return error

else if p = −1
return x -1

else if p = 0

return x 0

else

if i = 0 Secant step
x1 = x(p − 1, imax(p − 1))

x2 = x(p − 2, imax(p − 2))

return x1 − f(x1) ∗ (x1 − x2)/(f(x1) − f(x2))

else ith order approximant
x1 = x(p − 1, i − 1)

x2 = x(p − 1, imax(p − 1))

x3 = x(p, i − 1)

x4 = x(p − i − 2, imax(p − i − 2))

return x3 + ((x2 − x3)(x1 − x3))/(x1 + x2 − x3 − x4)

Algorithm 2

which we write as

1

𝐹
2

{
{
{

𝑛+2

∑
𝑖=1

𝑛+3

∑
𝑗=2

𝑥
𝑖
𝑥
𝑛+3

𝑓
𝑖
𝑓
𝑗

𝑎
𝑛,𝑖;1,...,𝑛+2

𝑎
𝑛,𝑗−1;2,...,𝑛+3

−
𝑛+2

∑
𝑖=1

𝑛+3

∑
𝑗=2

𝑥
1
𝑥
𝑗

𝑓
𝑖
𝑓
𝑗

𝑎
𝑛,𝑖;1,...,𝑛+2

𝑎
𝑛,𝑗−1;2,...,𝑛+3

}
}
}

=
1

𝐹
2

{
{
{

𝑛+2

∑
𝑖=1

𝑛+3

∑
𝑗=2

𝑥
𝑖
𝑥
𝑛+3

− 𝑥
1
𝑥
𝑗

𝑓
𝑖
𝑓
𝑗

𝑎
𝑛,𝑖;1,...,𝑛+2

𝑎
𝑛,𝑗−1;2,...,𝑛+3

}
}
}

≡
𝑇

𝐹
2

.

(A.9)

We write 𝑇 in (A.9) as

𝑇 =
𝑛+2

∑
𝑖=2

𝑥
1
𝑥
𝑛+3

− 𝑥
1
𝑥
𝑖

𝑓
1
𝑓
𝑖

𝑎
𝑛,1;1,...,𝑛+2

𝑎
𝑛,𝑖−1;2,...,𝑛+3

+
𝑛+2

∑
𝑖=2

𝑥
𝑖
𝑥
𝑛+3

− 𝑥
1
𝑥
𝑛+3

𝑓
𝑖
𝑓
𝑛+3

𝑎
𝑛,𝑖;1,...,𝑛+2

𝑎
𝑛,𝑛+2;2,...,𝑛+3

+
𝑛+2

∑
𝑖=2

𝑛+2

∑
𝑗=2

𝑥
𝑖
𝑥
𝑛+3

− 𝑥
1
𝑥
𝑗

𝑓
𝑖
𝑓
𝑗

𝑎
𝑛,𝑖;1,...,𝑛+2

𝑎
𝑛,𝑗−1;2,...,𝑛+3

≡ 𝑇
1
+ 𝑇
2
+ 𝑇
3

(A.10)

with

𝑇
1
= −

𝑥
1

𝑓
1

𝑎
𝑛,1;1,...,𝑛+2

𝑛+2

∑
𝑗=2

𝑥
𝑗
− 𝑥
𝑛+3

𝑓
𝑗

𝑎
𝑛,𝑗−1;2,...,𝑛+3

= −
1

∏
𝑛+2

𝑘=2
(𝑥
1
− 𝑥
𝑘
) (𝑥
𝑘
− 𝑥
𝑛+3

)

×
𝑥
1

𝑓
1

{
𝑛+2

∏
𝑘=2

(𝑥
𝑘
− 𝑥
𝑛+3

)} 𝑎
𝑛,1;1,...,𝑛+2

×
𝑛+2

∑
𝑗=2

𝑥
𝑗
− 𝑥
𝑛+3

𝑓
𝑗

{
𝑛+2

∏
𝑘=2

(𝑥
1
− 𝑥
𝑘
)} 𝑎
𝑛,𝑗−1;2,...,𝑛+3

=
1

(𝑥
1
− 𝑥
𝑛+3

)∏
𝑛+2

𝑘=2
(𝑥
1
− 𝑥
𝑘
) (𝑥
𝑘
− 𝑥
𝑛+3

)

×
𝑥
1

𝑓
1

𝑎
𝑛+1,1;1,...,𝑛+3

×
𝑛+2

∑
𝑗=2

(𝑥
1
− 𝑥
𝑗
) (𝑥
𝑗
− 𝑥
𝑛+3

)

𝑓
𝑗

𝑎
𝑛+1,𝑗;1,...,𝑛+3

= 𝐹
1

𝑥
1

𝑓
1

𝑎
𝑛+1,1;1,...,𝑛+3

𝑇
2
= −

𝑥
𝑛+3

𝑓
𝑛+3

𝑎
𝑛,𝑛+2;2,...,𝑛+3

𝑛+2

∑
𝑗=2

𝑥
1
− 𝑥
𝑗

𝑓
𝑗

𝑎
𝑛,𝑗;1,...,𝑛+2

= −
1

∏
𝑛+2

𝑘=2
(𝑥
1
− 𝑥
𝑘
) (𝑥
𝑘
− 𝑥
𝑛+3

)

×
𝑥
𝑛+3

𝑓
𝑛+3

{
𝑛+2

∏
𝑘=2

(𝑥
1
− 𝑥
𝑘
)} 𝑎
𝑛,𝑛+2;2,...,𝑛+3

×
𝑛+2

∑
𝑗=2

𝑥
1
− 𝑥
𝑗

𝑓
𝑗

{
𝑛+2

∏
𝑘=2

(𝑥
𝑘
− 𝑥
𝑛+3

)} 𝑎
𝑛,𝑗;1,...,𝑛+2

=
1

(𝑥
1
− 𝑥
𝑛+3

)∏
𝑛+2

𝑘=2
(𝑥
1
− 𝑥
𝑘
) (𝑥
𝑘
− 𝑥
𝑛+3

)

×
𝑥
𝑛+3

𝑓
𝑛+3

𝑎
𝑛+1,𝑛+3;1,...,𝑛+3
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Table 1: Example of the convergence properties of the first-order accelerated Secant algorithm. The two subsequences {𝑥
𝑝,𝑖
} (𝑖 = 0, 1) are

shown in the columns 2 and 3.The convergence properties for the subsequence {𝑥
𝑝,1

} are shown in the last column.The ratio |𝑥
𝑝,1

|/|𝑥
𝑝−1,1

|𝜓1

is expected to converge to |𝐾
∞1

|(𝜓1−1)/2 ≈ 1.5857; compare or confer Theorem 6.

𝑓(𝑥) =
𝑥(𝑥2 + 𝑥 − 1)

𝑥 + 1

𝑝 𝑥
𝑝,0

𝑥
𝑝,1

|𝑥
𝑝,1

|

|𝑥
𝑝−1,1

|𝜓1

−1 −0.1

0 0.1
1 1.9900 × 10−2

2 −4.8788 × 10−3 −6.3502 × 10−4

3 2.6028 × 10−5 −4.6934 × 10−6 3.5652
4 −5.9550 × 10−9 1.8383 × 10−10 1.1617
5 1.7255 × 10−15 1.6419 × 10−18 1.3240
6 −6.0365 × 10−28 −4.2497 × 10−33 2.1850
7 1.3955 × 10−50 −3.8480 × 10−60 1.3365
8 −3.2706 × 10−92 8.0549 × 10−110 1.5376
9 6.1990 × 10−169 3.9516 × 10−201 1.7857
10 −6.3660 × 10−310 −3.6744 × 10−369 1.4594
11 2.9040 × 10−569 −3.5087 × 10−678 1.5937
12 −2.5785 × 10−1046 1.5284 × 10−1246 1.6519
13 1.0725 × 10−1923 5.9115 × 10−2292 1.5280
14 −1.8070 × 10−3537 −9.5104 × 10−4215 1.5998
15 1.1244 × 10−6505 −2.5778 × 10−7751 1.6060
16 −4.9032 × 10−11965 4.3478 × 10−14256 1.5613
17 2.2415 × 10−22006 3.1977 × 10−26220 1.5954
18 −2.7806 × 10−40475 −1.0752 × 10−48225 1.5910
19 6.8762 × 10−74445 −4.4844 × 10−88700 1.5761
20 −9.6430 × 10−136925 4.6253 × 10−163144 1.5910
21 4.1483 × 10−251843 6.6903 × 10−300068 1.5865
22 −6.1889 × 10−463211 −4.1630 × 10−551910 1.5821
23 5.5704 × 10−851977 −3.8647 × 10−1015120 1.5882
24 −3.2178 × 10−1567029 3.2292 × 10−1867096 1.5855
25 2.4959 × 10−2882215 1.5586 × 10−3434124 1.5845
26 −1.0066 × 10−5301219 −5.8353 × 10−6316339 1.5868

×
𝑛+2

∑
𝑗=2

(𝑥
1
− 𝑥
𝑗
) (𝑥
𝑗
− 𝑥
𝑛+3

)

𝑓
𝑗

𝑎
𝑛+1,𝑗;1,...,𝑛+3

= 𝐹
1

𝑥
𝑛+3

𝑓
𝑛+3

𝑎
𝑛+1,𝑛+3;1,...,𝑛+3

,

(A.11)

𝑇
3
=
𝑛+2

∑
𝑖=2

𝑛+2

∑
𝑗=2

𝑥
𝑖
𝑥
𝑛+3

− 𝑥
1
𝑥
𝑗

𝑓
𝑖
𝑓
𝑗

𝑎
𝑛,𝑖;1,...,𝑛+2

𝑎
𝑛,𝑗−1;2,...,𝑛+3

=
1

∏
𝑛+2

𝑘=2
(𝑥
1
− 𝑥
𝑘
) (𝑥
𝑘
− 𝑥
𝑛+3

)

×
𝑛+2

∑
𝑖=2

𝑛+2

∑
𝑗=2

𝑥
𝑖
𝑥
𝑛+3

− 𝑥
1
𝑥
𝑗

𝑓
𝑖
𝑓
𝑗

× {
𝑛+2

∏
𝑘=2

(𝑥
𝑘
− 𝑥
𝑛+3

)} 𝑎
𝑛,𝑖;1,...,𝑛+2

× {
𝑛+2

∏
𝑘=2

(𝑥
1
− 𝑥
𝑘
)} 𝑎
𝑛,𝑗−1;2,...,𝑛+3

= −
1

(𝑥
1
− 𝑥
𝑛+3

)
2

∏
𝑛+2

𝑘=2
(𝑥
1
− 𝑥
𝑘
) (𝑥
𝑘
− 𝑥
𝑛+3

)

×
𝑛+2

∑
𝑖=2

𝑛+2

∑
𝑗=2

𝑇
𝑖𝑗

𝑓
𝑖
𝑓
𝑗

𝑎
𝑛,𝑖;1,...,𝑛+3

𝑎
𝑛,𝑗;1,...,𝑛+3

(A.12)

with

𝑇
𝑖𝑗
= (𝑥
𝑖
𝑥
𝑛+3

− 𝑥
1
𝑥
𝑗
) (𝑥
𝑖
− 𝑥
𝑛+3

) (𝑥
1
− 𝑥
𝑗
) . (A.13)

We can replace 𝑇
𝑖𝑗
by (𝑇
𝑖𝑗
+ 𝑇
𝑗𝑖
)/2 under the double sum:

𝑇
𝑖𝑗
󳨀→

1

2
(𝑇
𝑖𝑗
+ 𝑇
𝑗𝑖
)
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Table 2: Example of the convergence properties of the second-order accelerated Secant algorithm.The three subsequences {𝑥
𝑝,𝑖
} (𝑖 = 0, 1, 2)

are shown in the columns 2, 3 and 4. The convergence properties for the subsequence {𝑥
𝑝,2

} are shown in the last column. The ratio
|𝑥
𝑝,2

|/|𝑥
𝑝−1,2

|𝜓2 is expected to converge to |𝐾
∞2

|(𝜓2−1)/3 ≈ 1.6448; compare or confer Theorem 6.

𝑓(𝑥) =
𝑥(𝑥2 + 𝑥 − 1)

𝑥 + 1

𝑝 𝑥
𝑝,0

𝑥
𝑝,1

𝑥
𝑝,2

|𝑥
𝑝,2

|

|𝑥
𝑝−1,2

|𝜓2

−1 −0.1

0 0.1
1 1.9900 × 10−2

2 −4.8788 × 10−3 −6.3502 × 10−4

3 2.6028 × 10−5 −4.6934 × 10−6 −6.6938 × 10−7

4 −8.4933 × 10−10 2.6218 × 10−11 −5.1981 × 10−12 4.1423
5 −6.9591 × 10−18 −6.6217 × 10−21 2.2686 × 10−22 1.2784
6 2.3585 × 10−33 2.3681 × 10−39 2.5037 × 10−42 1.3159
7 −1.1360 × 10−63 −8.8573 × 10−75 −9.8816 × 10−81 1.5280
8 4.9481 × 10−122 −1.6838 × 10−143 −1.4587 × 10−154 2.3928
9 −2.8829 × 10−234 1.0827 × 10−275 −4.0936 × 10−297 1.3822
10 −1.1943 × 10−450 −1.7702 × 10−530 7.3869 × 10−572 1.4945
11 6.0478 × 10−868 1.3233 × 10−1021 2.1794 × 10−1101 1.6974
12 −3.2198 × 10−1672 −1.9771 × 10−1968 −4.8068 × 10−2122 1.8855
13 2.0952 × 10−3222 −2.3216 × 10−3793 −1.5839 × 10−4089 1.4857
14 −1.5227 × 10−6210 4.9781 × 10−7311 −6.1288 × 10−7882 1.5969
15 −1.9415 × 10−11970 −1.3999 × 10−14091 5.0849 × 10−15192 1.7063
16 6.2328 × 10−23073 1.4809 × 10−27161 1.1864 × 10−29282 1.7153
17 −1.2065 × 10−44473 −1.1092 × 10−52354 −2.9281 × 10−56443 1.5606
18 6.9477 × 10−85725 −5.2992 × 10−100916 −5.4130 × 10−108797 1.6392
19 −3.1699 × 10−165239 5.6411 × 10−194521 −4.7807 × 10−209712 1.6827
20 −5.1756 × 10−318508 −2.2732 × 10−374950 4.4948 × 10−404232 1.6594
21 4.2977 × 10−613943 3.4895 × 10−722739 1.7029 × 10−779181 1.6052
22 −1.5309 × 10−1183412 −1.0978 × 10−1393123 −9.9039 × 10−1501920 1.6511
23 3.3731 × 10−2281100 −2.2742 × 10−2685331 −1.8121 × 10−2895042 1.6631

= −
1

2
(𝑥
1
− 𝑥
𝑛+3

)

⋅ {𝑥
𝑖
(𝑥
1
− 𝑥
𝑗
) (𝑥
𝑗
− 𝑥
𝑛+3

) + 𝑥
𝑗
(𝑥
1
− 𝑥
𝑖
) (𝑥
𝑖
− 𝑥
𝑛+3

)} .

(A.14)

The two termswill give the same result under the double sum;
hence we can stay with the first and substitute

𝑇
𝑖𝑗
󳨀→ − (𝑥

1
− 𝑥
𝑛+3

) 𝑥
𝑖
(𝑥
1
− 𝑥
𝑗
) (𝑥
𝑗
− 𝑥
𝑛+3

) (A.15)

in (A.12):

𝑇
3
=

1

(𝑥
1
− 𝑥
𝑛+3

)∏
𝑛+2

𝑘=2
(𝑥
1
− 𝑥
𝑘
) (𝑥
𝑘
− 𝑥
𝑛+3

)

× {
𝑛+2

∑
𝑖=2

𝑥
𝑖

𝑓
𝑖

𝑎
𝑛,𝑖;1,...,𝑛+3

}

×
{
{
{

𝑛+2

∑
𝑗=2

(𝑥
1
− 𝑥
𝑗
) (𝑥
𝑗
− 𝑥
𝑛+3

)

𝑓
𝑗

𝑎
𝑛,𝑗;1,...,𝑛+3

}
}
}

= 𝐹
1

𝑛+2

∑
𝑖=2

𝑥
𝑖

𝑓
𝑖

𝑎
𝑛,𝑖;1,...,𝑛+3

.

(A.16)

Adding 𝑇
1
, 𝑇
2
, and 𝑇

3
we obtain

𝑇 = 𝐹
1

𝑛+3

∑
𝑖=1

𝑥
𝑖

𝑓
𝑖

𝑎
𝑛,𝑖;1,...,𝑛+3

(A.17)

substituting (A.17) in (A.9) results in the expression for the
numeratorN in (A.3).

B. Pseudocode

The 𝑛th order accelerated Secant algorithm looks as follows in
pseudocode.The algorithm calculates the approximant 𝑥

𝑝,𝑖
of

the root of a function f. The inital estimates are x
−1

and x
0
.
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Wedefine 𝑖max,𝑝 as in (41) (seeAlgorithm 1), andwe define
𝑥
𝑝,𝑖

as in (42) (see Algorithm 2).

C. Numerical Example

A numerical example for the accelerated Secant method is
given in Tables 1 and 2. Both tables have been calculated with
Algorithms 1 and 2.

Table 1 shows how the root 𝛼 of a function 𝑓 is approxi-
mated by the first-order accelerated Secant algorithm. Table
2 does the same for the second-order accelerated Secant algo-
rithm. Both tables use the function

𝑓 (𝑥) =
𝑥 (𝑥2 + 𝑥 − 1)

𝑥 + 1
=

1

𝑥 + 1
+ 𝑥2 − 1

= −𝑥 + 2𝑥2 − 𝑥3 + 𝑥4

− 𝑥5 + 𝑥6 − ⋅ ⋅ ⋅ , |𝑥| < 1

(C.1)

which has 𝛼 = 0, 𝑓(1)(0) = −1, 𝐶
2
= −2, and 𝐶

𝑛
= (−1)𝑛+1 for

𝑛 = 3, 4, 5, . . ., 𝐾
∞1

= 3, and𝐾
∞2

= −5.
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