
Research Article
A Global Path Planning Algorithm Based on Bidirectional SVGA

Taizhi Lv,1 Chunxia Zhao,1 and Jiancheng Bao2

1School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2School of Information Technology, Jiangsu Maritime Institute, Nanjing 211170, China

Correspondence should be addressed to Taizhi Lv; lvtaizhi@163.com

Received 3 August 2016; Revised 29 November 2016; Accepted 4 January 2017; Published 2 February 2017

Academic Editor: Yuan F. Zheng

Copyright © 2017 Taizhi Lv et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For path planning algorithms based on visibility graph, constructing a visibility graph is very time-consuming. To reduce the
computing time of visibility graph construction, this paper proposes a novel global path planning algorithm, bidirectional SVGA
(simultaneous visibility graph construction and path optimization by A∗). This algorithm does not construct a visibility graph
before the path optimization. However it constructs a visibility graph and searches for an optimal path at the same time. At each
step, a node with the lowest estimation cost is selected to be expanded. According to the status of this node, different through
lines are drawn. If this line is free-collision, it is added to the visibility graph. If not, some vertices of obstacles which are passed
through by this line are added to the OPEN list for expansion. In the SVGA process, only a few visible edges which are in relation
to the optimal path are drawn and the most visible edges are ignored. For taking advantage of multicore processors, this algorithm
performs SVGA in parallel from both directions. By SVGA and parallel performance, this algorithm reduces the computing time
and space. Simulation experiment results in different environments show that the proposed algorithm improves the time and space
efficiency of path planning.

1. Introduction

Intelligent mobile robots have been widely used not only in
military activities but also in civil life. Navigation is the key
problem of the mobile robot technology. The quandary of
navigation could be summarized: “Where am I? Where do I
go? How do I get there? [1]” The first two problems are about
localization and mapping, and the last problem is about path
planning.

Path planning is to determine a collision-free path
between the start and target position by a performance
criterion such as the distance, time, and energy consumption
[2]. According to whether an environment is known or not,
there are two categories of path planning algorithms, namely,
local and global path planning. A mobile robot plans a
feasible path in an unknown or dynamic environment by
the information which is gotten from sensors. This is known
as local or online path planning. Global path planning is to
search for an optimal path based on complete information
about stationary obstacles and is also known as offline path
planning.

Classical local path planning approaches include artificial
potential field, vector field histogram, dynamic windows, and
bug. However these algorithms suffer from some drawbacks,
such as trapping in local minima and unsmooth planned
path. To overcome such limitations, there have emerged some
proposals combining evolutionary or heuristic algorithms
with classical path planning approaches, such as parallel
evolutionary artificial potential field (PEAPF) [3] and Egress-
Bug [4]. Global path planning consists of two steps: envi-
ronmental modeling and path optimization. Configuration
space (C-Space) is a fundamental approach to environmental
modeling problem. Cell decomposition and roadmap are
well known environmentalmodeling approaches based onC-
Space. The simplest cell decomposition is grid with a fixed
resolution. The main difficulty of this approach is how to
determine the size of cell. Some improved approaches are
proposed to solve this difficulty, such as fan-shaped grid
map [5] and quad-tree grid map [6]. Voronoi diagram and
visibility graph are two main roadmap approaches. Voronoi
diagram is proposed by Dunlaing and Yap. This approach
constructs a roadmap by using points equidistant from two

Hindawi
Journal of Robotics
Volume 2017, Article ID 8796531, 11 pages
https://doi.org/10.1155/2017/8796531

https://doi.org/10.1155/2017/8796531

2 Journal of Robotics

or more obstacles [7]. Artificial intelligent path planning
methods apply modern artificial intelligent technology to
mobile robot path planning [8]. Artificial neural nets, fuzzy
logic, genetic algorithm, and particle swarm optimization are
widely applied technologies in the path planning research.
These artificial intelligent technologies overcomemany draw-
backs of classic approaches, and they reinforce the robot
intelligence. But these technologies are difficult to implement
path planning independently, and they need to be combined
with classic approaches [9]. Rapidly exploring random tree
(RRT) is a sampling-based path planning algorithm and is
being implemented heavily in recent years [10].

Visibility graph modeling is to construct a compact,
undirected graph that registers visibility among vertices of
obstacles [11]. For its simplicity, visualization, and com-
pleteness, visibility graph is still useful in many applica-
tions. However, constructing a visibility graph is very time-
consuming. Some algorithms aiming efforts at reducing com-
puting time are proposed by scholars. Tran et al. proposed
a parallel-oriented visibility graph construction algorithm.
This algorithm divides the environment into some parts and
constructs the visibility graph for each part in parallel [12].
Zhang et al. use a simplified visibility graph suitable for path
planning algorithm to model environment [13]. By ignoring
redundant obstacles which do not affect the result of path
planning, it improves the efficiency of path planning. Some
techniques are used to improve the time complexity such as
reducing the amount of visibility edges, simplifying obstacles
to rectangles, and combining the tiny obstacles [14, 15]. Some
intelligence algorithms such as quantized algorithm [16] and
ant colony [17] are used in path planning based on visibility
graph to improve the computational efficiency.

The above improved algorithms all firstly construct a
visibility graph and then search for an optimal path based
on this visibility graph. Constructing a visibility graph is
very time-consuming and the optimization efficiency is
drastically decreased with the increasing of edge number. To
improve the computational efficiency, this paper proposes
an improved global path planning algorithm, bidirectional
SVGA (simultaneous visibility graph construction and path
optimization by A∗). Two approaches to increase the perfor-
mance of global path planning are introduced to the proposed
algorithm:

(i) It does not construct the visibility graph before the
search process, but it constructs the visibility graph
and searches for the path at the same time. Whether
a direct line between two vertices is collision-free or
not is the main process of the visibility graph con-
struction. This process is called visibility judgment
in short. In order to improve the efficiency of global
path planning, the main purpose of the proposed
algorithm is to reduce the executions of visibility
judgment. Two strategies are used in this approach.
One is to make use of the relationship between the
start position, target position, and all vertices. Many
vertices unrelated to the path planning result are
ignored and visibility judgment between them does
not need be executed. The other is to make use of

0 25 50

0

25

50

S G

−25

−50
−25−50

Figure 1: Complete visibility graph.

the heuristics search. If a line between two vertices
is more related to the optimal path, the visibility
judgment of this line is executed earlier. It causes that
the visibility judgment less related to the optimal path
may not be executed.

(ii) SVGA is performed in parallel from both direc-
tions. By taking advantage of multicore processors, it
improves the efficiency of global path planning.

The rest of this paper is organized as follows. Section 2,
at first, introduces the key concepts of global path planning
based on visibility graph.The global path planning algorithm
based on bidirectional SVGA is presented in Section 3. The
performance analysis is presented in Section 4. The exper-
imental results are provided in Section 5. Finally, Section 6
concludes this paper.

2. Global Path Planning

Global path planning can be described as a search problem in
a four-atom formulation ⟨X, 𝑥start, 𝑥goal,Xobst⟩:

(i) X: search space.
(ii) 𝑥start: start position.
(iii) 𝑥goal: target position.
(iv) Xobst: obstacle set.

If a path series {𝑢1, 𝑢2, . . . , 𝑢𝑘} is a solution, 𝑢1 = 𝑥start,
𝑢𝑘 = 𝑥goal, and {𝑢1, 𝑢2, . . . , 𝑢𝑘} ∩Xobst = Φ. Global path plan-
ning aims to search for an optimal solution in all solutions.

2.1. VisibilityGraph. Visibility graph is constructed by joining
the lines which connect the start position, target position, and
vertices of obstacles. These lines do not intersect obstacles.
In other words, these lines are visible. The vertices and
lines form a visibility graph VG = {𝑉, 𝐸}. Figure 1 shows
a visibility graph where grey polygons represent obstacles,
𝑆 is the start position, and 𝐺 is the target position. After a
complete visibility graph is constructed, the shortest path is
then identified by some search algorithms.

2.2. A∗ Algorithm. Dijkstra is a goal-directed search algo-
rithm. Based on Dijkstra, A∗ adds a potential function to the
priority key of each node in the queue [18, 19]. The potential

Journal of Robotics 3

0 25 50

0

25

50

−25

−50
−25−50

S G

A1

A2

B1

B2

C1 C2

O1 O2

O3

Figure 2: Unidirectional SVGA.

function is an estimation of the path length through the
vertex V.

𝑓 (V) = 𝑔 (V) + ℎ (V) . (1)

𝑓(V) represents the estimated shortest path length between
the start and target position through the vertex V. 𝑔(V) is the
real path length from the start position to the vertex V, and
ℎ(V) is heuristics function which estimates the shortest path
length from the vertex V to the target position.

3. Bidirectional SVGA

Classic global path planning algorithms based on visibility
graph search for a path after the complete visibility graph
roadmap is constructed. The time complexity of visibility
graph construction is O(N3), where 𝑁 is the number of
vertices. To reduce the visibility graph construction time,
this paper proposes the bidirectional SVGA algorithm which
does not construct a complete visibility graph.This algorithm
simultaneously constructs the visibility graph and searches
for the optimal path by A∗. In the optimization process
only related edges are added to the visibility graph, and the
added edges equally affect the optimization process. From
both directions, SVGA is performed in parallel, for it can
take advantage of multicore processors [20]. One direction is
from the start position to the target position, and it is called
forward SVGA. The other is from the target position to the
start position, and it is called backward SVGA.

For convenience, unidirectional SVGA is firstly intro-
duced. It performs SVGA from one direction. Figure 2 shows
this process.

At each step of the optimization process, one through line
is drawn. The through line is a straight line which can pass
through obstacles to connect two vertices. In other words,
the line would be the shortest path between the two vertices
supposing the robot can pass through obstacles. According
to this line, related vertices are added to the OPEN list for
expansion.

Firstly, a through line from the start position 𝑆 to the
target position G is drawn. It can be seen that if the robot
wants to go to G, it must pass by the vertex A1 or A2. A1 and
A2 are added to the OPEN list. The node A1 with the lowest
estimation cost is expanded, and a through line from S toA1 is
drawn. Because this line does not pass through any obstacle,
it is added to the visibility graph.Then a through line fromA1

toG is drawn, and B1 and B2 are added to the OPEN list. Next
A2 is selected to be expanded. The line from S to A2 is added
to the visibility graph, for the line is free-collision. A through
line fromA2 toG is drawn. C1 and C2 are added to the OPEN
list. B1 is selected for its lowest estimation cost. A through
line fromA1 to B1 is drawn. Because this line is free-collision,
it is added to the visibility graph and B1 is continued to be
expanded. A through line from B1 toG is drawn, and it is also
added to the visibility graph for there is no collision. Because
the optimization arrives at G, this algorithm is finished and
the optimal path 𝑆 → 𝐴1 → 𝐵1 → 𝐺 is output.

Bidirectional SVGA is similar to unidirectional SVGA,
and the difference is that bidirectional SVGA is performed in
parallel from both directions. For parallel performance, there
are two OPEN lists, OPENF and OPENB. They are used in
forward and backward SVGA, respectively.

OPENF (𝑖) = {𝑖𝑛𝑑𝑒𝑥, 𝑝𝑟𝑒V, 𝑠𝑡𝑎𝑡𝑢𝑠, 𝑔𝑛, ℎ𝑛, 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦} , (2)

whereOPENF(𝑖) represents the 𝑖th node. Each node is related
to a vertex, and index represents the index of this vertex in
the vertex set V. prev represents the preview node. status
represents whether there is a visible edge between this node
and preview node or not. Different from the classic A∗
algorithm, 𝑔(V) in this algorithm is not the real path length
but an estimated path length from the start position to the
current node. 𝑔𝑛 represents 𝑔(V) and it is calculated as

𝑔𝑛 = 𝑝𝑟𝑒V.𝑔𝑛 + 𝐷𝑝𝑝, (3)

where 𝐷𝑝𝑝 represents the straight-line distance from the
previewnode to the current node. hn represents the heuristics
function ℎ(V). It is the straight-line distance from the current
node to the target position. Nodes of OPENF are not deleted
in this algorithm for the same node might be visited repeat-
edly. priority represents the access priority and visit count.
A dead circle in the optimization process can be avoided by
the priority property. SVGA is based on the graph search and
each node is identified by index and prev. It means that when
index and prev are both equal, the nodes are the same. A
node is represented as {𝑖𝑛𝑑𝑒𝑥, 𝑝𝑟𝑒V} in a simplified form.The
structure of OPENB is the same as OPENF.

Two CLOSED lists, CLOSEDF and CLOSEDB, are used
in this algorithm. Each node is defined as

CLOSEDF (𝑖) = {𝑖𝑛𝑑𝑒𝑥, 𝑝𝑟𝑒V, 𝑔𝑛} , (4)

where index is the index in V. 𝑔𝑛 is the real path length
between the start position and the current node.

The proposed algorithm consists of two steps: initial-
ization and optimization. In the initialization process, two
OPEN lists and two CLOSED lists are initialized. The start
position, target position, and vertices of all obstacles are
added to the vertex set V.

𝑉 = {𝑆, 𝐺, V𝑒𝑟𝑡𝑖𝑐𝑒𝑠} . (5)

Only edges between adjacent vertices of some obstacles
are added to the edge set E.

𝐸 = {𝑒𝑑𝑔𝑒𝑠𝑎𝑗𝑎𝑐𝑒𝑛𝑡} . (6)

4 Journal of Robotics

The target position G is added to OPENF, and the start
position S is added to OPENB.

OPENF (1) = {𝐺, 𝑆, 0, 𝐷𝑆𝐺, 0, 0} ,

OPENB (1) = {𝑆, 𝐺, 0, 𝐷𝑆𝐺, 0, 0} ,
(7)

where DSG is the Euclidean distance between S and G,
priority = 0 represents that the node has not been expanded,
and status = 0 represents that the visibility between the two
nodes is unknown.

Two CLOSED lists are initialized as

CLOSEDF (1) = {𝑆, 0, 0} ,

CLOSEDB (1) = {𝐺, 0, 0} .
(8)

The node is the initial node if prev equals 0.
Only forward SVGA is specified. Backward SVGA is the

same as forward SVGA. At each step of the optimization
process, the node with the lowest estimation cost is selected
to be expanded. The estimation function is defined as

𝑓 (V) = 𝑔𝑛 + ℎ𝑛 − 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ×MAX, (9)

whereMAX represents themax possible distance from S toG.
After this expansion, the priority value of this node minuses
one.

Different through lines are drawn according to the status
value of this node. A through line from the preview node to
this node is drawn provided that status equals 0. A function
visible(V𝑖, V𝑗, 𝐸𝑠) is used to determine whether a line between
the vertices V𝑖 and V𝑗 is visible or not. 𝐸𝑠 is the set of
boundaries of obstacles. If the line intersects any obstacle, the
function visible(V𝑖, V𝑗, 𝐸𝑠) returns false. If this line is visible, it
is added to E, and this node is added to CLOSEDF, and status
is assigned to 1.

𝐸 = {𝐸, (𝑐𝑁𝑜𝑑𝑒.𝑝𝑟𝑒V.𝑖𝑛𝑑𝑒𝑥, 𝑐𝑁𝑜𝑑𝑒.𝑖𝑛𝑑𝑒𝑥)} ,

CLOSEDF (𝑠𝑖𝑧𝑒 + 1)

= {𝑐𝑁𝑜𝑑𝑒.𝑖𝑛𝑑𝑒𝑥, 𝑐𝑁𝑜𝑑𝑒.𝑝𝑟𝑒V, 𝑐𝑁𝑜𝑑𝑒.𝑔𝑛} ,

𝑐𝑁𝑜𝑑𝑒.𝑠𝑡𝑎𝑡𝑢𝑠 = 1,

(10)

where cNode represents the current node. If this node exists
in CLOSEDB, it means that forward and backward SVGA
meet the current node. The optimization is finished and the
optimal path is output. If this line passes through an obstacle,
no more than two vertices of this obstacle are added to
OPENF. If a vertex of this obstacle is farthest from the line
in any direction of two directions and is not in OPENF, it is
added to OPENF.

OPENF (𝑠𝑖𝑧𝑒 + 1)

= {𝑖𝑛𝑑𝑒𝑥𝑝, 𝑐𝑁𝑜𝑑𝑒.𝑝𝑟𝑒V, 0, 𝑐𝑁𝑜𝑑𝑒.𝑝𝑟𝑒V.𝑔𝑛

+ 𝐷𝑃𝑃, 𝐷𝑃𝐺} ,

(11)

where 𝑖𝑛𝑑𝑒𝑥𝑝 is the index of this vertex in V, 𝐷𝑃𝑃 is the
straight-line distance from preview node to the vertex, and

DPG is the straight-line distance from the vertex to G. The
pseudo-code of adding vertices of the crossed obstacles to the
OPEN list are shown below.

Procedure addAllVertices(𝑛𝑜𝑑𝑒, 𝑙𝑖𝑛𝑒, 𝑐𝑟𝑜𝑠𝑠𝑒𝑑𝑂𝑏𝑠)

(01) For (o in crossedObs)

(02) 𝑃high = maxDistanceFromTop(o, line);

(03) If (exists(𝑃high, 𝑛𝑜𝑑𝑒.𝑝𝑟𝑒V) == false)

(04) addVertex(𝑃high, 𝑛𝑜𝑑𝑒.𝑝𝑟𝑒V);

(05) End If

(06) If (moreFarLineS2G(𝑃high, 𝑛𝑜𝑑𝑒) == true

&& exists(𝑃high, 𝑆) == false)

(07) addVertex(𝑃high, 𝑆);

(08) End If

(09) 𝑃low = maxDistanceFromBotton(o, line);

(10) If (exist(𝑃low, node.prev) == false)

(11) addVertex(𝑃low, node.prev);

(12) End If

(13) If (moreFarLineS2G(𝑃low, node) == true

&& exists(𝑃low, S) == false)

(14) addVertex(𝑃low, S);

(15) End If

(16) End For

End Procedure

If the status value of this node equals 1, a through line
from the current node to G is drawn. If this line has been
in E or is free-collision, the optimization is finished and the
optimal path is output. If the line passes through an obstacle,
no more than two vertices are added to OPENF.

OPENF (𝑠𝑖𝑧𝑒 + 1)

= {𝑖𝑛𝑑𝑒𝑥𝑝, 𝑐𝑁𝑜𝑑𝑒, 0, 𝑐𝑁𝑜𝑑𝑒.𝑔𝑛 + 𝐷𝐶𝑃, 𝐷𝑃𝐺} ,
(12)

where 𝐷𝐶𝑃 is the distance from the current node to the new
node.

The flowchart of forward SVGA is shown as Figure 3.
Parallel performance causes different stop criterions. If the
following four stop criterions are satisfied, bidirectional
SVGA is over and the optimal path or no path is output.

(i) Forward SVGA arrives at 𝐺.

(ii) Backward SVGA arrives at 𝑆.

(iii) Forward and backward SVGA meet the same node.

(iv) The priority value of the node with the lowest estima-
tion cost is less than 0.

Journal of Robotics 5

Initialization

Select the node with lowest
estimation cost

Draw a through line
from the preview node
to this node

Add all satisfied vertices to OPENF

Status of
this node

The line is

Add the node to
CLOSEDF

1

False

Start

True

The node
 is in CLOSEDB

True

End

Output the
path

Draw a through line

False

Output the
path

End

False

False False
True

True

0

Add the

True

Output no
path

End

free-collision
The line is

free-collision

priority < 0

from this node to G

The line is in E The line is in E

line to E

Status = 1

priority = priority − 1

Figure 3: Forward SVGA.

4. Performance Analysis

4.1. Completeness. If SVGA satisfies the following conditions
in an environment with limited vertices, it is complete.

(1) SVGA is guaranteed to find a solution when there is a
feasible path between the start and target positions.

(2) SVGA is guaranteed to be finished in finite stepswhen
there is no path.

SVGA can plan a path by through lines when there is a
feasible path between the start and target positions. At each
step, a robot passes through the vertices far away from the
through line to avoid the obstacles. These vertices are added
to the OPEN list for expansion. If there are obstacles between
these vertices and the start position or the target position,
SVGA continues drawing the through lines and the vertices
of these obstacles are also added to theOPEN list. By the finite
through lines, a mobile robot can avoid the obstacles to arrive
at the target position.

When all possible paths are explored, the priority of every
node is less than zero. It indicates there is no path between the
start and target positions and SVGA is over.

Because bidirectional SVGA executes unidirectional
SVGA at most twice, it is complete when unidirectional
SVGA is complete.

4.2. Optimality. Firstly, the path planned by SVGA is proved
to be optimal, and then the path planned by bidirectional
SVGA is proved to be optimal.

Two conditions are required for optimality.One is that the
incomplete visibility graph constructed by SVGA includes all
edges on the optimal path. The other is that SVGA can find
the optimal path from this incomplete visibility graph.

The first step is to prove that the incomplete visibility
grapy includes all edges on the optimal path. If the through
line 𝑆 → 𝐺 does not cross any obstacle, it is an optimal path.
This line is added to the visibility graph as a visible edge and
incomplete visibility graph includes the edge of this optimal

6 Journal of Robotics

path. If this line is invisible, there are some obstacles between
S and G. There are only two ways which let a robot skirt an
obstacle through the optimal path. The first is that the robot
goes through a vertex of this obstacle which is the farthest
from the line in any direction of two directions.The second is
that the robot goes through a position which is far away from
this obstacle. It can be seen from Figure 2 that if the robot
skirts the obstacle O1, it must pass through the vertex A1 or
A2 or a position which is farther from the through line than
A1 or A2.

(a) The robot skirts an obstacle by the vertex P which
is the farthest from the trough line in any direction of two
directions. The vertex P is added to the OPEN list when
SVGA draws the through line 𝑆 → 𝐺. Because P is on the
optimal path, it must be selected for expansion. The through
line 𝑆 → 𝑃 is drawn. If this line is visible, it is added to the
visibility graph. If this line is invisible, the robot should skirt
the crossed obstacles to arrive atP.The robotmust go through
the vertices of these obstacles which are farthest from the
through line in any direction of two directions, or far away
from these obstacles. By this recursive inference based on the
two ways, it can be concluded that the vertices on the optimal
path from S to P are added to the OPEN list, and the edges on
the optimal path are added to the visibility graph.

(b) The robot skirts an obstacle by a position which is far
away from this obstacle. It is based on the following two cases.
(1)The first case is that there is a vertex Q of the other

obstacle which is farther away from the through line than
the vertex P of this obstacle. The robot goes from S to Q or
goes fromQ toG by skirting this obstacle. When the through
line 𝑆 → 𝐺 is drawn, the vertices P and Q are both added
to the OPEN list. The through lines from S to Q and from Q
to G are drawn. If these lines are visible, they are added to
the visibility graph. If these lines are invisible, the robot skirts
these obstacles by the two ways.
(2)The other case is that there is an obstacle between S

and P or between P and G, and the vertex Q of this obstacle
is farther away from the through line 𝑆 → 𝐺 than P. If this
obstacle is between S and P, the through lines 𝑆 → 𝑄 and
𝑄 → 𝐺 are drawn.The edges between these vertices are added
to the visibility graph by through lines. If this obstacle is
between P and G, the nodes {𝑄, 𝑃} and {𝑄, 𝑆} are both added
to the OPEN list for expansion. If there are some obstacles
between these vertices, that the first condition is satisfied can
be proven by the recursive inference based on the two ways.

No matter in any case, the visibility graph constructed by
SVGA includes all edges on the optimal path by this recursive
inference based on the two ways.

The next step is to prove that SVGA can find the optimal
path based on this visibility graph. The estimation function
of SVGA is nondecreasing. 𝑥𝑛 is supposed as the successor of
node x.
𝑓 (𝑥𝑛) = 𝑔 (𝑥𝑛) + ℎ (𝑥𝑛) = 𝑔 (𝑥) + 𝐷𝑥 𝑥

𝑛

+ ℎ (𝑥𝑛) , (13)
where 𝐷𝑥 𝑥

𝑛

is Euclidean distance between 𝑥𝑛 and x. By the
general triangle inequality, it can be concluded that

ℎ (𝑥) ≤ 𝐷𝑥 𝑥
𝑛

+ ℎ (𝑥𝑛) 󳨐⇒

𝑓 (𝑥) ≤ 𝑓 (𝑥𝑛) .
(14)

Because the estimation function is nondecreasing, SVGA
determines a node to be expanded according to a nondecreas-
ing sequence. The first selected target node for expansion is
the optimal solution [21]. The estimation cost of all succor
nodes is not less than the first selected target node.

It is assumed that forward and backward SVGA meet
the same node when the expanded node of one directional
SVGA is in the CLOSED list of the other directional SVGA.
Bidirectional SVGA is over when forward and backward
SVGA meet the same node. This node may be the start
position, target position, or the vertex of an obstacle. The
path from the start position to this vertex found by forward
SVGA and the path from target position to this vertex found
by backward SVGA are both optimal, so the found path is
optimal.

4.3. Complexity

4.3.1. Time Complexity. SVGA uses A∗ algorithm to deter-
mine a node to be expanded and through lines to determine
vertices to be added to the OPEN list.The time complexity of
A∗ algorithm is O(N2). SVGA adds new nodes by visibility
judgment of a through line. The time complexity of the
function visible(V𝑖, V𝑗, 𝐸𝑠) is O(N), so the time complexity of
SVGA is O(N3), the same grade as complete visibility graph
construction. But a construction of the complete visibility
graph involves all vertices.This construction needs to call the
function visible(V𝑖, V𝑗, 𝐸𝑠)𝑁 × (𝑁 − 1) times. SVGA ignores
the vertices which are independent of the optimal path,
and the involved vertices are much fewer than the vertices
of complete visibility graph construction. In Figure 1, there
are 28 vertices. The complete visibility graph construction
needs to call the function visible(V𝑖, V𝑗, 𝐸𝑠) 756 times. By
ignoring the most vertices, SVGA only call the function
visible(V𝑖, V𝑗, 𝐸𝑠) 7 times. It can be seen that the computing
time of SVGA is far lower than the complete visibility graph
construction and bidirectional SVGA is faster than SVGA for
parallel performance.

4.3.2. Space Complexity. The huge memory requirements of
global path planning algorithms based on visibility graph are
the visible edges. The space complexities of complete visible
graph and SVGA are both S(N2), but memory requirements
of SVGA are fewer than the complete visibility graph. The
complete visibility graph keeps all visible edges in memory,
but SVGA ignores the most visible edges and keeps a few
visible edges related to the optimal path.As shown in Figures 1
and 2, complete visibility graph includes 107 visible edges and
SVGA only includes 33 visible edges. The number of visible
edges in bidirectional SVGA is nomore than simply twice the
number of SVGA.

5. Experimental Results and Discussion

The simulation experiments are carried out to validate the
effectiveness of SVGA and to compare SVGA with some
global path planning algorithms based on visibility graph.
The first algorithm searches for an optimal path by A∗ after a
complete visibility graph is constructed. It is called complete

Journal of Robotics 7

0
50 100 150 200 250 300 350 400 450 5000

100

200

300

400

500

S

G

(a) Environment

0
50 100 150 200 250 300 350 400 450 5000

100

200

300

400

500

S

G

(b) Complete VG + A∗

0
50 100 150 200 250 300 350 400 450 5000

100

200

300

400

500

S

G

(c) Simplified VG + A∗

0
50 100 150 200 250 300 350 400 450 5000

100

200

300

400

500

S

G

(d) POVG + A∗

0
50 100 150 200 250 300 350 400 450 5000

100

200

300

400

500

S

G

(e) Unidirectional SVGA

0
50 100 150 200 250 300 350 400 450 5000

100

200

300

400

500

S

G

(f) Bidirectional SVGA

Figure 4: Comparison between five algorithms in an environment.

VG+A∗ in short.The second algorithmuses a simplified visi-
bility graph to implement environmental modeling andA∗ to
search for an optimal path [13]. It is called simplified VG+A∗
in short. In this algorithm, redundant obstacles which do not
affect the path planning result are removed by considering
positions of obstacles, the start and target points. The third
algorithmuses parallel-oriented visibility graph to implement
environmental modeling and A∗ to plan a path [12]. This
algorithm combines themodified visibility graph and parallel
computation to improve computing time. It is called POVG
+ A∗ in short.The fourth is unidirectional SVGA and the last
is bidirectional SVGA. For a fair comparison between these
algorithms, they are tested by using the same 2D environment
with obstacles.

Firstly, the environment shown in Figure 4(a) is used to
be tested for the comparison between five algorithms. There
are 6 obstacles and 29 vertices including S andG.The position
of S is at (43, 101), and the position of G is at (476, 425). All
algorithms except POVG +A∗ can find the optimal path, and
the length of this path is 574.61.

The complete VG + A∗ algorithm constructs a complete
visibility graph shown as Figure 4(b).The construction of this
visibility graph takes 0.66 s and 106 visible edges are added
to the visibility graph. The function visible(V𝑖, V𝑗, 𝐸𝑠) is called
812 times. This algorithm uses A∗ algorithm to search for an
optimal path based on the visibility graph. The optimization
process takes 0.05 s. At the end of the optimization, the size
of the OPEN list is 67. It can be seen that the main phase
of this algorithm is to construct the visibility graph, and
it is very time-consuming. Simplified VG + A∗ algorithm
constructs a simplified visibility graph shown as Figure 4(c).
By ignoring the redundant obstacles for the optimal path,
the number of visible edges is reduced to 38. This algorithm
takes 0.39 s, including the visibility graph construction time
0.36 s and the optimization time 0.03 s. In the visibility graph
construction process, the function visible(V𝑖, V𝑗, 𝐸𝑠) is called
240 times. The size of the OPEN list is 13 at the end of the
optimization. POVG + A∗ takes 0.31 s to find the optimal
path, and it is shown in Figure 4(d). This algorithm divides
the environment into the three regions. In each region,

8 Journal of Robotics

0 100 200 300 400 500
0

100

200

300

400

500

S

G

(a) Complex Environment

0
50 100 150 200 250 300 350 400 450 5000

100

200

300

400

500

S

G

(b) Complete VG + A∗

50 100 150 200 250 300 350 400 450 5000
S

G

0

100

200

300

400

500

(c) Simplified VG + A∗
0 100 200 300 400 500

0

100

200

300

400

500

S

G

(d) POVG + A∗

0 100 200 300 400 500
0

100

200

300

400

500

S

G

(e) Unidirectional SVGA
0 100 200 300 400 500

0

100

200

300

400

500

S

G

(f) Bidirectional SVGA

Figure 5: Comparison between five algorithms in a complex environment.

this algorithm constructs the visibility graph and finds the
path, respectively. At last, three subpaths are combined to a
complete path. POVG + A∗ adds 70 edges to the visibility
graph and calls the function visible(V𝑖, V𝑗, 𝐸𝑠) around 90 times
for each region.

By ignoring the vertices independent of the optimal
path, SVGA improves the path planning efficiency. By 6
through lines and 4 edges, unidirectional SVGA finds the
optimal path. It only calls the function visible(V𝑖, V𝑗, 𝐸𝑠) 10
times. It takes 0.06 s, and the size of the OPEN list is
6. This process is shown in Figure 4(e). Because parallel
performance causes different execution sequences, the time
and space consumption of each performance for bidirectional
SVGA are a little different from one another even though in
the same environment. Figure 4(f) shows the result of one
performance. In this performance, the running time is 0.05 s,
and the sum size of OPENF and OPENB is 15. Comparing
with the other three algorithms, whether unidirectional
or bidirectional SVGA improves the efficiency of global
path planning based on visibility graph enormously. For

computational time, there are ninety percent improvement
comparing with the first algorithm, eighty-four percent
improvement comparing with the second algorithm, and
eighty percent improvement comparing with the third algo-
rithm. Comparing unidirectional SVGA, bidirectional SVGA
takes less computational time andmore computational space.

Next, another comparison is carried out in a complex
environment. This environment is shown in Figure 5(a).
There are 15 obstacles and 165 vertices in the environment.
S is at (62, 12) and G is at (375, 486).

As shown in Figure 5(b), complete VG + A∗ draws 790
visible edges. The total running time is 24.79 s, including
the visibility graph construction time 23.59 s and the opti-
mization time 1.20 s.The time of visibility graph construction
increases quickly for the function visible(V𝑖, V𝑗, 𝐸𝑠) is called
27060 times with the growth of the vertex number. In fact,
many visibility judgments are independent of the optimal
path searching. A large number of visible edges cause the
more time and space consumption on the path optimization.
At the end of the optimization, the size of the OPEN list

Journal of Robotics 9

Table 1: Experimental results in 2D environment with randomly generated obstacles.

Algorithms Number of
obstacles

Average number
of vertices

Average number
of edges in E

Average
running time/s

Best running
time/s

Worst running
time/s

Complete VG + A∗

6 41

171 0.82 0.67 1.38
Simplified VG + A∗ 76 0.35 0.002 1.19
POVG + A∗ 131 0.32 0.19 0.45
Unidirectional SVGA 36 0.05 0.002 0.19
Bidirectional SVGA 40 0.04 0.002 0.17
Complete VG + A∗

9 60

288 2.84 1.38 5.58
Simplified VG + A∗ 183 1.87 0.002 5.18
POVG + A∗ 174 0.87 0.64 1.15
Unidirectional SVGA 59 0.12 0.002 0.34
Bidirectional SVGA 64 0.09 0.002 0.31
Complete VG + A∗

12 79

405 6.75 4.87 7.32
Simplified VG + A∗ 308 5.06 0.27 6.50
POVG + A∗ 203 1.85 1.44 3.12
Unidirectional SVGA 84 0.18 0.01 0.85
Bidirectional SVGA 92 0.14 0.01 0.76
Complete VG + A∗

15 95

535 11.96 7.38 16.42
Simplified VG + A∗ 410 9.18 6.24 17.45
POVG + A∗ 235 2.73 1.54 4.74
Unidirectional SVGA 117 0.40 0.17 1.63
Bidirectional SVGA 131 0.32 0.14 1.47
Complete VG + A∗

18 113

601 17.28 14.82 31.18
Simplified VG + A∗ 516 15.02 8.73 32.29
POVG + A∗ 269 4.12 2.89 7.26
Unidirectional SVGA 140 1.03 0.21 4.07
Bidirectional SVGA 167 0.81 0.18 4.39

is 325. Simplified VG + A∗ takes 21.32 s and constructs 663
visible edges. The running time of the simplified visibility
graph construction is 20.17 s, and the running time of the
path optimization is 1.15 s. At the end of the optimization, the
size of the OPEN list is 310. From Figure 5(c), it can be seen
that there is a little improvement comparing with complete
VG + A∗ for most obstacles are related to the optimal path.
POVG + A∗ takes 7.84 s to find a feasible path. It divides
the environment to four regions and is shown in Figure 5(d).
This algorithm adds 323 edges to the visibility graph and
calls the function visible(V𝑖, V𝑗, 𝐸𝑠) 7918 times for all regions.
Unidirectional SVGA takes 1.34 s to find the optimal path,
and the size of the OPEN list is 129. Figure 5(e) shows the
optimization process. By the through lines and the heuristics
search, the optimal path can be quickly found by SVGA.This
algorithm only called the function visible(V𝑖, V𝑗, 𝐸𝑠) 65 times.
Bidirectional SVGA takes 0.97 s to find the optimal path and
it shown in Figure 5(f). At the end of the optimization, the
sum size of OPENF and OPENB is 173. Whether in time or
space consumption, unidirectional and bidirectional SVGA
are far better than the other three algorithms.

To further validate the efficiency of the proposed algo-
rithm, five algorithms are compared in a 150 × 150 area. The
max length of edges is 30, and the vertex number of each

obstacle is no more than 10. Five categories of environments
are used in this comparison. The numbers of obstacles in
different categories are not the same, and they are 6, 9,
12, 15, and 18, respectively. Each category of environment
is randomly generated 100 times. The results are shown in
Table 1.

It can be seen whether unidirectional or bidirectional
SVGA is better than the other three algorithms in any envi-
ronment. Even though in the environment with 18 obstacles,
the proposed algorithm can find an optimal path in one
second for most test cases. However the average running
time of complete VG + A∗ is 17.28 s and 31.18 s in the worst
condition.

Unidirectional SVGA, bidirectional SVGA, and simpli-
fied VG + A∗ all firstly draw a direct line between the start
and target position. If this line is collision-free, the search
processes of the three algorithms are over. If there are very
few obstacles or no obstacles which affect the robot going
to the target position, unidirectional SVGA, bidirectional
SVGA, and simplified VG + A∗ all can find a path quickly.
Based on these environments, the running times of three
algorithms are all around 0.002. It can be seen from Table 1
that the best running time of the three algorithms are all 0.002
which is accurate to the third-decimal place. But, in most

10 Journal of Robotics

conditions, the running time of bidirectional SVGA is less
than unidirectional SVGA and simplified VG + A∗.

The space complexity of the SVGA algorithms is also
better than the other three algorithms. It can be concluded
that the SVGA algorithms can improve the time and space
complexity of the path planning based on visibility graph
roadmap. The efficiency difference between unidirectional
SVGA and bidirectional SVGA is that unidirectional SVGA
takesmore computational time and less computational space,
and, on the contrary, bidirectional SVGA takes less computa-
tional time and more computational space.

6. Conclusions

This paper presents a global path planning algorithm based
on bidirectional SVGA.This algorithm constructs the visibil-
ity graph and searches for an optimal path simultaneously.
It takes advantage of the vertex positions and heuristics
search, and most visibility judgments between two vertices
are ignored. By reducing executions of visibility judgment,
this algorithm improves the efficiency of path planning on
time and space.Much of the recent improvement in computer
speed is due to multicore processors. This algorithm takes
advantage of multicore processors and adapts the path plan-
ning to parallel processing. From both directions, it executes
SVGA in parallel.

To validate the efficiency of the proposed algorithm,
different simulation environments are tested. These environ-
ments include a simple environment, a complex environ-
ment, and five different categories of environment in a 150
× 150 area. These simulation experiments all validate the
effectiveness of the SVGA algorithm.

The proposed algorithm is to improve the global path
planning based on visibility graph. It is assumed that the envi-
ronment is known and static, and the vertex positions of all
obstacles should be known in advance. In many applications,
environments are dynamic or unknown.The further research
is to apply SVGA in the dynamic environments.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work is financially supported by the National Natural
Science Foundation of China (no. 61101197). Taizhi Lv would
like to thank Jiangsu Overseas Research & Training Program
for University Prominent Young & Middle-Aged Teachers
and Presidents for financial support. Taizhi Lv also would like
to thank the Qianfan project of JiangsuMaritime Institute for
financial support.

References

[1] M. Algabri, H. Mathkour, H. Ramdane, and M. Alsulaiman,
“Comparative study of soft computing techniques for mobile
robot navigation in an unknown environment,” Computers in
Human Behavior, vol. 50, pp. 42–56, 2015.

[2] P. Raja and S. Pugazhenthi, “Optimal path planning of mobile
robots: a review,” International Journal of Physical Sciences, vol.
7, no. 9, pp. 1314–1320, 2012.

[3] O. Montiel, R. Sepúlveda, and U. Orozco-Rosas, “Optimal
path planning generation for mobile robots using parallel
evolutionary artificial potential field,” Journal of Intelligent and
Robotic Systems:Theory and Applications, vol. 79, no. 2, pp. 237–
257, 2015.

[4] K. R. Guruprasad, “EgressBug: a real time path planning
algorithm for a mobile robot in an unknown environment,”
in Proceedings of the International Conference on Advanced
Computing, Network and Security, pp. 228–236, Surathkal,
India, 2011.

[5] T. Li, S. Sun, and Y. Gao, “Fan-shaped grid based global path
planning for mobile robot,” Robot, vol. 32, no. 4, pp. 547–552,
2010.

[6] L. J. Guo,W. X. Shi, Y. Li, and F. X. Li, “Mapping algorithmusing
adaptive size of occupancy grids based on quadtree,” Control
and Decision, vol. 26, no. 11, pp. 1690–1694, 2011.

[7] M. Shao and K. Shin, “Sensor-based path planning for planar
two-identical-link robots by generalized voronoi graph,” Jour-
nal of the Korea Academia-Industrial Cooperation Society, vol.
15, no. 12, pp. 6986–6992, 2014.

[8] Y. Gigras and K. Gupta, “Artificial intelligence in robot path
planning,” International Journal of Soft Computing & Engineer-
ing, vol. 2, no. 2, pp. 471–474, 2012.

[9] D.Q. Zhu andM. Z. Yan, “Survey on technology ofmobile robot
path planning,” Control and Decision, vol. 25, no. 7, pp. 961–967,
2010.

[10] V. T. Huynh, M. Dunbabin, and R. N. Smith, “Convergence-
guaranteed time-varying RRT path planning for profiling
floats in 4-Dimensional flow,” in Proceedings of the Australian
Conference on Robotics and Automation, pp. 1–10, Melbourne,
Australia, 2014.

[11] H.-P. Huang and S.-Y. Chung, “Dynamic visibility graph for
path planning,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS ’04), pp.
2813–2818, IEEE, Sendai, Japan, October 2004.

[12] N. Tran, D.-T. Nguyen, D.-L. Vu, and N.-V. Truong, “Global
path planning for autonomous robots using modified visibility-
graph,” in Proceedings of the 2nd International Conference on
Control, Automation and Information Sciences (ICCAIS ’13), pp.
317–321, NhaTrang, Vietnam, November 2013.

[13] Q. Zhang, J.-C. Ma, and L.-Y. Ma, “Environment modeling
approach based on simplified visibility graph,” Journal of North-
eastern University, vol. 34, no. 10, pp. 1383–1391, 2013.

[14] L. I. Ping, J. Y. Zhu, F. Peng, and L. Yang, “Path planning based
on visibility graph and A∗ algorithm,” Computer Engineering,
vol. 40, no. 3, pp. 193–195, 2014.

[15] T. T. N. Nguyet, T. V. Hoai, and N. A. Thi, “Some advanced
techniques in reducing time for path planning based on visi-
bility graph,” in Proceedings of the 3rd International Conference
on Knowledge and Systems Engineering (KSE ’11), pp. 190–194,
Hanoi, Vietnam, October 2011.

[16] J. Kim,M. Kim, andD. Kim, “Variants of the quantized visibility
graph for efficient path planning,” Advanced Robotics, vol. 25,
no. 18, pp. 2341–2360, 2011.

[17] J.Huang andY.Cen, “Apath-planning algorithm forAGVbased
on the combination between ant colony algorithm and immune
regulation,”AdvancedMaterials Research, vol. 422, pp. 3–9, 2012.

Journal of Robotics 11

[18] F. Duchoň, A. Babinec, M. Kajan et al., “Path planning with
modified a star algorithm for a mobile robot,” Procedia Engi-
neering, vol. 96, pp. 59–69, 2014.

[19] S. M. Persson and I. Sharf, “Sampling-based A∗ algorithm
for robot path-planning,” International Journal of Robotics
Research, vol. 33, no. 13, pp. 1683–1708, 2014.

[20] M. Phillips, M. Likhachev, and S. Koenig, “PA∗SE: parallel A∗
for slow expansions,” in Proceedings of the 24th International
Conference on Automated Planning and Scheduling (ICAPS ’14),
pp. 208–216, Portsmouth, NH, USA, June 2014.

[21] S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, Pearson Prentice Hall, Upper Saddle River, NJ, USA,
3rd edition, 2010.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

