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Streptococcus pneumoniae is one of the leading causes of serious morbidity and mortality worldwide, especially in young children
and the elderly. In this study, a model of the spread and control of bacterial pneumonia under public health interventions that
involve treatment and vaccination is formulated. It is found out that the model exhibits the disease-free and endemic equilibria.
The disease-free equilibrium is stable if and only if the basic reproduction numberR0 < 1 and the disease will be wiped out of the
population. ForR0 ≥ 1, the endemic equilibrium is globally stable and the disease persists.We infer the effect of these interventions
on the dynamics of the pneumonia through sensitivity analysis on the effective reproduction numberR𝑒, from which it is revealed
that treatment and vaccination interventions combined can eradicate pneumonia infection. Numerical simulation to illustrate the
analytical results and establish the long term behavior of the disease is done. The impact of pneumonia infection control strategies
is investigated. It is revealed that, with treatment and vaccination interventions combined, pneumonia can be wiped out. However,
with treatment intervention alone, pneumonia persists in the population.

1. Introduction

Pneumonia is the major cause of respiratory morbidity of
more than 2 million children under 5 years of age mostly
in low-income countries [1–6]. It is an infection of the
lungs that is caused by bacteria, viruses, fungi, or other
pathogens.Most common cause of bacterial pneumonia is the
Streptococcus pneumoniae, also known as pneumococcus [6–
8]. It is characterized primarily by inflammation in the air sacs
(alveoli) in the lungs that are filled with fluid or pus making
it difficult to breathe.

It is reported that about 30%–70% of young children
carry S. pneumoniae in their nasopharynx, and up to 40%
of the carriers are colonized with penicillin-nonsusceptible
S. pneumoniae. Pneumococcus spreads throughmicroaspira-
tion of oropharyngeal organisms and inhalation of aerosols
containing bacteria or viruses especially in children that
carry the bacteria in their throats without being sick. It may
also spread via airborne droplets from cough or sneeze of

an infected person. Children become severely ill with high
fever and rapid breathing. Infants usually suffer convulsions,
unconsciousness, hypothermia, lethargy, and feeding prob-
lems [9]. The data on carriage among adults [10] is limited
and most studies suggest that children are the source of
transmission to adults in the family [11].

The risk factors associated with the spread of pneumonia
include smoking history and passive smoking, malnutrition,
crowded living conditions, lack of exclusive breastfeeding,
indoor air pollution, heart disease, alcoholism and drug
abuse, acidosis, diabetes, and antecedent viral infection [12,
13]. The overdiagnosis of pneumonia and underdiagnosis
of asthma have led significantly to untreated respiratory
morbidity and mortality among children less than five years
in low-income countries. This has been due to some sim-
ilarities of symptoms of pneumonia and asthma that often
make it difficult to separate the two diseases without proper
diagnostic tools [14].
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Pneumonia classification depends on its origin andmode
of transmission. Some of the pneumonia classifications in-
clude community-acquired, health care-associated, hospital-
acquired, ventilator-associated, and walking pneumonia [15].

Pneumonia is preventable through vaccination, proper
diagnosis, screening, environmental control measures, and
appropriate treatment of other diseases [4, 5]. Vaccination is
the most effective way to prevent certain bacterial and viral
pneumonia in both children and adults. The two types of
vaccines available against S. pneumoniae are the pneumococ-
cal polysaccharide vaccine (PPV), based on purified capsular
(PS) and pneumococcal conjugate vaccine (PCV), obtained
by chemical conjugation of the capsular (PS) to a protein
carrier [16]. PCVs were developed for use in children only
and PPV for vaccination of the at-risk adults and the elderly
[17, 18].

Newborn babies can be protected from pneumonia infec-
tion through early recognition and treatment at the level of
the community or the primary-care health facility, testing
pregnant mothers for Group B streptococcus and chlamydia
trachomatis, and giving antibiotic treatment and vaccination
with PPV that has a proven record of safety in pregnant
and breastfeeding mothers for pneumococcal pneumonia
prevention in infants. Suctioning the mouth and throat of
babies with meconium-stained amniotic fluid decreases the
rate of aspiration pneumonia [19]. Environmental measures
for pneumonia prevention include reduction of indoor air
pollution by encouraging good hygiene in crowded homes
and smoking cessation that reduces risks of pneumonia
infections among children and adults. Since the bacteria and
viruses can also be spread to your hands and then to your
mouth, it is important to wash hands with soap when around
a person with pneumonia infection.

Appropriate antibiotics are used for treatment of bacterial
pneumonia. Pneumonia treatment depends on the underly-
ing cause of the pneumonia infection. Appropriate antibiotics
are used for treatment of bacterial pneumonia. Effective and
timely treatment together with better diagnostic tools and
education prevents antibiotic resistance [20]. According to
Wardlaw et al. [5], treatment alone could save at least 600,000
children’s lives annually at a cost of US $600 million if
antibiotic treatment is universally delivered to children with
pneumonia. Amoxicillin is recommended as a suitable alter-
native because of its proven efficacy against S. pneumoniae
and severe pneumonia cases should be hospitalized.

Vaccines are effective in reduction of the number of new
cases and severity of the disease [21–23]. Childhood pneumo-
nia is preventable through immunization with the effective
two vaccines: Hib conjugate vaccine (HibCV) against the
Haemophilus influenzae type b (Hib) and pneumococcal
conjugate vaccine (PCV) against pneumococcus [24]. PCVs
have additional protective qualities that enhance their use
as they may reduce nasopharyngeal acquisition of vaccine-
specific serotypes of S. pneumoniae, and this in turn reduces
the incidence of pneumococcal pneumonia among nonva-
ccinated individuals [25, 26]. This is referred to as indirect
or herd immunity. In this study, we focus on treatment
and vaccination of S. pneumoniae among children with
PCVs.

Mathematical models of infectious diseases have been
recognized as powerful tools that can provide important
insights into our understanding of epidemiological processes,
the course of infection within a host, the transmission
dynamics in a host population, and formulation or imple-
mentation of disease control programs [27, 28]. Compart-
mental mathematical models involving vaccination strategy
for infectious disease control have been considered in [29,
30]. Greenhalgh et al. [31] and Lamb et al. [32] modeled the
transmission of pneumonia among young children to explore
the relationship between sequence types and serotypes. Other
epidemic models to study pneumonia have been considered
(see, e.g., [2, 33–35] and the references therein).

In this study, a deterministic compartmental model to
investigate the effect of treatment and vaccination against S.
pneumoniae transmission dynamics among children less than
five years is formulated. The population studied is divided
into a set of distinct compartments according to the disease
status. The vaccination strategy consists of vaccination of a
proportion of the newborn babies.

This paper is structured as follows. In Section 2, we for-
mulate themodel based on the assumptions and definitions of
variables and parameters. In Section 3, the pneumoniamodel
with treatment intervention is studied for its boundedness
and positivity of solutions and equilibrium points and their
stability. In Section 4, the model is extended to investigate
the effect of treatment and vaccination interventions com-
bined on the spread of pneumonia. In Section 5, sensitivity
analysis of the effective reproduction number R𝑒 is done.
Numerical simulation of themodel is carried out in Section 6.
Finally, in Section 7, we discuss the results and make a
conclusion.

2. Formulation of the Model

The model consists of four compartments categorizing indi-
viduals based on their status with respect to the disease. The
assumptions and definitions of variables and parameters are
given in Sections 2.1 and 2.2, respectively.

2.1. Assumptions

(1) The model assumes a homogeneous mixing of indi-
viduals in the population where all individuals have
equal likelihood of catching the infection if they are
exposed to the disease.

(2) All recovered individuals clear the bacteria from the
body and thus do not participate in transmitting the
disease.

(3) Newborns are given additional dose of vaccine to
elicit booster optimal levels of response.

(4) All treated individuals get vaccinated after completing
the dose.

(5) Vaccinated children do not evolve to the susceptible
population because of booster vaccine doses.

2.2. Variables and Parameters. Themodel variables and para-
meter definitions represented are given as follows:
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𝑆(𝑡): susceptible individuals who are at risk of acquir-
ing pneumonia infection at time 𝑡.
𝐶(𝑡): carrier individuals who carry the pneumonia
bacteria and can transmit the infection at time 𝑡.
𝐼(𝑡): infective individuals capable of transmitting the
infection to individuals at risk at time 𝑡.
𝑅(𝑡): recovered individuals who have been treated of
pneumonia at time 𝑡.
𝑉(𝑡): vaccinated individuals at time 𝑡.
𝜇: per capita natural mortality rate of individuals.
Λ: per capita recruitment rate into susceptible popu-
lation.
𝜃: proportion of susceptible individuals that joins the
carriers.
𝜎: per capita disease induced mortality rate.
𝛽: per capita recovery rate of carriers.
𝛼: force of infection of susceptible individuals.
𝜏: per capita recovery rate of infected individuals.
𝜋: rate at which carriers develop symptoms.
𝜂: rate at which treated individuals become suscepti-
ble.
𝛾: rate at which susceptible individuals get vaccinated.
𝜙: rate at which treated individuals are vaccinated.
𝜔: transmission coefficient for the carrier subgroup.
𝛿: rate of transmission.
𝑝: probability that a contact is efficient enough to
cause infection.
𝜅: rate of contact.

Based on assumptions and definitions of variables and para-
meters mentioned above, the following system of ordinary
equations is obtained.

3. Pneumonia Model under Treatment

Thepopulation dynamics of the pneumoniamodelwith treat-
ment intervention is given by the following system of four
ordinary nonlinear differential equations:

𝑑𝑆𝑑𝑡 = Λ − (𝛼 + 𝜇) 𝑆 + 𝜂𝑅,
𝑑𝐶𝑑𝑡 = 𝛼𝜃𝑆 − (𝜇 + 𝛽 + 𝜋)𝐶,
𝑑𝐼𝑑𝑡 = 𝛼 (1 − 𝜃) 𝑆 + 𝜋𝐶 − (𝜏 + 𝜇 + 𝜎) 𝐼,
𝑑𝑅𝑑𝑡 = 𝛽𝐶 + 𝜏𝐼 − (𝜇 + 𝜂) 𝑅,

(1)

together with

𝑑𝑁𝑑𝑡 = Λ − 𝜇𝑁 − 𝜎𝐼. (2)

The initial conditions are 𝑆(0) = 𝑆0, 𝐶(0) = 𝐶0, 𝐼(0) = 𝐼0,𝑅(0) = 𝑅0, 𝑁(0) = 𝑁0, and the force of infection is

𝛼 = 𝛿 (𝐼 + 𝜔𝐶𝑁 ) , where 𝛿 = 𝜅𝑝, (3)

where 𝛿 is the transmission rate, 𝜅 is the contact rate, 𝑝 is
the probability that a contact is efficient enough to cause
infection, and 𝜔 is the transmission coefficient for the carrier
subgroup.

3.1. Positivity and Boundedness of the Solutions. Thepositivity
of solutions describes the nonnegativity of solutions of system
(1).

Lemma 1. Let the initial population be

{𝑆0, 𝐶0, 𝐼0, 𝑅0 ≥ 0} ∈ Ω. (4)

Then, the solution set {𝑆, 𝐶, 𝐼, 𝑅} of system (1) is positive for all𝑡 > 0.
Proof. From the first equation of system (1),

𝑑𝑆𝑑𝑡 = Λ − (𝛼 + 𝜇) 𝑆 + 𝜂𝑅 ≥ − (𝛼 + 𝜇) 𝑆. (5)

This implies

𝑑𝑆𝑑𝑡 ≥ − (𝛼 + 𝜇) 𝑆. (6)

By separation of variables, (6) is integrated to obtain

ln 𝑆 ≥ − (𝛼 + 𝜇) 𝑡 + 𝐾, (7)

where 𝐾 is a constant of integration. Applying the initial
conditions 𝑆(0) = 𝑆0 to (7) gives

𝐾 = ln 𝑆0. (8)

Hence,

𝑆 ≥ 𝑆0𝑒−(𝛼+𝜇)𝑡 ≥ 0. (9)

Similarly, it can be shown that the other equations of
system (1) are also positive for all 𝑡 > 0. Thus, the solutions of
the model are positive for all values of 𝑡 > 0.

It is important to establish whether system (1) is well-
posed and biologically meaningful. Now, we study the invari-
ant region which describes the region in which the solution
to system (1) makes biological sense. It is assumed that all the
state variables and parameters of the model are nonnegative
for all 𝑡 ≥ 0.

In the absence of pneumonia,

𝑁(𝑡) ≤ Λ𝜇 . (10)
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Inequality (10) is referred to as the threshold population level.
Therefore, the feasible solution set of system (1) enters and
remains in the region;

Ω = (𝑆, 𝐶, 𝐼, 𝑅) ∈ R
4
+: 0 ≤ 𝑆 + 𝐶 + 𝐼 + 𝑅 = 𝑁 ≤ Λ𝜇 , (11)

where R4+ denotes the nonnegative cone of R4 including
its lower dimensional faces. In this case, whenever 𝑁 >Λ/𝜇, then 𝑑𝑁/𝑑𝑡 ≤ 0, implying that the host population
reduces asymptotically to the carrying capacity. However,
whenever 𝑁 ≤ Λ/𝜇, every solution with initial conditions
in R4+ remains in that region for 𝑡 > 0. Thus, the regionΩ is positively invariant, that is, for all values of 𝑡, the
solution remains positive and thus the model is well-posed
and biologically meaningful.

3.2. Equilibria of the Model. We analyze the model for pneu-
monia transmission to determine the basic reproduction
number R0 and other threshold parameters for pneumonia
dynamics.The equilibria of system (1) are obtained by setting
the right-hand side of system (1) equal to zero. The disease-
free equilibrium is given by

𝐸0 = (Λ𝜇 , 0, 0, 0) . (12)

Theorem 2. There is a unique disease-free equilibrium 𝐸0 for
the model represented by system (1).

Proof. This theorem is proved by substituting 𝐸0 into system
(1). The results show that all the derivatives are equal to zero,
hence the disease-free equilibrium.

3.3. Basic Reproduction Number. To establish the linear sta-
bility of 𝐸0, we use the next generation operator approach
on system (1) to compute the basic reproduction numberR0.
This is determined using the approach by van den Driessche
and Watmough [38]. For the notation of the matrices 𝐹 and𝑉, we have

𝐹 = [ 𝛿𝜔𝜃 𝛿𝜃
(1 − 𝜃) 𝜔𝛿 (1 − 𝜃) 𝛿] ,

𝑉 = [𝜇 + 𝛽 + 𝜋 0
−𝜋 𝜏 + 𝜇 + 𝜎] ,

(13)

where 𝑘1 = 𝜇 + 𝛽 + 𝜋 and 𝑘2 = 𝜏 + 𝜇 + 𝜎.This gives

𝑉 = [𝑘1 0
−𝜋 𝑘2] , (14)

and, thus,

𝑉−1 = 1𝑘1𝑘2 [
𝑘2 0
𝜋 𝑘1] ,

𝐹𝑉−1 = [[[[
[

𝛿𝜃 (𝜔𝑘2 + 𝜋)
𝑘1𝑘2

𝛿𝑘1𝜃𝑘1𝑘2𝛿 (1 − 𝜃) (𝜔𝑘2 + 𝜋)
𝑘1𝑘2

𝛿𝑘1 (1 − 𝜃)
𝑘1𝑘2

]]]]
]
.

(15)

Thus, the eigenvalues for the matrix 𝐹𝑉−1 are
𝜉 = 0,
𝜉 = 𝛿𝑘1𝑘2 (1 − 𝜃) 𝑘1 + 𝜃 (𝜔𝑘2 + 𝜋) . (16)

The spectral radius is given by 𝜉(𝐹𝑉−1) = (𝛿/𝑘1𝑘2)((1−𝜃)𝑘1+𝜃(𝜔𝑘2 + 𝜋)), which gives the basic reproduction number

R0 = 𝛿𝑘1𝑘2 (𝑘1 (1 − 𝜃) + 𝜃 (𝜔𝑘2 + 𝜋)) . (17)

The endemic equilibrium 𝐸𝑒 is defined as a steady state solu-
tion for system (1). This occurs when there is a persistence of
the disease. Hence, the endemic equilibrium 𝐸𝑒 = (𝑆, 𝐶, 𝐼, 𝑅)
is determined by setting the right-hand side of system (1)
equal to zero as follows:

Λ − (𝛼 + 𝜇) S + 𝜂𝑅 = 0,
𝛼𝜃𝑆 − 𝑘1𝐶 = 0,

𝛼 (1 − 𝜃) 𝑆 + 𝜋𝐶 − 𝑘2𝐼 = 0,
𝛽𝐶 + 𝜏𝐼 − (𝜇 + 𝜂) 𝑅 = 0,

(18)

together with

Λ − 𝜇𝑁 − 𝜎𝐼 = 0, (19)

𝛼 = 𝛿 (𝐼 + 𝜔𝐶𝑁 ) . (20)

From the second equation of system (18)

𝛼 = 𝑘1𝐶𝜃𝑆 . (21)

Plugging 𝛼 in (21) into the first and third equations of system
(18) gives

Λ − 𝑘1𝐶𝜃 − 𝜇𝑆 + 𝜂𝑅 = 0, (22)

𝑘1 (1 − 𝜃)
𝜃 𝐶 + 𝜋𝐶 − 𝑘2𝐼 = 0. (23)

Substituting for 𝛼 in (20) into the second equation of system
(18) gives

𝛿𝜃𝐼𝑆 + 𝛿𝜃𝜔𝑆𝐶 − 𝑘1𝐶𝑁 = 0. (24)

From the fourth equation of system (18), we have

𝑅 = 𝛽𝐶
𝜇 + 𝜂 + 𝜏𝐼𝜇 + 𝜂 . (25)

Substituting for 𝑅 in (22) gives

Λ + ( 𝜂𝛽
𝜇 + 𝜂 − 𝑘1𝜃 )𝐶 + 𝜂𝜏𝐼

𝜇 + 𝜂 − 𝜇𝑆 = 0. (26)
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From (23), we obtain

𝐶 = 𝜃𝑘2𝐼𝑘1 (1 − 𝜃) + 𝜋𝜃 . (27)

Substituting for 𝐶 in (24) gives

𝛿𝜃𝐼𝑆 + 𝛿𝜃𝜔𝑆 𝜃𝑘2𝐼𝑘1 (1 − 𝜃) + 𝜋𝜃 − 𝑘1 𝜃𝑘2𝐼𝑘1 (1 − 𝜃) + 𝜋𝜃𝑁
= 0.

(28)

Solving (28) yields

𝐼 = 0,

or 𝑆 = 𝑘1𝑘2𝑁𝛿 (𝑘1 (1 − 𝜃) + 𝜃 (𝜔𝑘2 + 𝜋)) .
(29)

But

R0 = 𝛿𝑘1𝑘2 (𝑘1 (1 − 𝜃) + 𝜃 (𝜔𝑘2 + 𝜋)) . (30)

Therefore,

𝑆 = 𝑁
R0

. (31)

Substituting for 𝐶 and 𝑆 in (26) gives

Λ + (𝜂𝜃𝛽 − 𝑘1 (𝜇 + 𝜂)
𝜃 (𝜇 + 𝜂) )( 𝜃𝑘2𝐼𝑘1 (1 − 𝜃) + 𝜋𝜃) + 𝜂𝜏𝐼

𝜇 + 𝜂 − (Λ − 𝜎𝐼)
R0

= 0 ⇒

𝐼 = Λ (𝜇 + 𝜂) (𝑘1 (1 − 𝜃) + 𝜋𝜃) (R0 − 1)
R0 [𝑘1𝑘2 (𝜇 + 𝜂) − 𝜂𝜃𝛽 − 𝜂𝜏 (𝑘1 (1 − 𝜃) + 𝜋𝜃)] − 𝜎 (𝜇 + 𝜂) (𝑘1 (1 − 𝜃) + 𝜋𝜃) .

(32)

Finally, we have

𝐶 = 𝜃𝑘2Λ (𝜇 + 𝜂) (R0 − 1)
R0 [𝑘1𝑘2 (𝜇 + 𝜂) − 𝜂𝜃𝛽 − 𝜂𝜏 (𝑘1 (1 − 𝜃) + 𝜋𝜃)] − 𝜎 (𝜇 + 𝜂) (𝑘1 (1 − 𝜃) + 𝜋𝜃) ,

𝑅 = (𝛽𝜃𝑘2 + 𝜏 (𝑘1 (1 − 𝜃) + 𝜋𝜃)) Λ (R0 − 1)
R0 [𝑘1𝑘2 (𝜇 + 𝜂) − 𝜂𝜃𝛽 − 𝜂𝜏 (𝑘1 (1 − 𝜃) + 𝜋𝜃)] − 𝜎 (𝜇 + 𝜂) (𝑘1 (1 − 𝜃) + 𝜋𝜃) .

(33)

Therefore, we have the endemic equilibrium 𝐸𝑒 = (𝑆, 𝐼, 𝐶, 𝑅),
where

𝑆 = 𝑁
R0

,
𝐶 = 𝜃𝑘2Λ (𝜇 + 𝜂) (R0 − 1)

R0 [𝑘1𝑘2 (𝜇 + 𝜂) − 𝜂𝜃𝛽 − 𝜂𝜏 (𝑘1 (1 − 𝜃) + 𝜋𝜃)] − 𝜎 (𝜇 + 𝜂) (𝑘1 (1 − 𝜃) + 𝜋𝜃) ,

𝐼 = Λ (𝜇 + 𝜂) (𝑘1 (1 − 𝜃) + 𝜋𝜃) (R0 − 1)
R0 [𝑘1𝑘2 (𝜇 + 𝜂) − 𝜂𝜃𝛽 − 𝜂𝜏 (𝑘1 (1 − 𝜃) + 𝜋𝜃)] − 𝜎 (𝜇 + 𝜂) (𝑘1 (1 − 𝜃) + 𝜋𝜃) ,

𝑅 = (𝛽𝜃𝑘2 + 𝜏 (𝑘1 (1 − 𝜃) + 𝜋𝜃)) Λ (R0 − 1)
R0 [𝑘1𝑘2 (𝜇 + 𝜂) − 𝜂𝜃𝛽 − 𝜂𝜏 (𝑘1 (1 − 𝜃) + 𝜋𝜃)] − 𝜎 (𝜇 + 𝜂) (𝑘1 (1 − 𝜃) + 𝜋𝜃) .

(34)

Lemma 3. For R0 > 1, a unique endemic equilibrium 𝐸𝑒
exists and there is no endemic equilibrium otherwise.

For the disease to be endemic, 𝑑𝐼/𝑑𝑡 > 0 and 𝑑𝐶/𝑑𝑡 > 0;
that is,

𝜃𝛿 (𝐼 + 𝜔𝐶) 𝑆𝑁 − 𝑘1𝐶 > 0, (35)

(1 − 𝜃) 𝛿 (𝐼 + 𝜔𝐶) 𝑆𝑁 − 𝑘2𝐼 + 𝜋𝐶 > 0. (36)
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From inequality (35), we have

𝑘1𝐶 < 𝜃𝛿 (𝐼 + 𝜔𝐶) 𝑆𝑁. (37)

Using the fact 𝑆/𝑁 < 1, we obtain
𝐶 < 𝜃𝛿𝐼𝑘1 − 𝛿𝜃𝜔. (38)

From inequality (36), we have

𝐼 < (1 − 𝜃) 𝛿𝐼 + (1 − 𝜃) 𝛿𝜔𝐶 + 𝜋𝐶𝑘2 , (39)

and, substituting for 𝐶 in inequality (38), inequality (39)
yields

𝐼 < (1 − 𝜃) 𝛿𝐼 + (1 − 𝜃) 𝛿𝜔 (𝛿𝜃𝐼/ (𝑘1 − 𝛿𝜃𝜔)) + 𝜋 (𝛿𝜃𝐼/ (𝑘1 − 𝛿𝜃𝜔))
𝑘2 ,

𝐼 < (1 − 𝜃) 𝛿 (𝑘1 − 𝛿𝜃𝜔) 𝐼 + (1 − 𝜃) 𝛿2𝜃𝜔𝐼 + 𝜋𝛿𝜃𝐼
𝑘2 (𝑘1 − 𝛿𝜃𝜔) ,

𝑘1𝑘2 − 𝑘2𝛿𝜃𝜔 < 𝛿𝑘1 (1 − 𝜃) + 𝜋𝛿𝜃,
1 < 𝛿𝑘1𝑘2 ((1 − 𝜃) 𝑘1 + 𝜃 (𝜔𝑘2 + 𝜋)) = R0.

(40)

Thus, a unique endemic equilibrium exists whenR0 > 1.
3.4. Local and Global Stability of the Disease-Free Equilibrium

Lemma 4. The disease-free equilibrium 𝐸0 of system (1) is
locally asymptotically stable whenever R0 < 1 and unstable
wheneverR0 > 1.

The threshold quantityR0 is a measure of the number of
secondary infections caused by a single individual in his /her
entire lifetime as an infective [39]. It is an important para-
meter that plays a big role in the control of the disease.
The reduction of the disease from the population targets the
parameters that will bring its value to less than unity.

When the reproduction number is less than unity, then
the disease-free equilibrium is locally asymptotically stable,
and thus there is a possibility that the disease will be wiped
out of the population.

The Jacobian matrix for system (1) is given by

𝐽

=
[[[[[
[

− (𝛼 + 𝜇) 0 0 𝜂
𝛼𝜃 − (𝜇 + 𝛽 + 𝜋) 0 0

𝛼 (1 − 𝜃) 𝜋 − (𝜏 + 𝜇 + 𝜎) 0
0 𝛽 𝜏 − (𝜇 + 𝜂)

]]]]]
]
. (41)

Evaluating the Jacobian matrix (41) at the disease-free equi-
librium 𝐸0 gives

𝐽 (𝐸0) =
[[[[[
[

−𝜇 0 0 𝜂
0 −𝑘1 0 0
0 𝜋 −𝑘2 0
0 𝛽 𝜏 − (𝜇 + 𝜂)

]]]]]
]
. (42)

The disease-free equilibrium𝐸0 is asymptotically stable if and
only if the trace(𝐽𝐸0) < 0 and the det(𝐽𝐸0) > 0.

Thus, from the Jacobian matrix (42),

trace (𝐽𝐸0) = −𝜇 − ℎ1 − ℎ2 − 𝜇 − 𝜂
= − (2𝜇 + ℎ1 + ℎ2 + 𝜂) < 0,

det (𝐽𝐸0) = −𝜇 (−𝑘1𝑘2 (𝜇 + 𝜂)) + 𝜂 × 0
= 𝜇𝑘1𝑘2 (𝜇 + 𝜂) > 0.

(43)

Since the parameters 𝜇, 𝜂, 𝑘1, and 𝑘2 are all positive, then−(2𝜇 + 𝑘1 + 𝑘2 + 𝜂) < 0.Therefore trace(𝐽𝐸0) < 0.
On the other hand, R0 can never be negative and the

numerator ((1−𝜃)𝑘1+𝜃(𝜔𝑘1+𝜋)) is positive; that is, 𝑘1𝑘2 > 0.
This implies that det(𝐽𝐸0) > 0 since 𝜇(𝜇+𝜂) > 0 and 𝑘1𝑘2 > 0.
Thus,

R0 = 𝛿𝑘1𝑘2 ((1 − 𝜃) 𝑘1 + 𝜃 (𝜔𝑘2 + 𝜋)) < 1. (44)

The conditions trace(𝐽𝐸0) < 0 and det(𝐽𝐸0) > 0 above imply
that 𝐸0 is locally asymptotically stable wheneverR0 < 1
Theorem 5. The disease-free equilibrium is globally asymptot-
ically stable in Ω ifR0 ≤ 1 and unstable ifR0 > 1.
Proof. Consider the Lyapunov function defined by 𝐿 =(1/𝑘1)𝐶+ (1/𝑘2)𝐼. Its derivative along the solutions to system
(1) is

𝑑𝐿𝑑𝑡 = 1𝑘1
𝑑𝐶𝑑𝑡 + 1𝑘2

𝑑𝐼𝑑𝑡 = 1𝑘1 (𝛼𝜃𝑆 − 𝑘1𝐶)
+ 1𝑘2 (𝛼 (1 − 𝜃) 𝑆 + 𝜋𝐶 − 𝑘2𝐼) = 1𝑘1𝑘2 (𝑘2𝛼𝜃𝑆
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− 𝑘1𝑘2𝐶) + 1𝑘1𝑘2 (𝑘1𝛼 (1 − 𝜃) 𝑆 + 𝑘1𝜋𝐶 − 𝑘1𝑘2𝐼)
= 1𝑘1𝑘2 (𝑘2𝛼𝜃𝑆 − 𝑘1𝑘2𝐶 + 𝑘1𝛼 (1 − 𝜃) 𝑆 + 𝑘2𝜋𝐶
− 𝑘1𝑘2𝐼) ,

(45)

but

𝛼 = 𝛿 (𝐼 + 𝜔𝐶𝑁 ) ⇒
𝑑𝐿𝑑𝑡 ≤ 𝛿𝑘1𝑘2 ((1 − 𝜃) 𝑘1 + 𝜃 (𝜔𝑘2 + 𝜋) − 1) 𝑆𝑁 (𝐶 + 𝐼)

≤ (R0 − 1) (𝐶 + 𝐼) 𝑆𝑁 ≤ 0 if R0 ≤ 1.

(46)

Thus,R0 < 1 is necessary and sufficient for disease elim-
ination. All the model parameters are positive, so that𝑑𝐿/𝑑𝑡 ≤ 0 if R0 ≤ 1 with 𝑑𝐿/𝑑𝑡 = 0 if and only if𝐼 = 𝐶 = 0. Hence, 𝐿 is a Lyapunov function on Ω and
the largest compact invariant set in {(𝑆, 𝐶, 𝐼, 𝑅) ∈ Ω :𝑑𝐿/𝑑𝑡 ≤ 0} is the singleton {𝐸0}. Therefore, by LaSalle’s
invariance principle [40], every solution to system (1), with
initial conditions in Ω, approaches 𝐸0 as 𝑡 → ∞ if R0 <1. Hence the disease-free equilibrium 𝐸0 of the pneumonia
model with treatment intervention is globally asymptotically
stable.

3.5. Local and Global Stability Analysis of the Endemic Equilib-
rium. We study the local stability of the endemic equilibrium
by applying the Routh-Hurwitz criterion.

Theorem 6. IfR0 > 1, the endemic equilibrium 𝐸𝑒 of system
(1) is locally asymptotically stable in Ω.
Proof. We evaluate the Jacobian matrix (41) at the endemic
equilibrium to obtain

𝐽 (𝐸𝑒) =
[[[[[
[

−𝛼 − 𝜇 0 0 𝜂
𝛼𝜃 −𝑘1 0 0

𝛼 (1 − 𝜃) 𝜋 −𝑘2 0
0 𝛽 𝜏 −𝜇 − 𝜂

]]]]]
]
, (47)

where 𝛼 is defined as the force infection at the endemic
equilibrium.We obtain a characteristic equation𝑃(𝜉) = |(𝜉𝐼−𝐽(𝐸𝑒)|, where 𝐼 is a 4 × 4 unit matrix

𝑃 (𝜉)

= det
[[[[[
[

𝜉 + 𝛼 + 𝜇 0 0 𝜂
−𝛼𝜃 𝜉 + 𝑘1 0 0

−𝛼 (1 − 𝜃) −𝜋 𝜉 + 𝑘2 0
0 −𝛽 −𝜏 𝜉 + (𝜇 + 𝜂)

]]]]]
]
. (48)

Thus, the characteristic equation becomes

𝑃 (𝜉) = 𝜉4 + 𝑎1𝜉3 + 𝑎2𝜉2 + 𝑎3𝜉 + 𝑎4, (49)

where
𝑎1 = 2𝜇 + 𝜂 + 𝑘1 + 𝑘2 + 𝛼,
𝑎2 = (𝜂 + 𝜇) (𝑘1 + 𝑘2 + 𝛼 + 𝜇) + 𝑘1𝑘2

+ (𝛼 + 𝜇) (𝑘1 + 𝑘2) ,
𝑎3 = 𝑘1𝑘2 (𝜂 + 𝜇) + (𝑘1 + 𝑘2) (𝛼 + 𝜇) (𝜂 + 𝜇)

+ 𝑘1𝑘2 (𝛼 + 𝜇) + 𝜂𝜏𝛼 (1 − 𝜃) + 𝜂𝛽𝛼𝜃,
𝑎4 = 𝑘1𝑘2 (𝛼 + 𝜇) (𝜂 + 𝜇) + 𝜂𝛼𝜃𝜋𝜏 + 𝜂𝑘1𝛼𝜏 (1 − 𝜃)

+ 𝜂𝛽𝛼𝜃𝑘1.

(50)

Thus, from Routh-Hurwitz criterion [41] we have the matrix

[[[[[[[[[[[
[

1 𝑎2 𝑎4 𝜉4
𝑎1 𝑎3 0 𝜉3

𝑎2 − 𝑎3𝑎1 𝑎4 0 𝜉2
𝑎3 − 𝑎1𝑎4𝑎2 − 𝑎3/𝑎1 0 0 𝜉

𝑎1 0 0 1

]]]]]]]]]]]
]

. (51)

According to the Routh-Hurwitz criterion, for R0 > 1, the
endemic equilibrium 𝐸𝑒 is locally asymptotically stable if

𝑎1 > 0,
(𝑎2 − 𝑎3𝑎1) > 0,

(𝑎3 − 𝑎1𝑎4𝑎2 − 𝑎3/𝑎1) > 0,
𝑎4 > 0.

(52)

The global stability of the endemic equilibrium 𝐸𝑒 is
analyzed using the following constructed Lyapunov func-
tion.

Theorem 7. If R0 ≥ 1, the endemic equilibrium 𝐸𝑒 of system
(1) is globally asymptotically stable.

Proof. Let the Lyapunov function be

𝐿 (𝑆𝑒, 𝐶𝑒, 𝐼𝑒, 𝑅𝑒) = (𝑆 − 𝑆𝑒 − 𝑆𝑒 log(𝑆𝑒𝑆 ))
+ (𝐶 − 𝐶𝑒 − 𝐶𝑒 log (𝐶𝑒𝐶))
+ (𝐼 − 𝐼𝑒 − 𝐼𝑒 log(𝐼𝑒𝐼 ))
+ (𝑅 − 𝑅𝑒 − 𝑅𝑒 log(𝑅𝑒𝑅 )) ,

(53)
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𝑑𝐿𝑑𝑡 = (𝑆 − 𝑆𝑒𝑆 ) 𝑑𝑆𝑑𝑡 + (𝐶 − 𝐶𝑒𝐶 ) 𝑑𝐶𝑑𝑡 + (𝐼 − 𝐼𝑒𝐼 ) 𝑑𝐼𝑑𝑡
+ (𝑅 − 𝑅𝑒𝑅 ) 𝑑𝑅𝑑𝑡 = (𝑆 − 𝑆𝑒𝑆 ) (Λ − 𝛼𝑆 − 𝜇𝑆 + 𝜂𝑅)
+ (𝐶 − 𝐶𝑒𝐶 ) (𝛼𝜃𝑆 − 𝑘1𝐶) + (𝐼 − 𝐼𝑒𝐼 )
⋅ (𝛼 (1 − 𝜃) 𝑆 + 𝜋𝐶 − 𝑘2𝐼) + (𝑅 − 𝑅𝑒𝑅 )
⋅ (𝛽𝐶 + 𝜏𝐼 − (𝜇 + 𝜂) 𝑅) = (𝑆 − 𝑆𝑒𝑆 )
⋅ (Λ − 𝛼 (𝑆 − 𝑆𝑒) − 𝜇 (𝑆 − 𝑆𝑒) + 𝜂 (𝑅 − 𝑅𝑒))
+ (𝐶 − 𝐶𝑒𝐶 ) (𝛼𝜃 (𝑆 − 𝑆𝑒) − 𝑘1 (𝐶 − 𝐶𝑒))
+ (𝐼 − 𝐼𝑒𝐼 )
⋅ (𝛼 (1 − 𝜃) (𝑆 − 𝑆𝑒) + 𝜋 (𝐶 − 𝐶𝑒) − 𝑘2 (𝐼 − 𝐼𝑒))
+ (𝑅 − 𝑅𝑒𝑅 )
⋅ (𝛽 (𝐶 − 𝐶𝑒) + 𝜏 (𝐼 − 𝐼𝑒) − (𝜇 + 𝜂) (𝑅 − 𝑅𝑒))
= (𝑆 − 𝑆𝑒)2𝑆 (−𝛼 − 𝜇) − 𝑘1 (𝐶 − 𝐶𝑒)2𝐶 − 𝑘2
⋅ (𝐼 − 𝐼𝑒)2𝐼 − (𝜇 + 𝜂) (𝑅 − 𝑅𝑒)2𝑅 + Λ − Λ𝑆𝑒𝑆 + 𝜂𝑅
− 𝜂𝑅𝑆𝑒𝑆 − 𝜂𝑅𝑒 + 𝑅𝑒𝑆𝑒𝑆 + 𝛼𝜃𝑆 − 𝛼𝜃𝐶𝑒𝑆𝐶 − 𝛼𝜃𝑆𝑒
+ 𝛼𝜃𝐶𝑒𝑆𝑒𝐶 + 𝛼 (1 − 𝜃) 𝑆 − 𝛼 (1 − 𝜃) 𝑆𝑒
− 𝛼 (1 − 𝜃) 𝐼e𝑆𝐼 + 𝛼 (1 − 𝜃) 𝐼𝑒𝑆𝑒𝐼 + 𝜋𝐶 − 𝜋𝐶𝑒
− 𝜋𝐼𝑒𝐶𝐼 + 𝜋𝐼𝑒𝐶𝑒𝐼 + 𝛽𝐶 − 𝛽𝐶𝑒 − 𝛽𝑅𝑒𝐶𝑅 + 𝛽𝑅𝑒𝐶𝑒𝑅
+ 𝜏𝐼 − 𝜏𝐼𝑒 − 𝜏𝑅𝑒𝐼𝑅 + 𝜏𝑅𝑒𝐼𝑒𝑅 ;

(54)

thus collecting positive terms together and negative terms
together from the above

𝑑𝐿𝑑𝑡 = 𝑃 − 𝑄, (55)

where

𝑃 = Λ + 𝜂𝑅 + 𝜂𝑅𝑒𝑆𝑒𝑆 + 𝛼𝜃𝑆 + 𝛼𝜃𝐶𝑒𝑆𝑒𝐶 + 𝛼 (1 − 𝜃) 𝑆
+ 𝛼 (1 − 𝜃) 𝐼𝑒𝑆𝑒𝐼 𝜋𝐶 + 𝜋𝐼 − 𝑒𝐶𝑒𝐼 + 𝛽𝐶
+ 𝛽𝑅𝑒𝐶𝑒𝑅 + 𝜏𝐼 + 𝜏𝑅𝑒𝐼𝑒𝑅 ,

𝑄 = (𝛼 + 𝜇) (𝑆 − 𝑆𝑒)2𝑆 − 𝑘1 (𝐶 − 𝐶𝑒)2𝐶 − 𝑘2 (𝐼 − 𝐼𝑒)2𝐼
− (𝜇 + 𝜂) (𝑅 − 𝑅𝑒)2𝑅 − 𝜂𝑅𝑒 − Λ𝑆𝑒𝑆 − 𝜂𝑅𝑆𝑒𝑆
− 𝛼𝜃𝐶𝑒𝑆𝐶 − 𝛼𝜃𝑆𝑒 − 𝛼 (1 − 𝜃) 𝑆𝑒
− 𝛼 (1 − 𝜃) 𝐼𝑒𝑆𝐼 − 𝜋𝐶𝑒 − 𝜋𝐼𝑒𝐶𝐼 − 𝛽𝐶𝑒
− 𝛽𝑅𝑒𝐶𝑅 − 𝜏𝐼𝑒 − 𝜏𝑅𝑒𝐼𝑅 .

(56)

Thus if 𝑃 < 𝑄, then we obtain that 𝑑𝐿/𝑑𝑡 ≤ 0, noting
that 𝑑𝐿/𝑑𝑡 = 0 if and only if 𝑆 = 𝑆𝑒, 𝐶 = 𝐶𝑒, 𝐼 = 𝐼𝑒,𝑅 = 𝑅𝑒. Therefore, the largest compact invariant set in{(𝑆𝑒, 𝐶𝑒, 𝐼𝑒, 𝑅𝑒) ∈ Ω : 𝑑𝐿/𝑑𝑡 = 0} is the singleton {𝐸𝑒}, where𝐸𝑒 is the endemic equilibrium of system (1).

Thus, by LaSalle’s invariance principle [40], it implies that𝐸𝑒 is globally asymptotically stable in Ω if 𝑃 < 𝑄.
4. Pneumonia Model under Treatment and
Vaccination Interventions

In the this section, the model formulated in Section 3 is
extended to investigate the impact of treatment and vacci-
nation interventions on the transmission dynamics of pneu-
monia. The dynamics of the modified pneumonia model is
described by the following system of five ordinary nonlinear
differential equations:

𝑑𝑆𝑑𝑡 = Λ − (𝛼 + 𝜇 + 𝛾) 𝑆,
𝑑𝐶𝑑𝑡 = 𝛼𝜃𝑆 − (𝜇 + 𝛽 + 𝜋)𝐶,
𝑑𝐼𝑑𝑡 = 𝛼 (1 − 𝜃) 𝑆 + 𝜋𝐶 − (𝜏 + 𝜇 + 𝜎) 𝐼,
𝑑𝑅𝑑𝑡 = 𝛽𝐶 + 𝜏𝐼 − (𝜇 + 𝜙) 𝑅,
𝑑𝑉𝑑𝑡 = 𝛾𝑆 − 𝜇𝑉 + 𝜙𝑅,

(57)

with initial conditions 𝑆(0) = 𝑆0, 𝐶(0) = 𝐶0, 𝐼(0) = 𝐼0,𝑅(0) = 𝑅0, 𝑉(0) = 𝑉0, 𝑁(0) = 𝑁0. The total population
size is given by𝑁(𝑡) = 𝑆(𝑡) + 𝐶(𝑡) + 𝐶(𝑡) + 𝑅(𝑡) + 𝑉(𝑡) and is
changing at the rate

𝑑𝑁𝑑𝑡 = Λ − 𝜇𝑁 − 𝜎𝐼. (58)

The susceptible individuals become infected at rate 𝛼 which
is the force of infection; that is, the number of infected
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individuals produced by adequate contact and is given
by

𝛼 = 𝛿 (𝐼 + 𝜔𝐶𝑁 ) , (59)

where 𝛿 = 𝜅𝑝, 𝛿 is the transmission rate, 𝑘 is the rate of
contact, and 𝑝 is the probability that a contact is efficient
enough to cause infection.

4.1. Analysis of the Model. The equilibria of system (57) is
obtained by setting the right-hand side of the equations to be
equal to zero. The disease-free equilibrium 𝐸0 is given by

( Λ
(𝜇 + 𝛾) , 0, 0, 0,

Λ𝛾
𝜇 (𝜇 + 𝛾)) . (60)

4.2. Effective Reproduction Number. To establish the stability
of 𝐸0, we use the next-generation operator approach on
system (57) to compute the effective reproduction num-
ber R𝑒. Using the notation of the matrices 𝐹 and 𝑉, we
have

𝐹 = [ 𝛿𝜔𝜃𝑆 𝛿𝜃𝑆
(1 − 𝜃) 𝜔𝛿𝑆 (1 − 𝜃) 𝛿𝑆] ,

𝑉 = [𝜇 + 𝛽 + 𝜋 0
−𝜋 𝜏 + 𝜇 + 𝜎] .

(61)

Evaluating 𝐹 at the disease-free equilibrium we to obtain

𝐹 = [[[[
[

𝛿𝜔𝜃 Λ
(𝜇 + 𝛾) 𝛿𝜃 Λ

(𝜇 + 𝛾)
(1 − 𝜃) 𝜔𝛿 Λ

(𝜇 + 𝛾) (1 − 𝜃) 𝛿 Λ
(𝜇 + 𝛾)

]]]]
]
. (62)

Let 𝑘1 = 𝜇 + 𝛽 + 𝜋 and 𝑘2 = 𝜏 + 𝜇 + 𝜎; then
𝑉 = [𝑘1 0

−𝜋 𝑘2] , (63)

and, thus,

𝑉−1 = 1𝑘1𝑘2 [
𝑘2 0
𝜋 𝑘1] . (64)

Now we have

𝐹𝑉−1 = 1𝑘1𝑘2

⋅ [[[[
[

𝛿𝜔𝜃 Λ
(𝜇 + 𝛾) 𝛿𝜃 Λ

(𝜇 + 𝛾)
(1 − 𝜃) 𝜔𝛿 Λ

(𝜇 + 𝛾) (1 − 𝜃) 𝛿 Λ
(𝜇 + 𝛾)

]]]]
]
[𝑘2 0
𝜋 𝑘1]

=
[[[[[
[

Λ𝛿𝜃 (𝜔𝑘2 + 𝜋)
𝑘1𝑘2 (𝜇 + 𝛾)

𝜆𝜓𝑘1𝜃𝑘1𝑘2 (𝜇 + 𝛾)
Λ𝜓 (1 − 𝜃) (𝜔𝑘2 + 𝜋)

𝑘1𝑘2 (𝜇 + 𝛾)
Λ𝛿𝑘1 (1 − 𝜃)
𝑘1𝑘2 (𝜇 + 𝛾)

]]]]]
]
.

(65)

The eigenvalues for the matrix 𝐹𝑉−1 are given by

𝜉 = 0,
𝜉 = Λ𝛿

𝑘1𝑘2 (𝜇 + 𝛾) ((1 − 𝜃) 𝑘1 + 𝜃 (𝜔𝑘2 + 𝜋)) . (66)

The spectral radius is given by 𝜉(𝐹𝑉−1) = (Λ𝛿/𝑘1𝑘2(𝜇 +𝛾))((1 − 𝜃)𝑘1 + 𝜃(𝜔𝑘2 + 𝜋)), which gives the effective
reproduction number as

R𝑒 = Λ𝛿
𝑘1𝑘2 (𝜇 + 𝛾) ((1 − 𝜃) 𝑘1 + 𝜃 (𝜔𝑘2 + 𝜋)) , (67)

but

R0 = 𝛿𝑘1𝑘2 ((1 − 𝜃) 𝑘1 + 𝜃 (𝜔𝑘2 + 𝜋)) . (68)

Therefore,

R𝑒 = ΛR0(𝜇 + 𝛾) . (69)

R𝑒 is referred to as the effective reproduction number rather
than the basic reproduction number because vaccination
and treatment have been included in the model [32]. It is
defined as the expected number of secondary cases caused by
a typical infected individual entering an entirely susceptible
population at equilibrium.

4.3. Local Stability of the Disease-Free Equilibrium. The Jaco-
bian matrix for the system is given by

𝐽 =
[[[[[[[[[
[

− (𝛼 + 𝜇 + 𝛾) 0 0 0 0
𝛼𝜃 − (𝜇 + 𝛽 + 𝜋) 0 0 0

𝛼 (1 − 𝜃) 𝜋 − (𝜏 + 𝜇 + 𝜎) 0 0
0 𝛽 𝜏 − (𝜇 + 𝜙) 0
𝛾 0 0 𝜙 −𝜇

]]]]]]]]]
]

. (70)
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The disease-free equilibrium point 𝐸0 is discussed by exam-
ining the Jacobian matrix (70) at the steady point 𝐸0.Now, at
the disease-free equilibrium

( Λ
(𝜇 + 𝛾) , 0, 0, 0,

Λ𝛾
𝜇 (𝜇 + 𝛾)) , (71)

the Jacobian matrix is given by

𝐽 =
[[[[[[[[
[

− (𝜇 + 𝛾) 0 0 0 0
0 −𝑘1 0 0 0
0 𝜋 −𝑘2 0 0
0 𝛽 𝜏 − (𝜇 + 𝜙) 0
𝛾 0 0 𝜙 −𝜇

]]]]]]]]
]

. (72)

For stability of the disease-free equilibrium, it is required that
the trace(𝐽𝐸0) < 0 and the det(𝐽𝐸0) > 0. Thus, from the
Jacobian matrix (72), it is clearly seen that

trace (𝐽𝐸0) = − [(𝜇 + 𝛾) + 𝑘1 + 𝑘2 + (𝜇 + 𝜙) + 𝜇]
= − (𝛾 + 𝛽 + 𝜋 + 𝜏 + 𝛿 + 𝜙 + 5𝜇) < 0. (73)

The determinant of the Jacobian matrix is also given by

det (𝐽𝐸0)

= det

[[[[[[[[
[

− (𝜇 + 𝛾) 0 0 0 0
0 −𝑘1 0 0 0
0 𝜋 −𝑘2 0 0
0 𝛽 𝜏 − (𝜇 + 𝜙) 0
𝛾 0 0 𝜙 −𝜇

]]]]]]]]
]

= − (𝜇 + 𝛾) det
[[[[[
[

−𝑘1 0 0 0
𝜋 −𝑘2 0 0
𝛽 𝜏 (𝜇 + 𝜙) 0
0 0 𝜙 −𝜇

]]]]]
]

= 𝑘1𝑘2𝜇 (𝜇 + 𝜙) (𝜇 + 𝛾) > 0.

(74)

Therefore, the disease-free equilibrium of the pneumonia
model under treatment and vaccination interventions is

locally asymptotically stable. This is established by the fact
that the trace(𝐽𝐸0) < 0 and the det(𝐽𝐸0) > 0.
Proposition 8. R𝑒 < R0 for any given parameters.

Proof.

R𝑒 = ΛR0(𝜇 + 𝛾) (75)

implies that

R𝑒 = ΛR0(𝜇 + 𝛾) < R0. (76)

ThusR𝑒 < R0.
The above result leads us to the following theorem.

Theorem9. The disease-free equilibrium𝐸0 of the pneumonia
model under treatment and vaccination interventions is locally
asymptotically stable ifR𝑒 < 1 and unstable ifR𝑒 ≥ 1.

The proof of the theorem follows from the Jacobian
matrix (72).

The endemic equilibrium 𝐸𝑒 is defined as a steady
state solution for system (57). This occurs when there is a
persistence of the disease. Hence, 𝐸𝑒 = (𝑆, 𝐶, 𝐼, 𝑅, 𝑉) can be
determined as below. Consider system (57) with right-hand
side equal to zero to obtain

Λ − (𝛼 + 𝜇 + 𝛾) 𝑆 = 0,
𝛼𝜃𝑆 − (𝜇 + 𝛽 + 𝜋)𝐶 = 0,

𝛼 (1 − 𝜃) 𝑆 + 𝜋𝐶 − (𝜏 + 𝜇 + 𝜎) 𝐼 = 0,
𝛽𝐶 + 𝜏𝐼 − (𝜇 + 𝜙) 𝑅 = 0,

𝛾𝑆 − 𝜇𝑉 + 𝜙𝑅 = 0,

(77)

together with

Λ − 𝜇𝑁 − 𝜎𝐼 = 0,
𝛼 = 𝛿 (𝐼 + 𝜔𝐶𝑁 ) . (78)

Solving system (77) together with (78) gives the endemic
equilibrium 𝐸𝑒 = (𝑆, 𝐼, 𝐶, 𝑅), where

𝑆 = Λ𝜎𝑘1𝑁[(𝑘1 − 𝜎𝜃𝜔) (Λ − (𝜇 + 𝜎)𝑁) + 𝜔𝜃 (Λ − (𝜇 + 𝜎)𝑁)] + (𝜇 + 𝜎)𝑁𝜎𝑘1 ,

𝐶 = 𝜃 (Λ − (𝜇 + 𝛾)𝑁)
𝑘1 ,

𝐼 = (𝑘1 − 𝜎𝜃𝜔) (Λ − (𝜇 + 𝛾)𝑁)
𝜎𝑘1 ,

𝑅 = 𝛽𝜃𝜎 (Λ − (𝜇 + 𝛾)𝑁) + 𝜏 (𝑘1 − 𝜎𝜃𝜔) (Λ − (𝜇 + 𝛾)𝑁)
𝜎𝑘1 (𝜇 + 𝜙) ,
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𝑉 = 𝛾Λ𝜎𝑘1𝑁𝑝 + 𝜙𝛽𝜃𝜎 (Λ − (𝜇 + 𝛾)𝑁) + 𝜏 (𝑘1 − 𝜎𝜃𝜔) (Λ − (𝜇 + 𝛾)𝑁)
(𝜇 + 𝜙) 𝜎𝑘1 ,

(79)

where

𝑘1 = 𝜇 + 𝛽 + 𝜋,
𝑘2 = 𝜏 + 𝜇 + 𝜎,
𝑝 = [(𝑘1 − 𝜎𝜌𝜔) (Λ − (𝜇 + 𝜎)𝑁)

+ 𝜔𝜌 (Λ − (𝜇 + 𝜎)𝑁)] + (𝜇 + 𝜎)𝑁𝜎𝑘1.
(80)

4.4. Local Stability of the Endemic Equilibrium. The Jacobian
matrix for system (57) is given by

𝐽

=
[[[[[[[[[
[

− (𝛼 + 𝜇 + 𝛾) 0 0 0 0
𝛼𝜃 − (𝜇 + 𝛽 + 𝜋) 0 0 0

𝛼 (1 − 𝜃) 𝜋 − (𝜏 + 𝜇 + 𝜎) 0 0
0 𝛽 𝜏 − (𝜇 + 𝜙) 0
𝛾 0 0 𝜙 −𝜇

]]]]]]]]]
]

. (81)

Evaluating the Jacobian matrix (81) at the endemic equilib-
rium gives

𝐽𝐸𝑒 =
[[[[[[[[[[
[

− (𝛼∗ + 𝜇 + 𝛾) 0 0 0 0
𝛼∗𝜃 − (𝜇 + 𝛽 + 𝜋) 0 0 0

𝛼∗ (1 − 𝜃) 𝜋 − (𝜏 + 𝜇 + 𝜎) 0 0
0 𝛽 𝜏 − (𝜇 + 𝜙) 0
𝛾 0 0 𝜙 −𝜇

]]]]]]]]]]
]

, (82)

where

𝛼∗ = 𝛿 (𝐼 + 𝜔𝐶𝑁 ) . (83)

We now obtain the characteristic equation𝑃 = |(𝜉)𝐼−𝐽(𝐸𝑒))|,
where 𝐼 is a 5 × 5 unit matrix.

𝑃 (𝜉)

= det

[[[[[[[[
[

𝜉 + 𝑘1 0 0 0 0
−𝛼∗𝜃 𝜉 + 𝑘2 0 0 0

−𝛼∗ (1 − 𝜃) −𝜋 𝜉 + 𝑘3 0 0
0 −𝛽 −𝜏 𝜉 + 𝑘4 0
−𝛾 0 0 −𝜙 𝜉 + 𝜇

]]]]]]]]
]

, (84)

where

𝑘1 = 𝛼∗ + 𝜇 + 𝛾,
𝑘2 = 𝜇 + 𝛽 + 𝜋,
𝑘3 = 𝜏 + 𝜇 + 𝜎,
𝑘4 = 𝜇 + 𝜃.

(85)

Thus the characteristic equation becomes

𝑃 (𝜉) = 𝜉5 + 𝑎1𝜉4 + 𝑎2𝜉3 + 𝑎3𝜉2 + 𝑎4𝜉 + 𝑎5, (86)

where
𝑎1 = 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4 + 𝜇,
𝑎2 = 𝑘1𝑘2 + 𝑘2𝑘3 + 𝑘1𝑘4 + 𝑘1𝜇 + 𝑘2𝑘3 + 𝑘2𝜇 + 𝑘2𝑘4

+ 𝑘3𝜇 + 𝑘3𝑘4 + 𝜃,
𝑎3 = 𝑘1𝑘2𝑘3 + 𝑘1𝑘2𝜇 + 𝑘1𝑘2𝑘4 + 𝑘1𝑘3𝜇 + 𝑘1𝑘3𝑘4

+ 𝑘2𝑘3𝜇 + 𝑘4𝑘3𝜇 + 𝑘1𝜃 + 𝜃𝜇 + 𝑘3𝜙,
𝑎4 = 𝑘1𝑘2𝑘3𝑘4𝜇 + 𝑘1𝑘3𝑘4𝜇 + 𝑘1𝜃𝜇 + 𝑘1𝑘3𝜙 + 𝑘2𝑘3𝜙,
𝑎5 = 𝑘1𝑘2𝑘3𝜙.

(87)

The necessary and sufficient conditions for the local asymp-
totic stability of endemic equilibrium are that the Hurwitz
determinants 𝐻𝑖 are all positive for the Routh-Hurwitz
criteria. For a fifth-degree polynomial [42], these criteria are
given by

𝐻1 = 𝑎1 > 0,
𝐻2 = 𝑎1𝑎2 − 𝑎3 > 0,
𝐻3 = 𝑎1𝑎2𝑎3 + 𝑎1𝑎3 + 𝑎1𝑎5 − 𝑎1𝑎4 − 𝑎3 > 0,
𝐻4 = (𝑎3𝑎4 − 𝑎2𝑎5) (𝑎1𝑎2 − 𝑎3) − (𝑎1𝑎4 − 𝑎5) > 0,
𝐻5 = 𝑎5𝐻4 > 0,

(88)

from which we can conclude that the endemic equilibrium is
locally asymptotically stable.
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5. Sensitivity Analysis

Intervention strategies to reduce the mortality andmorbidity
due to pneumonia should target the parameters that have
a high impact on the effective reproduction number, R𝑒.
Sensitivity analysis is used to obtain the sensitivity index that
is a measure of the relative change in a state variable when
a parameter changes. We compute the sensitivity indices of
R𝑒 to the model parameters with the approach used by
Chitnis et al. [43].These indices show the importance of each
individual parameter in the disease transmission dynamics
and prevalence.

Definition 10. The normalized forward sensitivity index of a
variable, V, that depends differentiability on index on a para-
meter, 𝑝, is defined as

𝛾V𝑝 = 𝜕V𝜕𝑝 ∗ 𝑝
V
. (89)

We use the formula for R𝑒 to derive an expression for the
sensitivity ofR𝑒 given by

𝛾R𝑒𝑝 = 𝜕R𝑒𝜕𝑝 ∗ 𝑝
R𝑒

, (90)

to each of the ten parameters given in Table 1. In the following
example, we obtain the sensitivity index ofR𝑒 with respect to𝛿:

𝛾R𝑒
𝛿

= 𝜕R𝑒𝜕𝛿 ∗ 𝛿
R𝑒

= 1. (91)

The same method is used to obtain the indices of 𝛾R𝑒Λ ,
𝛾R𝑒𝜇 , 𝛾R𝑒𝛾 , 𝛾R𝑒

𝜃
, 𝛾R𝑒
𝛽
, 𝛾R𝑒𝜔 , 𝛾R𝑒𝜏 , 𝛾R𝑒𝜋 , and 𝛾R𝑒𝜎 .

The parameters given in Table 1 are ordered from most
sensitive to the least sensitive. The parameter values 𝛿 = 7.6,𝜇 = 0.0002, Λ = 10.09, 𝜎 = 0.33, 𝜔 = 0.001124, 𝜏 = 0.0714,𝜋 = 0.01096, 𝛽 = 0.0115, 𝜃 = 0.336, and 𝜂 = 0.0241 are used
to determine the sensitivity indices.

5.1. Interpretation of Sensitivity Indices. It is noted from the
sensitivity indices given in Table 1 that the value of R𝑒
increases when the parameter values 𝛿, 𝜃, 𝜔, and Λ increase
while other parameter values are kept fixed. This implies an
increase in the endemicity of the disease since the indices
have positive signs. On the other hand, when the parameter
values 𝜇, 𝜎, 𝛽, 𝜏, 𝜋, and 𝜂 are decreased while the rest of the
parameter values are kept fixed, the value of R𝑒 decreases.
This shows a decrease in the disease endemicity because
the indices have negative signs. The transmission rate 𝛿
and recruitment rate Λ are the most sensitive parameters.
The transmission coefficient of the carrier subgroup 𝜔 and
proportion of susceptible population that become carriers 𝜃
are the other key parameters that are sensitive.

6. Numerical Simulation

We illustrate the analytical results of the model by carrying
out numerical simulation of the models using a set of

Table 1: Numerical values of sensitivity indices ofR𝑒.

Parameter symbols Sensitivity Index
Λ +1
𝛿 +1
𝜔 +0.874
𝜃 +0.643
𝜏 −0.743
𝜂 −0.432
𝛽 −0.0574
𝜇 −0.0086
𝜋 −0.0045
𝜎 −0.0014

estimated parameter values obtained from literature. The
system is simulated using ODE solvers coded in MATLAB
programming language. Simulation of the pneumonia model
under treatment intervention alone and the model with
treatment and vaccination interventions combined is carried
out to investigate the impact of the key parameters on
the spread of pneumonia and how their influence can be
controlled. The parameter values are presented in Table 2.

7. Discussion and Conclusion

In the study, a deterministic model is formulated and ana-
lyzed to investigate the role of treatment and vaccination
in the transmission dynamics of pneumonia. The model is
well-posed and exists in a feasible region where disease-free
and endemic equilibrium are obtained and their stability is
investigated.

When the equilibrium is locally stable, all the points near
it tend tomove towards it over time andwhen the equilibrium
point is globally stable, all the initial starting conditions lead
to it over time.

The basic model of pneumonia under treatment inter-
vention alone has a locally and globally asymptotically stable
disease-free equilibrium if its associated reproduction num-
ber R0 < 1 and has a unique and globally asymptotically
stable endemic equilibrium when the reproduction number
exceeds unity.

The disease-free equilibrium is locally stable implying
that if initial conditions were to start near it, they wouldmove
towards it over time but the initial conditions do not always
start at neighborhood of disease-free equilibrium. When the
disease-free equilibrium of model is globally stable, it means
that all initial starting conditions would lead to it over time;
hence treatment would decrease the disease prevalence. The
endemic equilibrium of model is globally stable if and only
if R0 > 1, implying that all the points near it tend to move
towards it over time.

In order to make the endemic equilibrium unstable so
that it switches to disease-free equilibrium, interventionmea-
sures like treatment with high efficacy drugs and vaccination
programs are necessary.
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Table 2: Parameter estimates for pneumonia model under interventions.

Symbol Description Value Source
𝜇 Per capita natural mortality rate 0.0002/day [2]
Λ Per capita recruitment rate 10.09/day Estimated
𝜃 Fraction of susceptible individuals that join the carriers 0.338/day Estimated
𝜎 Per capita disease induced mortality rate 0.33/day [2]
𝛽 Per capita recovery rate of carriers 0.0115/day Estimated
𝛼 Force of infection of susceptible individuals 0.0287/day Estimated
𝜏 Per capita recovery rate of infective individuals 0.0714/day [36]
𝜋 Rate at which carriers develop symptoms 0.01096/day [7]
𝜂 Rate at which treated individuals become susceptible 0.0241/day Estimated
𝛾 Rate at which susceptible individuals get vaccinated 0.0621/day Estimated
𝜙 Rate at which treated individuals are vaccinated 9.4/day Estimated
𝜔 Transmission coefficient for the carrier subgroup 0.001124 [37]
𝛿 Transmission rate 7.6/day Estimated
𝑝 Probability for a contact to cause infection 0.89–0.99 [37]
𝜅 Contact rate 1–10/day [37]
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Figure 1: Variation of the population under treatment intervention alone.

The pneumonia model under treatment and vaccina-
tion interventions have a disease-free equilibrium which is
locally asymptotically stable whenever its associated effective
reproduction number R𝑒 < 1. This implies that the initial
conditions would tend to the disease-free equilibrium point
and hence pneumonia will be wiped out of the population.

Sensitivity analysis identifies the transmission rate 𝛿 as
the key factor in fueling the spread of pneumonia, whereas
vaccination rate 𝛾 and recovery rate 𝜏 are the parameters
that inhibit the spread of the disease. From the results
obtained, we conclude that a combination of vaccination
and treatment interventions programs targeting children can
effectively eliminate pneumonia infection from the popula-
tion.

Numerical simulation of the pneumonia model under
treatment strategy 𝜏 for the set of parameter estimates
presented in Table 2 and initial values of population sizes

are carried out. The results show that when there is a
pneumonia outbreak, the population sizes of the infected and
carriers increase with time while the susceptible population
size decreases with time until an endemic equilibrium is
attained as shown in Figure 1. In Figure 2, it is shown
that with treatment intervention in place for the different
subgroups, the infected population decreases until it equals
the treated population.When both treatment and vaccination
strategies are applied, numerical simulation reveals a sharp
decline in the susceptible population and a rise in both the
infected and carrier populations during the initial stages of
the epidemic until a disease-free equilibrium is attained as
shown in Figure 3. The effect of treatment and vaccination
interventions on the population leads to a decrease in the
susceptible, infected, carriers, and treated populations and
an increase in the vaccinated populations as presented in
Figure 4. This confirms that a combination of treatment and



14 Journal of Applied Mathematics

0 10 20 30 40 50 60
0

0.5

1

1.5

2

Time (days)

A graph of population change in susceptibles with time

R0 = 2.5431

×10
4

S
(t
)

0 10 20 30 40 50 60
0

1000

2000

3000

4000

Time (days)

C
(t
)

 A graph of population change in carriers with time

R0 = 2.5431

0 10 20 30 40 50 60
0

500

1000

1500

Time (days)

I(
t)

 A graph of population change in infectives with time

R0 = 2.5431

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

Time (days)

R
(t
)

 A graph of population change in removed with time

R0 = 2.5431

Figure 2: Variation of the population under treatment intervention alone.
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Figure 3: Variation of the population under treatment and vaccination interventions.

vaccination interventions can eradicate the disease from the
community.

The results have important public health implications
since they determine the severity and outcome of the epi-
demic (i.e., clearance or persistence of infection) and pro-
vide a framework for the design of control strategies. The

study further shows that a combination of treatment and
vaccination has much more impact than treatment alone.
Furthermore, analysis of the effective reproduction number
R𝑒 demonstrates that vaccination and treatment reduce the
average number of secondary infections when implemented.
Thus, in order to control the pneumonia spread, infected
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Figure 4: Variation of the population under treatment and vaccination interventions.

individuals should be treated immediately; all individuals
with compromised immunity including newborn babies and
the elderly should be vaccinated.
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