View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Crossref

Hindawi Publishing Corporation

The Scientific World Journal

Volume 2016, Article ID 5960614, 1 page
http://dx.doi.org/10.1155/2016/5960614

Hindawi

Retraction

Retracted: An Improved Ant Colony Optimization Approach for
Optimization of Process Planning

The Scientific World Journal
Received 3 March 2016; Accepted 3 March 2016

Copyright © 2016 The Scientific World Journal. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The article titled “An Improved Ant Colony Optimization
Approach for Optimization of Process Planning” [1] has
been retracted as it was found to contain a substantial
amount of material from the following published article:
“A Graph-Based Ant Colony Optimization Approach for
Process Planning,” by JinFeng Wang, XiaoLiang Fan, and
Shuting Wan, in The Scientific World Journal.

References

[1] J. Wang, X. Fan, and H. Ding, “An improved ant colony
optimization approach for optimization of process planning,”
The Scientific World Journal, vol. 2014, Article ID 294513, 15
pages, 2014.


https://core.ac.uk/display/193438632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1155/2016/5960614

Hindawi Publishing Corporation

The Scientific World Journal

Volume 2014, Article ID 294513, 15 pages
http://dx.doi.org/10.1155/2014/294513

Research Article

Hindawi

An Improved Ant Colony Optimization Approach for
Optimization of Process Planning

JinFeng Wang, XiaoLiang Fan, and Haimin Ding

School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China
Correspondence should be addressed to JinFeng Wang; wml803@163.com

Received 25 April 2014; Accepted 9 June 2014; Published 6 July 2014

Academic Editor: Xin-She Yang

Copyright © 2014 JinFeng Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computer-aided process planning (CAPP) is an important interface between computer-aided design (CAD) and computer-aided
manufacturing (CAM) in computer-integrated manufacturing environments,(CIMs). In this paper, process planning problem is
described based on a weighted graph, and an ant colony optimization (ACO) approach is improved to deal with it effectively.
The weighted graph consists of nodes, directed arcs, and undirected arcs, which denote operations, precedence constraints among
operation, and the possible visited path among operations, respectively. Ant colony goes through the necessary nodes on the graph
to achieve the optimal solution with the objective of minimizing total production costs (TPCs). A pheromone updating strategy
proposed in this paper is incorporatedin thesstandard ACO, whichiincludes Global Update Rule and Local Update Rule. A simple
method by controlling the repeated number of the same process plans is designed to avoid the local convergence. A case has been
carried out to study the influence of various parameters of ACO on the system performance. Extensive comparative experiments

have been carried out to validate the feasibility and efficiencysof the proposed approach.

1. Introduction

Process planning for prismatic parts is a very complex and
difficult process. For a prismatic partwith complex structures
and numerous features,/ process planning.involves selecting
machining operations for every feature and. sequencing
them considering precedence constraints, choosing avail-
able manufacturing resources, determining setup plans, and
machining parameters, and so.forth. In CAPP systems, these
activities can be carried out simultaneously to achieve an
optimal plan, thus the manufacturing efficiency could be
largely increased or the production cost could be decreased.
So, process planning problem:.is well known as a combi-
natorial optimization problem with constraints. With the
advance of computer technology, some artificial intelligence
(AI) techniques are used to solve combinatorial optimiza-
tion problem. For example, some bioinspired algorithms
are applied in complex decision-making process of solve
combinatorial optimization problem [1-3].

In this paper, an_improved ant colony optimization
(ACO) approach is proposed to deal with process planning
problem based on“a weight graph. The weighted graph

consists of nodes, directed arcs, and undirected arcs, which
denote operations, precedence constraints among operation,
and the possible visited path among operations, respectively.
Ant colony goes through the operation nodes on the graph
along the directed/undirected arcs. The heuristic information
of operation nodes and pheromone amount on the arcs will
guide ant colony to achieve the optimal nodes set and arc set,
which represents the optimal solution with the objective of
minimizing total production costs (TPCs). Some efforts have
been adopted to improve the efficiency of the approach.

2. Previous Related Works

In the past two decades, CAPP has received much attention
[4-7]. Many optimization approaches have been developed
and widely applied for solving process planning problem,
such as knowledge-based reasoning approach [8, 9], genetic
algorithm (GA) [1, 5, 10], artificial neural networks (ANN)
[11], graph manipulation [7, 12], tabu search approach (TS)
[6, 13], simulated annealing algorithm (SA) [13, 14], artificial
immune system (AIS) [15], particle swarm optimization
(PSO) [16, 17], and ant colony optimization (ACO) [18, 19].
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Zhang et al. [5] constructed a novel computer-aided
process planning model consisting of operation selecting and
operation sequencing. A GA is proposed for process planning
based on the model considering a job shop manufacturing
environment. GA is used to select machining resources and
sequence operations simultaneously. Ma et al. [14] modeled
the constraints of process planning problems in a concurrent
manner. Precedence relationships among all the operations
are used to generate the entire solution space with multiple
planning tasks. Based on the proposed model, an algorithm
based on simulated annealing (SA) is proposed to search
for the optimal solution. Li et al. [6] consider the process
planning problem as a constraint-based optimization prob-
lem and propose a tabu search-based algorithm to solve it.
In the proposed algorithm, costs of the machines and tools,
machine changes, tool changes, setups, and penalty against
good manufacturing practices are taken as the evaluation
criteria. Precedence constraints between features and the
corresponding operations are defined and classified accord-
ing to their effects on the plan feasibility and processing
quality. Chan et al. [15] model the machine tool selection
and operation allocation of flexible manufacturing systems
and solve process problem by a fuzzy goal—programming
approach based on artificial immune systems. Guo et al. [16]
proposed a PSO approach for process planning problem. The
initial process plans randomly generated are encodedinte
particles of the PSO algorithm. To avoid falling into local
optimal and improve moving efficient of the particles, several
new operators have been developed. Penalty strategy is used
considering the evaluation of infeasible particles. Krishna and
Mallikarjuna Rao [18] proposed a novel approach to apply
the ant colony algorithm as a global search teéchnique for
process planning problem by considering various feasibility
constraints.

Recently, to improve the quality/of results and efficiency
of the search, many hybrid approaches are developed for
process planning problem, for example, GA + SA [13], graph
manipulation + GA [7], and local search algorithm + PSO
[20]. Li et al. [6] developed a hybrid genetic algorithm and
a simulated annealing approach for optimizing process plans
for prismatic parts. They modeled the process planning as
a combinatorial optimization problem with constraints. The
evaluation criterion was the combination of machine costs,
cutting tool costs, machine change costs, tool change, and
setup costs. Ding et al. [20] proposed a hybrid approach to
incorporate a genetic algorithm, neural network, and analyti-
cal hierarchical process (AHP) for process planning problem.
A globally optimized fitness function is'defined including the
evaluation of manufacturing rules using AHP, calculation of
cost and time, and determination of relative weights using
neural networktechniques. Huangetal. [7] model the process
planning problem as a combinatorial optimization problem
with constraints and_developed a hybrid graph and genetic
algorithm (GA) approach. In'the approach, graph theory
accompanied with matrix theory is embedded into the main
frame of GA. The precedence constraints between operations
are formulated in an operation precedence graph (OPG).
An improved ‘GA was applied to solve process planning
problem based on the operation precedence graph (OPG).
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Wang et al. [21] proposed an optimization approach based on
particle swarm optimization (PSO) to solve the process plan-
ning problem and introduced a novel solution representation
scheme for the application of PSO. In the hybrid approach,
two kinds of local search algorithms are incorporated and
interweaved with PSO évolution to improve the best solution
in each generation.

Although significant improvements haverbeen achieved
for process planning problem, there still’ remains poten-
tial for further.improvement [22]. For example, optimiza-
tion approach’ needs to be improved to be more efficient,
and a more reasonable constraint modeling and handling
mechanism needs to be developed; also, some practical
manufacturing environment should be considered, and the
approach should providesthe multiple alternative optimal
plansEspecially, some bioinspired algorithms are improved
to solve the complicated combination optimization problem
[23, 24]. The attempt to use these algorithms to solve process
planning problem should be performed to explore the more
excellent results.

3. Graph-Based Process Planning Problem

In CAPP, a part is generally described by manufacturing
features, which are geometric forms having machining mean-
ings, such as holes, slots, and bosses. In the process planning
forsthe part, the manufacturing features will be recognized
by analyzing the geometrical and topological information of
the part, which include position, dimensions, tolerance, and
surface finish. A feature may be mapped to one or several sets
of operation types (OPTs) [5]. An OPT refers to an operation
without any attachment of machine (M), tool (T'), and tool
approach direction (TAD).

For an operation, there are a set of Ms, Ts, and TADs
under which the operation can be executed. As a result,
for a part, the process plan is a set of operations, which is
represented as follows:

PP = {OP,,OP,,...,OP;}, (1)
where OP; is the ith operation of the part, which is defined as
follows:

OP, = {OPT;;,OPT,, ..., OPT,;,...,OPT,},  (2)

where OPT;; is the jth alternative operation of the ith
operation of the part, which is defined as follows:

OPT,; = {M

ip T

ij> TADij} > (3)

where M;;, Tj;, and TAD;; are the index of the machine,
tool, and TAD respectively, by which the alternative operation
OPT;; is executed.

In process planning for a part, two tasks have to be
done, namely, selecting operation OP; for each feature of
the part and sequencing operations. And, also, they must be
carried out simultaneously to achieve an optimal process plan
againsta predetermined criterion. Due to the geometrical and
manufacturing constraints between manufacturing features,

operation sequencing must take into account the precedence
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TABLE 1: Operation selection for the example part.

Feathers Operations Machines Tools
F1 Drilling (OP,)) Ml Tl
M2 T1
F2 Milling (OP,) M1 T2
T4
F3 Milling (OP;) Ml T5
T4
T5
F4 Drilling (OP,) Ml T3 6: T-slot cutter
M2
F5 Milling (OPy) Ml

TABLE 2: Precedence constraints for the example part.

ID Features Operations Precedence constraints description
1 F1 OP, CO, is prior to CO,
2 F2 OP, CO, is prior to CO,
3 F4 (O) CO, is prior to CO;
4 F5 OP; CO; is prior to CO

constraints between operations, which must be s

A 1.b
the final operations sequence. Many constraints and ‘w

have been proposed and summarized [1, 5, 7]. In gene
these precedence constraints are as follows [19]:

(1) primary surfaces prior to second

(2) planes prior to its associated

(3) rough machining operatio
operation,

(4) datum surfaces prior t

To construct proces
process planning prob
sented by a weighted
as D = (O,C,U),
directed arcs, and

ized and repre-

is denoted
a set of
."The nodes of
OP;. C corresponds to the

precedence co e operations of the parts. U
represents t ingal ible combinations
of the nodes. ble paths for ants

e ants are basically
ere is a precedence
er, an example part is
[2].

the example in Figure 1 are
e constraints for the example

FIGURE 1: An example part [5].

directed arcs includes four arcs, C,, C,, Cs, and C,,
ich represent the precedence constraints 1, 2, 3, and 4. The
>t of undirected arcs includes six arcs, U,, U,, U3, Uy, Us, and

6

While applying the ACO in the process planning by
the weighted graph, the ant colony will be placed on the
initial node visited by the ant colony first. The initial node
determines which operation can be executed first. For the
weighted graph in Figure 2, the nodes O, and O; are likely
to be selected as the initial source node, since operations
OP, and OP; have no precedence operations. To facilitate
the execution of ACO in process planning, a dummy node
O, acting as the initial node is added to connect the possibly
executed operations first in the weighted graph. The initial
node O, is used to connect the nodes O, and Os.

4. Process Plan Evaluation Criterion

Lots of process planning evaluation criteria have been pro-
posed in the past literatures. The criterion of minimum
production cost is generally used. The production cost
evaluating process plans comprise five factors: machine pro-
cessing cost (MC), tool processing cost (TC), machine change
cost (MCC), tool change cost (TCC), and set-up change cost
(SCQC) [6, 8,9,12,13]. The calculation procedures of these cost
factors are described in detail below:



Dummy node __

RN

O,(0P))
{M1, T1, -Y}(OPTy,)
{M2, T1, -Y}(OPT},)

0,(0Py)
(M1, T2, +Z}(OPT,,)

between operation:
n operations

— Directed arc representing the precedence co!
—— Undirected arc representing the possible pat

FIGURE 2: Weighted graph fo

(1) total machine cost (TMC): where MCC is machine change cost and NMC is

of machine change, which can be calculated

n
TMC = ) MC,
i=1 n—1
NMC = ) Q,(M,,;,M;), 9)
where # is the total number of op ,Zl (M, M)
the machine cost of the ith mac
a constant for a specific machi O, (x,y) = {1 x#y (10)
(2) total tool cost (TTC): P o x=y,

where M, is the machine for the ith operation;
(5) total tool change cost (TTCC):

TTC =

TTCC = TCC = NTC, o)

where TCC is the tool change cost and NTC is the
number of tool change, which can be calculated by
(10) and

n—1
NTC = Z Q, () (M1, M) (T41.T1)) » (12)
i=1

0,(5) - {

0 x=y=0 13)

1 otherwise,

where T; is the ith tool.

The definition of machine change, tool change, and setup
change has been illustrated in detail [6, 9]. In this paper, the
combination of TWC, TTC, TMCC, TTCC, and TSCC will
= MCC * NMC, (8)  be used as the objective of process planning problem, which
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can be defined as total production cost (TPC) andcalculated
by

TPC = w; * TMC + w, * TTC + w; * TMCC
(14)
+w, * TTCC + ws % TSCC.

In (14), w,, w,, w;, w,, and ws are weights of TMC,
TTC, TMCC, TTCC, and TSCC, respectively, the value of
which is limited in {0, 1}. These weights can be assigned
referring to the active situations, which provides the flexibility
to customize the optimization objective function according to
various situations [13].

5. The Proposed ACO Algorithm

The proposed ACO algorithm basically generates solutions by
standard ACO procedures [2]. As described in Section 3, the
directed graphs are used to represent the process planning
problem [19, 25]. The approach in this paper is to solve the
process planning problems using the ACO algorithm which
corresponds to finding a path of the directed graph, where
all necessary nodes have to be visited to complete the process
plan, so that the objective of process planning is minimized.
The explanations for symbols used are listed in the Symbols
section.

5.1. Heuristic Information. To choose the next visiting node,
the ant k is guided by the heuristic information 7, on the
node and the pheromone amount 7,,, on the arc linking the
source node u and possible destination node v. 77,,,, is defined
simply by a greedy heuristic

E

- . (15)

71141/

where E is a positive constant, and it can.be/set by trial
and error. Therefore, the nodes with the smaller processing
cost have the higher heuristic information amount and:these
nodes have more attraction for the ant k. PC is the processing
cost of the selected node operation and it is calculated as
follows:

PC =w, * MC, + w, * TC,. (16)

MG, is illustrated in (4). TC, is illustrated in (5). w; and
w, are illustrated in (14).

5.2. Selection/Probability. /The heuristi¢ information and the
pheromone amount constructed a jprobability of moving
from a node to another node for an ant. The more the
pheromoneamount on the arcs and the heuristic information
on thenodes, the higher the selective probability. For the ant
k, thie selective probability p*, from the source node u to the
destination node v can be given-as follows:

[ ] )

P Ve Sk
Zwesk [Ttl:w] [nuv]ﬁ (17)
0 veS,

ko _
Puv_

where « and 3 denote the weighting parameters controlling
the relative importance of the pheromone amount and the
heuristic information, respectively. Sguis the set of/ nodes
allowed at the next step for the ant k.

In order to adjust the convergence speed of the algorithm,
a simple pheromone updating strategy is proposed in the
standard ACO, which includes twospheromone updating
rules. Local Update Ruler for the elite process plan is
incorporated into‘Global Update Ruler. Three types of process
planning solutions are specified at different stages of the
algorithm so as to incorporate the pheromone updating
strategy. Iteration best process plan PP; denotes the best
process plan generated in the currentiteration by the total
number jof ants K, whose TPC is L;. Restart best process
plan PP, denotes the bestiprocess plan generated since the
last restart of the algorithm, whose TPC is L,. Algorithm
best'process plan PP, denotes the best process plan generated
since the start of the algorithm, whose TPC is L. L, is
the average TPC since the restart of the algorithm and is
calculated as follows:

e Sy (18)

5.3. Global Update Ruler. The pheromone level is initially set
at7p.0n every arc. Pheromone intensity on the arcs is dynam-
ically updatedsafter ant colony has completed process plans.
The amount of pheromone deposited on the arcs by an ant k is
proportional to respective L. The process plans with smaller
L; will accumulate a greater amount of pheromone on their
corresponding arcs. To avoid unlimited accumulation of the
pheromone, the pheromone also evaporates at every round
of iterations. The pheromone amount 7, can be given as
follows:

Tz]jv = (1 - p) * T1I4(v + ATII:V’ (19)

where p is an evaporation coeflicient of the pheromone on the
arc linking the source node u and possible destination node
V. ATEV is the quantity of the pheromone increments on the
arc(u, v) generated by the ant k after each iteration. Also, it
can be given as

i Q if Ly < L,y antk passes thearc (u, v)
AT, = Lk (20)

0 otherwise,

where Q is a positive constant. L, is the TPC by the ant k.

5.4. Local Update Rule. Local Update Rule is introduced
so that the elite process plan solutions are used to update
the pheromone on the arcs again, which will accelerate the
convergence of the algorithm to the optimal process plan. The
iteration best process plan PP, is first identified from all the
ant process plans PP,. If the L; is smaller than thatof L,, L,
is replaced by L;. Similarly, if L, is smaller than that of L,
L, is replaced by L,. Local Update Rule is used to update the
pheromone intensity on the arcs again while update of L, and



TABLE 3: Features, operations, and machining information for Part 1.

Features  Feature descriptions Operations TADs Machines Tools

F1 Two replicated holes Drilling (OP,) +Z, -7 M1, M2, M3

F2 A chamfer Milling (OP,) -X,+Y,-Y,-Z M2, M3

F3 A slot Milling (OP5) +Y M2, M3

F4 A slot Milling (OP,) +Y M2

F5 A step Milling (OPy) +Y,-Z M2, M3

F6 Two replicated holes  Drilling (OP;) +Z,-Z M1, M2, M3

F7 Four replicated holes  Drilling (OP,) +Z,-Z

F8 A slot Milling (OPy) +X

F9 Two replicated holes  Drilling (OP,) -Z

F10 A slot Milling (OP,,) -Y T7(10):Chamfer tool
Fl1 A slot Milling (OP};) -Y T8(10):Slot cutter
F12 Two replicated holes  Drilling (OP,,) +Z,-Z MCC =300
F13 A step Milling (OP;;) -X,-Y SCC =120
F14 Two replicated holes  Drilling (OP,,) -Y TCC =15

L;, occurs.The pheromone amount 7, can be calculated as
(19), and A'rfjv will be calculated as follows:
ATZ:V

Q if (L, <L L, <L k
1z, if (L <L, or L, <L,) antk passest
0 otherwise,

where Q is a positive constant. L, is the TP

5.5. Termination. If all of the ants a
same process plan repeatedly at
ACO algorithm the algorithm

same set of arcs visited
has fallen into the local
planning would not be
optimal results. To voi
of M, pt controlling
plan is set in adv.

process
cess plans

0. When N P reaches M,

ions is made in
onverged to local
= M,y and N, <

sidered that the local
will be restarted. For

it isTESEt tO be 0, and L,
ants are able to escape from
tion to other possible paths and hence the
increased. If the only event of N, =
M, is satisfied g process plan will be output and

algorithm will be te ated.

search spa

nce constraints for Part 1.

Descriptions Hard or soft
interactions P, should be prior to OP,. Hard
OP; should be prior to OP,.
OP,, should be prior to OP;;. Hard
OP,; should be prior to OP,,.
OP, should be prior to OP;. Soft

OP,, should be prior to OP,.
OP; should be prior to OP,,.
OP,, should be prior to OP,,. Soft
OP,; should be prior to OP,,.
OP; should be prior to OP,.

6. Experiments and Results

Two experiments have been conducted to illustrate and vali-
date the feasibility and efficiency of the proposed approach.
In the first experiment and the crucial parameters of the
approach are determined. The second experiment is used to
compare this approach with typical ACO, TS, GA, and SA
methods.

Two prismatic parts are used for the case experiments.
The first prismatic part (Part 1) used by Zhang et al. [5]
is illustrated in Figure 3. It consists of 14 STEP-defined
manufacturing features and 14 machining operations. The
machining information and precedence constraints are given
in Tables 3 and 4. The second prismatic part (Part 2) used by
Lietal. [13] is illustrated in Figure 4. The machining informa-
tion and precedence constraints are given in Tables 5 and 6.

6.1. Simulation Experiments. When ACO is applied in pro-
cess planning, those parameters including K, p, o, 3, E, Q,
Tp> My and M, have to be adjusted according the situation
to achieve the optimal process plan. A lot of preliminary
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ions: Part 1.

FIGURE 3: A sample part with 14 features and I

nTrn
[N Y]

<85

1, 20 = 0.01

76 + 0.025

90

FIGURE 4: A sample part with 14 features and 20 operations: Part 2.




TABLE 5: Features, operations, and machining information for Part 2.

Features Feature descriptions Operations TADs Machines

F1 Planar surface Milling (OP,) +Z M2, M3

F2 Planar surface Milling (OP,) -Z M2, M3

F3 Two replicated pockets Milling(OP;) +X M2, M3

F4 Four replicated holes Drilling(OP,) +Z,-7 M1, M2, M3 3-axis

F5 A step Milling (OP;) +X,-Z M2, M3 i ng machine

F6 A protrusion (rib) Milling (OPg) +Y,-Z oring machine
F7 A boss Milling (OP,) -a T7, T8 1(7): Drill 1

Drilling (OPy) -a T2, T3, T4 T2(5): Drill 2
F8 A compound hole Reaming (OP,) T9 T3(3): Drill 3
Boring (OP,,) T4(8): Drill 4
F9 A protrusion (rib) Milling (OP,) -Y,-Z T5(7): Tapping tool
Drilling (OP,,) -7 T6(10): Mill 1
F10 A compound hole Reaming (OP;) M1, M2, M3 T9 T7(15): Mill 2
Boring (OP,,) M3, M4 T8(30): Mill 3
1L Nine replicated holes Drilling (OP,;) -Z M1, M2, M3 T9(15): Ream
Tapping (OP,4) 1, M2, M3 T5 T10(20): Boring tool
F12 A pocket Milling (OP,,) -X T7, T8 MCC =160
F13 A step Milling (OPg) -X,-Z T6, T7 SCC =100
Fl4 A compound hole Reaming (OP,, M1, M2, M3 T9 TCC=20
Boring (OP T10
TABLE 6: Precede traints for Part 2.
Features Operation raints description Hard or soft
- porting face for the part; hence it is
Fl Milling (OP,) o all features and operations. Hard
1 , OP,,, and OP,,) and F11 (OP,., OP,,)
12 13 14 15 16
F2 Milling (OP,) for the material removal interactions. Hard
F5 Milling (OP5) § or to F4 (OP,) and F7(OP,) for the datum interactions Hard
F6 Milling (O o F10 (QPIZ, QPw and OP,,) for the datum Hard
interaction.
F7 F7 (OP,) is prior to F8 (OPS, O.Pg, and OP,) for the datum Hard
interactions.
8 0 OP, and OP,y; OP, is prior to OP,, for the fixed order Hard
of machining operations.
9 F9 (OP,,) is prior to F10 (OP,,, OP,;, and OP,,) for the datum Hard
interaction
, is prior to OP; and OP,,; OP4; is prior to OP,, for the fixed
F10 der of machining operations. F10 (OP,,, OP,;, and OP,,) is prior to Hard
11 (OP,5, OP (), and OP, of F10 is prior to F14 (OP,,, OP,,)
for the datum interaction.
OP;; is prior to OP, for the fixed order of operations. Hard
F13 (OP,) is prior to F4 (OP,) and F12 (OP,,) for the material Soft

removal interaction.

OP,, is prior to OP,, for the fixed order of machining operations. Hard
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1100
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experiments are dominated to test the effect of va
parameters. In each experiment, one parameter is chan
and the other parameters are ﬁxed and e

It is assumed that all the machine
namely, w,-wjs in (14) and (16)

Those parameters may be
namely, initial parameters
problem data (M, and
Firstly, the positive cons
are determined accordi
average PC of each
process plan appeari
the initial phero
and Q are fixed

e performance of
algorithm affect the

analysis of the application
m in the process planning
. Number of ants K has important effect
peed. If K is too small, searching
| increase and the computation
is too large, the optimization rate

randomness 0
time will be long.

become very slow. Generally, value of K is considered
cording to the problem size. In the case of problems with
0756 = 1, = 1,7, = 1, E = 50, Q = 2000,
300, and M, = 5, 10 trials were separately conducted
rying the values of K € {10, 25, 40}. The average results
the experiment are summarized in Figure 5.

All the hills and troughs on the TPC of L; and L, in
Figures 5(a) and 5(b) denote the restart of the algorithm. They
indicate that the local convergence avoidance mechanism
takes effect to direct the ants from one solution region to
another. Figure 5(b) shows that there are 10, 7, and 5 restarts
corresponding to K = 10, K = 25, and K = 40 within the 300
iterations. Figure 5(c) shows that the compared results under
K =10, K = 25, and K = 40. Accordingly, K was determined
as 25.

A suitable p can ensure good computational efficiency
and algorithm stability. In the case of problems with K = 25,
a=1,B8=11=1E=50,Q = 2000, M, = 300,
and M, = 5, 10 trials were separately conducted by varying
the values of p € {0.25,0.5,0.75}. The average results of L,
achieved by the algorithm best process PP, are summarized
in Figure 6.

In the case of problems with K = 25, p = 0.75, 7, = 1,

= 50, Q = 2000, M, = 300, and M, = 5,10 trials were
separately conducted by varying the values of &« € {0.1, 1,5}
and $ € {0.1, 1, 5}. The average results of L, achieved by the
restart best process PP, are summarized in Table 7.

50 trials were separately conducted to evaluate the
performance of the proposed approach. The results show that
these parameters have a good performance at values K = 25,
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TABLE 7: Determination of varying combinations of « and f3.

a=0.1 a=1
p=0.1 B=1 =5 B=0.1 =1 =5
Mean 11371 1134.4 1132.6 1136.1 1129.1 1132.8
Maximum 1150.5 1147 1143.5 1148.5 1137
Minimum 1131 1128 1128 1128 1128
TABLE 8: One of the best process plans for Par
Operation 6 1 7 9 12 4
Machine 2 2 2 2 2 2
Tool 5
TAD -Z -Z -Z -Z -Z -Z +Y -Y -Y -Y -Y
NMC =0, NTC =4, NSC =3, TMCC = 0, TTCC = 60, TSCC and TPC = 1128
1350
1300
o 1250
(=9
= 1200
1150 Sw—
1100
1 30 59 88 117 146 175 204 233 2 117 146 175 204 233 262 291
Iterations Iterations
— p=075 —— p=025
— p=05

FIGURE 6: Determination of pheromone evaporation rate p.

and M,,, = 5, under which one of
shown in Table 8 and the correspo
L, and L, are in Figure 7.
Figure 7 shows that there
iterations. When iterations ar

on the TPC under 1143.
mechanism is triggered

the ants
of 1348.
is able to

are released to co
Although it is lar;

extensive com
same chosen

URE 7: Simulation results of L, and L, corresponding to one of
est process plans.

(3) Machine M2 and tool T7 are down, and w, = w; = 0;
w; =w; =w, = 1.

Under condition (1), condition (2), and condition (3),
10 trials were separately conducted to evaluate the proposed
algorithm’s performance for Part 2. Experimental observation
has shown that K = 40, p = 0.75, ¢ = 2, 8 = 1, 7, = 1,
E = 100, Q = 3000, M;. = 300, and M, = 5 are the
best choices of these parameters. Under condition (1), one
of the best operation sequences is shown in Table 9. Under
condition (2), one of the best operation sequences is shown
in Table 10. Under condition (3), one of the best operation
sequences using proposed algorithm is shown in Table 11.

In Table 12, the TPCs generated by the proposed ACO are
compared with those of GA and SA approach by Li et al. [13],
TS by Li et al. [6], and the ACO by Liu et al. [19]

The comparing results show that the proposed algorithm
is better than the other algorithms. Under condition (1), a
lower TPC (2435.0) has been found using the improved ACO
approach, and the mean TPC (2456.1) is better than the costs
of other four algorithms. Under condition (2), a lower TPC
(1970.0) has been found using the improved ACO approach.
Under condition (3), the minimum TPC (2580) is the same as
the TS [6]. The mean TPC generated by proposed approach is
better than the other algorithms under the three conditions.
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TABLE 12: Results compared to other algorithms for Part 2. PP,: Up-to-now best process
L,:  Up-to-now best TPC
PP;: Iteration best process

Condition  Proposed approach ACO TS SA GA

@ L;: Tteration best TPC
Mean 2456.1 2490.0 2609.6 2668.5 2796.0 PP.: Restart best proc
Maximum 2527.0 2500.0 2690.0 2829.0 2885.0 Restart best TP
Minimum 2435.0 2450.0 2527.0 2535.0 2667.0

(2)

Mean 2115.4 2117.0 2208.0 2287.0 2370.0
Maximum 2380.0 2120.0 2390.0 2380.0 2580.0
Minimum 1970.0 2090.0 2120.0 2120.0 2220.0
(3)
Mean 2600 2600.0 2630.0 2630.0 2705.0
Maximum 2740.0 2600.0 2740.0 2740.0 2840.0
Minimum 2580.0 2600.0 2580.0 2590.0 2600.0
7. Conclusions authors declare that there is no conflict of interests
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