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A Gram-Charlier distribution has a density that is a polynomial times a normal density. For option pricing this retains the
tractability of the normal distribution while allowing nonzero skewness and excess kurtosis. Properties of the Gram-Charlier
distributions are derived, leading to the definition of a process with independent Gram-Charlier increments, as well as formulas
for option prices and their sensitivities. A procedure for simulating Gram-Charlier distributions and processes is given. Numerical
illustrations show the effect of skewness and kurtosis on option prices.

1. Introduction

Gram-Charlier series are expansions of the form

𝑓 (𝑥) = 𝜙 (𝑎, 𝑏; 𝑥)
⋅ [1 + 𝑐1𝐻𝑒1 (𝑥 − 𝑎𝑏 ) + 𝑐2𝐻𝑒2 (𝑥 − 𝑎𝑏 ) + ⋅ ⋅ ⋅] , (1)

where

𝜙 (𝑎, 𝑏; 𝑥) = 1𝑏√2𝜋𝑒−(1/2𝑏
2)(𝑥−𝑎)2 , 𝑥 ∈ R, (2)

is the usual normal density and 𝐻𝑒𝑘 is the Hermite polyno-
mial of order 𝑘.The expressionwithin square brackets in (1) is
an orthogonal polynomial expansion for the ratio 𝑓(𝑥)/𝜙(𝑥);
given an arbitrary function the expansion may or may not
converge to the true value of 𝑓(𝑥). In this paper we focus on
the properties of the Gram-Charlier distributions, obtained
by truncating the series after a finite number of terms.
What is obtained is a family of distributions parametrized by𝑎, 𝑏, 𝑐0, . . . , 𝑐𝑁, as is explained in detail below.

This paper has three main goals: (1) define and study the
properties of the family of Gram-Charlier distributions; (2)
define a Gram-Charlier process and derive its basic proper-
ties; (3) apply those to European options. The formulas we

give for European option prices and Greeks apply to Gram-
Charlier distributions of any order, and we use four- and six-
parameter Gram-Charlier distributions in our examples. Two
numerical illustrations show how option prices are affected
by the skewness and kurtosis of returns. This paper can
a reference for those using Gram-Charlier distributions in
option pricing but also in statistics.

Most previous applications to option pricing have
assumed that 𝑐1 = 𝑐2 = 0. We believe this restriction is not
necessary in a general theory of Gram-Charlier distributions,
as there may well be situations where the extra degrees of
freedom given by 𝑐1 and 𝑐2 will be useful. We discuss it in
detail at the end of Section 2.

It has been observed that option prices have nonconstant
implied volatilities, meaning that log returns do not have a
normal distribution under the risk-neutral measure. There
is a wide literature on modelling log returns to fit observed
option prices, the main alternatives to Brownian motion
being stochastic volatility models (where the parameter 𝜎 in
Black-Scholes is replaced with a continuous-time stochastic
process), GARCH time series, and Lévy processes. Gram-
Charlier distributions are mathematically simpler than the
models just mentioned, while allowing a better fit to data
than the normal distribution. Several authors have used
Gram-Charlier distributions in option pricing, as a model for
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log returns, among others [1–10]. The majority of previous
authors assumed a density of the form

𝜙 (𝑥) (1 + 𝑠6𝐻𝑒3 (𝑥) + 𝑘24𝐻𝑒4 (𝑥)) ,
𝜙 (𝑥) = 𝜙 (0, 1, 𝑥) = 1√2𝜋𝑒−𝑥

2/2,
(3)

for the normalized log return. (In our notation this is
a GC(0, 1; 0, 0, 𝑠/6, 𝑘/24) distribution; see Section 2.) The
notation emphasizes that in this case the coefficient of𝐻𝑒3(𝑥)
turns out to be Pearson’s skewness coefficient 𝑠 divided by 6,
and the coefficient of 𝐻𝑒4(𝑥) the excess kurtosis coefficient𝑘 divided by 24. The distribution of log returns is then
a four-parameter Gram-Charlier distribution (since there
are two other parameters, the mean and variance, besides𝑠 and 𝑘). This distribution allows nonzero skewness and
excess kurtosis, unlike the normal distribution found in
Black-Scholes. In (3) the parameters (𝑠, 𝑘) are restricted to
a specific region (see Figure 3), because outside that region
the function in (3) becomes negative for some values of 𝑥
(see Section 2.1).

Jurczenko et al. [8] specify the martingale restriction

𝑆0 = 𝑒−𝑟𝑇EQ (𝑆𝑇) (4)

that the four-parameter Gram-Charlier density must sat-
isfy in pricing options (previous authors had not taken it
into account). The martingale condition for general Gram-
Charlier distributions is described in Section 5. Our Gram-
Charlier distribution with parameters 𝑎, 𝑏, 𝑐1, . . . , 𝑐𝑁, denoted
by GC(𝑎, 𝑏; 𝑐1, . . . , 𝑐𝑁), has density

𝜙 (𝑎, 𝑏, 𝑥)
⋅ [1 + 𝑐1𝐻𝑒1 (𝑥 − 𝑎𝑏 ) + ⋅ ⋅ ⋅ + 𝑐𝑁𝐻𝑒𝑁 (𝑥 − 𝑎𝑏 )] . (5)

As stated above we do not set 𝑐1 = 𝑐2 = 0, and 𝑁 can
be any even positive integer. The question whether (5) is
nonnegative for all 𝑥 is an important one. Several authors
have disregarded this issue and, in fact, some have come up
with parameters that do not yield a true probability density
function. One might argue that this is the price to pay for
truncating an infinite Gram-Charlier series. However, if the
same log return distribution is used to price many options,
then a true probability density function is the only safe choice,
because otherwise there might be inconsistencies among
option prices. For instance, if the function used as density
is negative over the interval (𝛼, 𝛽), then a digital option that
pays off only when the log return is in that interval will have
a negative price. In this paper we consider Gram-Charlier
distributions, not expansions, and insist that the densities
integrate to one and be nonnegative. Our goal is to define a
family of proper probability distributions; nevertheless, our
formulas do apply to truncated Gram-Charlier expansions as
well.

The paper by León et al. [11] presents an alternative to
the general Gram-Charlier distributions we study in this
paper. Those authors consider the subclass of Gram-Charlier
distributions consisting of densities

𝑓𝑋 (𝑥) = 𝜙 (𝑎, 𝑏, 𝑥) 𝑝 (𝑥) , (6)

where the polynomial 𝑝(𝑥) is the square of another polyno-
mial, 𝑝(𝑥) = 𝑞(𝑥)2. This has the obvious advantage that the
nonnegativity restriction on 𝑓𝑋(⋅) is automatically satisfied.
We discuss that subclass of “squared” Gram-Charlier distri-
butions in the Conclusion.

Almost all previous authors have used Gram-Charlier
distributed log returns over a single time period. This has
an obvious downside, in that it becomes tricky, if not im-
possible, to preserve consistency between the prices of
options with different maturities. Section 3 shows that a
Lévy process with Gram-Charlier increments does not exist;
however, it also shows that the sum of independent Gram-
Charlier distributed variables also has a Gram-Charlier dis-
tribution.This opens the way for multiperiod Gram-Charlier
option pricing, using a discrete-time random walk model for
which the log return over any period has a Gram-Charlier
distribution. The Gram-Charlier distribution of the multi-
period return has a larger number of parameters, though the
model is still simpler than almost any (if not all) alternative
stochastic volatility models. There is no problem computa-
tionally, since we give explicit formulas for options under
Gram-Charlier distributions with an arbitrary number of
parameters.

The layout of the paper is as follows. In Section 2, we
extend the study of Gram-Charlier distributions to all possi-
ble polynomials 𝑝(⋅) and derive their properties (moments,
cumulants, moment determinacy, properties of the set of
valid parameters, tail, and so on). Some of the formulas
and properties in Theorem 2 appear to be new. In Section 3
we show that there is no Lévy process with Gram-Charlier
distributed increments, apart from Brownian motion, and
we define a discrete-time process with independent Gram-
Charlier increments that is suitable for option pricing. In
Section 4 we show that the log Gram-Charlier distribution is
not determined by itsmoments, just like the lognormal. Next,
Section 5 gives formulas for European call and put prices
when the log-price returns of the underlying have a general
Gram-Charlier distribution; the previous literature mostly
considered the GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4) family and the squared
Gram-Charlier distributions (an exception is [10], where it
is assumed that 𝑐1 = 𝑐2 = 0). In particular, we derive a
change ofmeasure formula that extends theCameron-Martin
formula for the normal distribution; the latter is used in
pricing European options in the Black-Scholes model. We
also derive formulas for the sensitivities (Greeks) of those
option prices with respect to all parameters. A technique for
simulating Gram-Charlier distributions is described. Parts
(c), (d), (i), (j) (k), and (l) of Theorem 2 and part (b) of
Theorem 3 and Theorems 6, 7, 9, and 11 appear to be new.
Theorem 3(a) is for the first time formulated for general
Gram-Charlier distributions. Theorems 3(a), 4, and 8 are
given, more or less explicitly, for the subclass of squared
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Gram-Charlier distributions in [11], and some of the Greeks
in Theorem 9 had been calculated for the GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4)
distribution by previous authors.

In Section 6 we give two applications that show how
option prices depend on skewness and kurtosis of the log
returns (this of course cannot be done in the classical Black-
Scholes setting, while it appears quite complicated to do
so in stochastic volatility or Lévy driven models). The first
example is equity indexed annuities (EIAs in the sequel)
premium options. The pricing of EIAs has been studied by
many authors, including Hardy [12], Gaillardetz and Lin [13],
and Boyle and Tian [14]. The second example is lookback
options, which illustrates the use of the simulation method
in Section 2.5. Lookback options have been studied by
numerous authors, but there is no closed form formula for
the price of discretely monitored lookback options within
the Black-Scholes model. We refer the reader to Kou [15].
In those examples all parameters are estimated by maximum
likelihood, with the range of the parameters restricted to
where they correspond to a true probability distribution.
Moment estimation is of course possiblewhen 𝑐1 = 𝑐2 = 0, but
it is not trustworthy, because of the range restriction on the
parameters 𝑐3, 𝑐4, . . .; for instance, the empirical skewness and
excess kurtosis have a positive probability of falling outside
the feasible region (see Section 6). Theorem 2(f) shows
that the first 𝑘 moments of the Gram-Charlier distribution
depend on more than 𝑘 parameters, which probably rules
out moment estimation, unless one a priori fixes two of the
parameters (which again is not trustworthy). We apply max-
imum likelihood to the six-parameterGC(𝑎, 𝑏; 𝑐1, 𝑐2, 𝑐3, 𝑐4) in
Section 6, but we do realize that maximum likelihood esti-
mation for higher order Gram-Charlier distributions poses
computational problems, which are an interesting avenue for
further research. (A referee pointed out that fixing 𝑎 and 𝑏
would make estimation easier; our guess is that if one wishes
to simplify maximum likelihood estimation then fixing 𝑎 and𝑏might be a better idea than fixing 𝑐1 and 𝑐2, though we have
not looked at this in any depth. A two-step process might
be imagined, whereby the data first give information about𝑎 and 𝑏, and then maximum likelihood is applied using that
preliminary information. This would help by constraining
the optimization to a smaller region, while agreeing with the
intuitive idea that 𝑎 and 𝑏 are location and scale parameters,
resp.)

Notation 1. The normal density function is denoted as

𝜙 (𝑎, 𝑏, 𝑥) = 1𝑏√2𝜋𝑒−(1/2𝑏
2)(𝑥−𝑎)2 ,

𝜙 (0, 1, 𝑥) = 𝜙 (𝑥) = 𝑒−𝑥2/2√2𝜋 ,
(7)

and its distribution function is

Φ (𝑥) = ∫𝑥
−∞

𝜙 (𝑦) 𝑑𝑦. (8)

Two equivalent versions of the Hermite polynomials may be
found in the literature: for 𝑛 = 0, 1, 2 . . .,

𝐻𝑛 (𝑥) = (−1)𝑛 𝑒𝑥2 𝑑𝑛𝑑𝑥𝑛 𝑒−𝑥2
𝐻𝑒𝑛 (𝑥) = (−1)𝑛 𝑒𝑥2/2 𝑑𝑛𝑑𝑥𝑛 𝑒−𝑥2/2.

(9)

The first one is common in mathematics and physics, but
in probability and statistics there is an obvious advantage in
using the second one. (The conversion formula is 𝐻𝑒𝑛(𝑥) =2−𝑛/2𝐻𝑛(𝑥/√2).) The first few Hermite polynomials are

𝐻𝑒0 (𝑥) = 1,
𝐻𝑒1 (𝑥) = 𝑥,
𝐻𝑒2 (𝑥) = 𝑥2 − 1,
𝐻𝑒3 (𝑥) = 𝑥3 − 3𝑥,
𝐻𝑒4 (𝑥) = 𝑥4 − 6𝑥2 + 3,
𝐻𝑒5 (𝑥) = 𝑥5 − 10𝑥3 + 15𝑥,
𝐻𝑒6 (𝑥) = 𝑥6 − 15𝑥4 + 45𝑥2 − 15.

(10)

2. Gram-Charlier Distributions

For a fixed 𝑁, consider the class of distributions that have a
pdf of the form

𝑓 (𝑥) = 𝜙 (𝑥) 𝑁∑
𝑘=0

𝑐𝑘𝐻𝑒𝑘 (𝑥) , 𝑥 ∈ R, (11)

with 𝑐𝑁 ̸= 0. Noting that the leading term of 𝐻𝑒𝑘(𝑥) is 𝑥𝑘,
we conclude that 𝑁 must necessarily be even, because if 𝑁
were odd then the polynomial thatmultiplies𝜙(𝑥)would take
negative values for some 𝑥. For the same reason 𝑐𝑁 cannot be
negative.

Definition 1. Let 𝑎 ∈ R, 𝑏 > 0, 𝑐𝑘 ∈ R, 𝑐0 = 1, and 𝑁 ∈ {0, 2,4, . . .}. We write 𝑌 ∼ GC(𝑎, 𝑏; 𝑐1, . . . , 𝑐𝑁) (or 𝑌 ∼ GC(𝑎, 𝑏; 𝑐̃))
if the variable (𝑌 − 𝑎)/𝑏 has probability density function

𝜙 (𝑥) 𝑁∑
𝑘=0

𝑐𝑘𝐻𝑒𝑘 (𝑥) . (12)

This will be called a Gram-Charlier distribution with param-
eters 𝑎, 𝑏, 𝑐̃, with 𝑐̃ = (𝑐1, . . . , 𝑐𝑁). The largest 𝑁 such that𝑐𝑁 > 0 is called the order of the Gram-Charlier distribution.
The normal distribution with mean 𝑎 and variance 𝑏2 is a
GC(𝑎, 𝑏; (0, . . . 0)) (or GC(𝑎, 𝑏; −)) with order 0.

The class of Gram-Charlier distributions just defined
includes all distributions with density

1𝑏𝜙 (𝑦 − 𝑎𝑏 )𝑝 (𝑦) , (13)
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where 𝑝(𝑦) is a polynomial of degree 𝑁, since 𝑝(𝑦) can be
rewritten as a combination of

𝐻𝑒𝑘 (𝑦 − 𝑎𝑏 ) , 𝑘 = 0, 1, . . . , 𝑁. (14)

The condition 𝑐0 = 1 ensures that function (12) integrates to
one, since

∫∞
−∞

𝜙 (𝑥)𝐻𝑒𝑘 (𝑥) 𝑑𝑥 = (−1)𝑘 ∫∞
−∞

𝑑𝑘𝑑𝑥𝑘 𝜙 (𝑥) 𝑑𝑥 = 0,
𝑘 = 1, 2, . . . .

(15)

There are no simple conditions that ensure that a polynomial
remains nonnegative everywhere, though in some cases
precise conditions on 𝑐̃ are known; see below. If a vector 𝑐̃
leads to a true Gram-Charlier pdf, then we will say that 𝑐̃ is
valid.

Generating functions are convenient when dealing with
orthogonal polynomials. One is

𝑤1 (𝑡, 𝑥) = ∞∑
𝑛=0

𝑡𝑛𝑛!𝐻𝑒𝑛 (𝑥) = 𝑒𝑡𝑥−(𝑡2/2). (16)

Another one is

𝑤2 (𝑡, 𝑢, 𝑥, 𝑦)
= ∞∑

𝑘=0

∞∑
𝑛=0

𝑡𝑘𝑘! 𝑢
𝑛

𝑛! ∫
∞

−∞
𝑒−𝑥2/2𝐻𝑒𝑘 (𝑥)𝐻𝑒𝑛 (𝑥 + 𝑦) 𝑑𝑥

= √2𝜋𝑒𝑢(𝑡+𝑦).
(17)

Letting 𝑦 = 0 leads to
1√2𝜋 ∫

∞

−∞
𝑒−𝑥2/2𝐻𝑒𝑘 (𝑥)𝐻𝑒𝑛 (𝑥) 𝑑𝑥 = 𝜕𝑘𝑡𝑘 𝜕

𝑛

𝑢𝑛 𝑒𝑡𝑢
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝑢=0

= {{{
0 if 𝑘 ̸= 𝑛
𝑛! if 𝑘 = 𝑛.

(18)

This proves the orthogonality of theHermite polynomials and
gives us the value of

1√2𝜋 ∫
∞

−∞
𝑒−𝑥2/2𝐻𝑒2𝑛 (𝑥) 𝑑𝑥, (19)

which is essential in deriving Gram-Charlier series. Since𝐻𝑒0 = 1 this also implies

∫∞
−∞

𝜙 (𝑥)𝐻𝑒𝑘 (𝑥) 𝑑𝑥 = 0, 𝑘 = 1, 2, . . . . (20)

Another formula is the Laplace transform of 𝜙(𝑥)𝐻𝑒𝑛(𝑥),
which may be found by integrating by parts 𝑛 times:

∫∞
−∞

𝑒𝑡𝑥𝜙 (𝑥)𝐻𝑒𝑘 (𝑥) 𝑑𝑥 = 𝑡𝑘𝑒𝑡2/2, 𝑘 = 0, 1, . . . . (21)

Let us calculate the moments of a distribution with density
(11). First consider

∫∞
−∞

𝑥𝑛𝜙 (𝑥)𝐻𝑒𝑘 (𝑥) 𝑑𝑥
= (−1)𝑘 ∫∞

−∞
𝑥𝑛 ( 𝑑𝑘𝑑𝑥𝑘𝜙 (𝑥)) 𝑑𝑥.

(22)

Integrating by parts repeatedly yields

∫∞
−∞

𝑥𝑛𝜙 (𝑥)𝐻𝑒𝑘 (𝑥) 𝑑𝑥
= {{{

𝑛!2(𝑛−𝑘)/2 ((𝑛 − 𝑘) /2)! if 𝑛 − 𝑘 is even and nonnegative

0 if 𝑛 − 𝑘 is odd and nonnegative.
(23)

Hence, the 𝑛th moment of the distribution in (11) is

𝑁∧𝑛∑
𝑘=0

𝑐𝑘 𝑛!2(𝑛−𝑘)/2 ((𝑛 − 𝑘) /2)!1{𝑛−𝑘 even}. (24)

This says in particular that the parameter 𝑐𝑘 only affects the
moments of order 𝑘 and higher of theGC(𝑎, 𝑏; 𝑐̃) distribution
(see part (i) of Theorem 2). This is confirmed by the moment
generating function, which may be found from (21):

∫∞
−∞

𝑒𝑡𝑥𝑓 (𝑥) 𝑑𝑥 = 𝑒𝑡2/2 𝑁∑
𝑘=0

𝑐𝑘𝑡𝑘. (25)

It can be checked that differentiating this expression 𝑛 times
and setting 𝑡 = 0 give the same expression found for the 𝑛th
moment of (11).

Theorem 2. Suppose 𝑌 ∼ GC(𝑎, 𝑏; 𝑐̃), 𝑐̃ ∈ R𝑁 with 𝑏 > 0,𝑐0 = 1, and 𝑐𝑁 > 0.The order𝑁 of the distribution is necessarily
even.

(a)

E (𝑌 − 𝑎)𝑛 = 𝑏𝑛 𝑁∧𝑛∑
𝑘=0

𝑐𝑘 𝑛!2(𝑛−𝑘)/2 ((𝑛 − 𝑘) /2)!1{𝑛−𝑘 even}. (26)

(b)

E𝑒𝑡𝑌 = 𝑒𝑎𝑡+(𝑏2𝑡2/2) 𝑁∑
𝑘=0

𝑏𝑘𝑐𝑘𝑡𝑘, 𝑡 ∈ R. (27)

(c) The representation of the GC(𝑎, 𝑏; 𝑐̃) distribution in
terms of the parameters 𝑎, 𝑏, and 𝑐̃ is unique.

(d) All Gram-Charlier distributions are determined by their
moments.

(e)The set of valid 𝑐̃ inR𝑁 includes the origin, is not reduced
to a single point, and is convex.
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(f) The first six moments of theGC(𝑎, 𝑏; 𝑐̃) distribution are
𝑚1 = 𝑎 + 𝑏𝑐1,
𝑚2 = 𝑎2 + 𝑏2 + 2 (𝑎𝑏𝑐1 + 𝑏2𝑐2) ,
𝑚3 = 𝑎3 + 3𝑎𝑏2 + 3𝑏𝑐1 (𝑎2 + 𝑏2) + 6 (𝑎𝑏2𝑐2 + 𝑏3𝑐3) ,
𝑚4 = 𝑎4 + 4𝑎3𝑏𝑐1 + 12𝑎2𝑏2𝑐2 + 6𝑎2𝑏2 + 12𝑎𝑏3𝑐1

+ 24𝑎𝑏3𝑐3 + 12𝑏4𝑐2 + 24𝑏4𝑐4 + 3𝑏4,
𝑚5 = 𝑎5 + 5𝑎4𝑏𝑐1 + 20𝑎3𝑏2𝑐2 + 10𝑎3𝑏2 + 30𝑎2𝑏3𝑐1

+ 60𝑎2𝑏3𝑐3 + 60𝑎𝑏4𝑐2 + 120𝑎𝑏4𝑐4 + 15𝑎𝑏4
+ 15𝑏5𝑐1 + 60𝑏5𝑐3 + 120𝑏5𝑐5,

𝑚6 = 𝑎6 + 6𝑎5𝑏𝑐1 + 30𝑎4𝑏2𝑐2 + 15𝑎4𝑏2 + 60𝑎3𝑏3𝑐1
+ 120𝑎3𝑏3𝑐3 + 180𝑎2𝑏4𝑐2 + 360𝑎2𝑏4𝑐4
+ 45𝑎2𝑏4 + 90𝑎𝑏5𝑐1 + 360𝑎𝑏5𝑐3 + 720𝑎𝑏5𝑐5
+ 90𝑏6𝑐2 + 360𝑏6𝑐4 + 720𝑏6𝑐6 + 15𝑏6.

(28)

(g) The first six cumulants of the GC(𝑎, 𝑏; 𝑐̃) distribution
are

𝜅1 = 𝑎 + 𝑏𝑐1,
𝜅2 = 𝑏2 (1 − 𝑐21 + 2𝑐2) ,
𝜅3 = 2𝑏3 (𝑐31 − 3𝑐1𝑐2 + 3𝑐3) ,
𝜅4 = −6𝑏4 (𝑐41 − 4𝑐21 𝑐2 + 2𝑐22 + 4𝑐1𝑐3 − 4𝑐4) ,
𝜅5 = 24𝑏5 (𝑐51 − 5𝑐31 𝑐2 + 5𝑐1𝑐22 + 5𝑐21 𝑐3 − 5𝑐2𝑐3 − 5𝑐1𝑐4
+ 5𝑐5) ,

𝜅6 = −120𝑏6 (𝑐61 − 6𝑐41 𝑐2 + 9𝑐21 𝑐22 − 2𝑐32 + 6𝑐31 𝑐3
− 12𝑐1𝑐2𝑐3 + 3𝑐23 − 6𝑐21 𝑐4 + 6𝑐2𝑐4 + 6𝑐1𝑐5 − 6𝑐6) .

(29)

(h) The following hold for any GC(𝑎, 𝑏; 𝑐̃) distribution:
mean: 𝑎 + 𝑏𝑐1

variance: 𝑏2 (1 − 𝑐21 + 2𝑐2)
skewness coefficient:

2 (𝑐31 − 3𝑐1𝑐2 + 3𝑐3)
(1 − 𝑐21 + 2𝑐2)3/2

excess kurtosis coefficient: − 6 (𝑐41 − 4𝑐21 𝑐2 + 2𝑐22 + 4𝑐1𝑐3 − 4𝑐4)(1 − 𝑐21 + 2𝑐2)2 .

(30)

(i) Suppose 𝑋 ∼ GC(𝑎, 𝑏; 𝑐̃𝑋), 𝑌 ∼ GC(𝑎, 𝑏; 𝑐̃𝑌). Then the
first 𝐾moments of𝑋 and 𝑌 are the same; that is,

E𝑋𝑗 = E𝑌𝑗, 𝑗 = 1, . . . , 𝐾, (31)

if and only if 𝑐𝑋𝑗 = 𝑐𝑌𝑗 , 𝑗 = 1, . . . , 𝐾. This implies that if 𝑐1
up to 𝑐4 are equal to 0 then the distribution has zero skewness
and excess kurtosis; hence, this shows how to construct an
infinite number of distributions that share this property with
the normal.

(j) Suppose𝑋 ∼ GC(𝑎, 𝑏; 𝑐̃𝑋). Then

𝑎 = E𝑋 ⇐⇒ 𝑐𝑋1 = 0,
𝑏2 = E (𝑋 − 𝑎)2 ⇐⇒ 𝑐𝑋2 = 0,

{𝑎 = E𝑋, 𝑏2 = Var𝑋} ⇐⇒ {𝑐𝑋1 = 𝑐𝑋2 = 0} .
(32)

When 𝑐𝑋1 = 𝑐𝑋2 = 0 the skewness and excess kurtosis coefficients
of𝑋 are 6𝑐𝑋3 and 24𝑐𝑋4 , respectively, for any𝑁 = 0, 2, 4, . . ..

(k) If𝑋 ∼ GC(𝑎, 𝑏; 𝑐1, . . . , 𝑐𝑁) and 𝑞 is a constant then 𝑌 =𝑞𝑋 ∼ GC(𝑎𝑞, 𝑏|𝑞|; 𝑐󸀠1, . . . , 𝑐󸀠𝑁), where 𝑐󸀠𝑘 = (sign(𝑞))𝑘𝑐𝑘, 𝑘 ≥ 1.
In particular, −𝑋 ∼ GC(−𝑎, 𝑏; −𝑐1, . . . , (−1)𝑁−1𝑐𝑁−1, 𝑐𝑁).

(l) The law of the square of 𝑋 ∼ GC(0, 1; 𝑐1, . . . , 𝑐𝑁) is a
combination of chi-square distributions with 1, 3, . . . , 𝑁 + 1
degrees of freedom that has density

𝑔 (𝑦) = 𝑒−𝑦/2√2𝜋𝑦
𝑛/2∑
𝑗=0

𝛼𝑗𝑦𝑗,

𝑤ℎ𝑒𝑟𝑒 𝑛/2∑
𝑗=0

𝛼𝑗𝑦𝑗 = 𝑛/2∑
𝑗=0

𝑐2𝑗𝐻𝑒2𝑗 (√𝑦) .
(33)

Proof. Parts (a) and (b) were proved above, and (c) follows
directly from (b). To prove (d) it is sufficient to note the
existence of E𝑒𝑡𝑌 for 𝑡 in an open neighbourhood of 𝑠 = 0. For
(e), if 𝑐̃ = 0̃ ∈ R𝑁 then the distribution is the standard normal,
and this is a Gram-Charlier distribution. Since 𝑐𝑁 > 0 and𝑁
is even, the polynomial

𝑁∑
𝑘=1

𝐻𝑒𝑘 (𝑥) (34)
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tends to∞ when |𝑥| tends to∞. Hence, there is 𝜖0 > 0 such
that

1 + 𝜖 𝑁∑
𝑘=0

𝐻𝑒𝑘 (𝑥) > 0, 𝑥 ∈ R, 0 ≤ 𝜖 ≤ 𝜖0 (35)

(recall that 𝑐0𝐻𝑒0(𝑥) = 1 for all Gram-Charlier distributions).
The set of valid vectors 𝑐̃ thus includes (𝜖, . . . , 𝜖) ∈ R𝑁 for each0 ≤ 𝜖 ≤ 𝜖0. If 𝑐̃(𝑗), 𝑗 = 1, 2, are valid then 𝑝𝑐̃(1) + (1 − 𝑝)𝑐̃(2) is
also valid, for any 𝑝 ∈ (0, 1).

Part (f) is found by expanding the mgf in (b) as a series in𝑠 around the origin. Part (g) is found by expanding

𝑡 󳨃󳨀→ log(𝑒𝑎𝑡+(𝑏2𝑡2/2) 𝑁∑
𝑘=0

𝑏𝑘𝑐𝑘𝑡𝑘) . (36)

The formulas in (h) follow (f) and (g).
For part (i), it is sufficient to consider the case 𝑎 = 0, 𝑏 = 1

only. Write

𝜓 (𝑡) = 𝑒𝑡2/2,
𝑞𝑋 (𝑡) = 𝑁∑

𝑘=0

𝑐𝑋𝑘 𝑡𝑘,
𝑞𝑌 (𝑡) = 𝑁∑

𝑘=0

𝑐𝑌𝑘 𝑡𝑘
(37)

and calculate the moments of 𝑋 and 𝑌 by successively
differentiating the mgf ’s of 𝑋 and 𝑌 (note that 𝑐𝑋0 = 𝑞𝑋(0) =𝑐𝑌0 = 𝑞𝑌(0) = 1). The first 𝐾 moments of 𝑋 and 𝑌 are the
same if and only if

𝜓󸀠 (0) 𝑞𝑋 (0) + 𝜓 (0) 𝑞󸀠𝑋 (0) = 𝜓󸀠 (0) 𝑞𝑌 (0) + 𝜓 (0) 𝑞󸀠𝑌 (0) ,...
𝐾∑
𝑗=0

(𝐾𝑗)𝜓(𝑗) (0) 𝑞(𝐾−𝑗)𝑋 (0) = 𝐾∑
𝑗=0

(𝐾𝑗)𝜓(𝑗) (0) 𝑞(𝐾−𝑗)𝑌 (0) .
(38)

Suppose that 𝑐𝑋𝑗 = 𝑐𝑌𝑗 , 𝑗 = 1, . . . , 𝐾. Then 𝑞(𝑗)𝑋 (0) = 𝑞(𝑗)𝑌 (0),𝑗 = 1, . . . , 𝐾, and thus the first𝐾moments of𝑋 and𝑌 are the
same. Conversely, suppose E𝑋𝑗 = E𝑌𝑗, 𝑗 = 1, . . . , 𝐾. Then
the first identity above implies that 𝑐𝑋1 = 𝑞󸀠𝑋(0) = 𝑞󸀠𝑌(0) = 𝑐𝑌1 ,
since 𝜓(0) is not zero. The second identity implies that 𝑐𝑋2 =𝑐𝑌2 , and so on, up to 𝑐𝑋𝐾 = 𝑐𝑌𝐾.

Turning to (j), the first equivalence

𝑎 = E𝑋 ⇐⇒ 𝑐𝑋1 = 0 (39)

is an immediate consequence of property (i) with 𝐾 = 1. To
prove the second equivalence, suppose 𝑋 ∼ GC(0, 1; 𝑐̃), and
let 𝑌 ∼ GC(0, 1; −) = N(0, 1). Then

E𝑋2 = 𝜓󸀠󸀠 (0) 𝑞𝑋 (0) + 2𝜓󸀠 (0) 𝑞󸀠𝑋 (0) + 𝜓 (0) 𝑞󸀠󸀠𝑋 (0) ,
E𝑌2 = 𝜓󸀠󸀠 (0) 𝑞𝑌 (0) + 2𝜓󸀠 (0) 𝑞󸀠𝑌 (0) + 𝜓 (0) 𝑞󸀠󸀠𝑌 (0) . (40)

Here 𝑞𝑋(0) = 𝑞𝑌(0) = 1 and 𝜓󸀠(0) = 0; hence, E𝑋2 = E𝑌2
if and only if 𝑞󸀠󸀠𝑋(0) = 𝑞󸀠󸀠𝑌(0). The last equality is 𝑐𝑋2 = 𝑐𝑌2 . For𝑋 ∼ GC(𝑎, 𝑏; 𝑐̃𝑋), with 𝑎 and 𝑏 being arbitrary, this means
that

E(𝑥 − 𝑎𝑏 )2 = 1 ⇐⇒ 𝑐𝑋2 = 0. (41)

For (k), observe that if 𝑞 ̸= 0 then the mgf of 𝑌 is

𝑒𝑎𝑞𝑠+(1/2)𝑏2𝑞2𝑠2 𝑁∑
𝑘=0

𝑐𝑘𝑏𝑘𝑞𝑘𝑠𝑘

= 𝑒𝑎𝑞𝑠+(1/2)𝑏2𝑞2𝑠2 𝑁∑
𝑘=0

𝑐𝑘 ( 𝑞󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨)
𝑘 (𝑏 󵄨󵄨󵄨󵄨𝑞󵄨󵄨󵄨󵄨)𝑘 𝑠𝑘.

(42)

Finally, turn to (l). Routine calculations show that the density
of the square is

12√𝑦 (𝑓𝑋 (√𝑦) + 𝑓𝑋 (−√𝑦))
= 𝜙 (√𝑦)2√𝑦

𝑁∑
𝑘=0

𝑐𝑘 [𝐻𝑒𝑘 (√𝑦) + 𝐻𝑒 (−√𝑦)] .
(43)

The Hermite polynomials of odd order are odd functions
and so disappear from that expression, while the even order
Hermite polynomials are even functions.

When 𝑁 = 0 the GC(𝑎, 𝑏; 𝑐̃) distribution is the normal
distribution with mean 𝑎 and variance 𝑏2. However, part (b)
of the theorem says that when𝑁 > 0 the parameters 𝑎 and 𝑏2
are not necessarily the mean and variance of the distribution.
Simple calculations lead to the following result.

Theorem 3. (a) If 𝑋 ∼ GC(0, 1; 𝑐1, . . . , 𝑐𝑁) then
P (𝑋 ≤ 𝑥) = Φ (𝑥) − 𝜙 (𝑥) 𝑁∑

𝑘=1

𝑐𝑘𝐻𝑒𝑘−1 (𝑥) ,
P (𝑋 > 𝑥) = Φ (−𝑥) + 𝜙 (𝑥) 𝑁∑

𝑘=1

𝑐𝑘𝐻𝑒𝑘−1 (𝑥) .
(44)

(b) The tails of the GC(𝑎, 𝑏; 𝑐1, . . . , 𝑐𝑁) distribution are

P (𝑋 > 𝑥) ∼ 𝑐𝑁 (𝑥 − 𝑎𝑏 )𝑁−1 𝜙(𝑥 − 𝑎𝑏 )
as 𝑥 󳨀→ ∞,

P (𝑋 < 𝑥) ∼ 𝑐𝑁 (|𝑥 − 𝑎|𝑏 )𝑁−1 𝜙(𝑥 − 𝑎𝑏 )
as 𝑥 󳨀→ −∞.

(45)

The tails of the Gram-Charlier distributions are thicker
than those of the normal distribution but are still “thin”
because they are in the limit smaller than any exponential
function exp(−𝛼𝑥).
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2.1. The GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4) Family. Here the exact region for
the (𝑐3, 𝑐4) that lead to a true probability distribution has been
found. This goes back to Barton and Dennis [16], but a more
detailed explanation is given in Jondeau and Rockinger [6].
The region is shown in Figure 3 (use the correspondence𝑠 = 6𝑐3, 𝑘 = 24𝑐4 from Theorem 2(h)). An important fact
about this region is that it is not rectangular; the possible
excess kurtosis values depend on skewness, and conversely.

2.2. GC(𝑎, 𝑏; 𝑐̃) Distributions of Order 4 and Higher. The
GC(𝑎, 𝑏; 𝑐1, 𝑐2, 𝑐3, 𝑐4) family has six parameters, rather than
four, and thus has more degrees of freedom in fitting data;
to the authors’ knowledge the general six-parameter Gram-
Charlier distribution has been used in financial applica-
tions by León et al. [11] only (those authors use the sub-
family consisting of polynomials 𝑝(⋅) that are squares of
some second-degree polynomial). Schlögl [10] fits the six-
and eight-parameter families GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4, 𝑐5, 𝑐6) and
GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8) to data.

The set of (𝑐1, 𝑐2, 𝑐3, 𝑐4) that yield true probability distri-
butions has not been identified, but it is possible to fit the six
parameters 𝑎, 𝑏, 𝑐1, 𝑐2, 𝑐3, 𝑐4 by maximum likelihood.

2.3. Why We Do Not Assume That 𝑐1 = 𝑐2 = 0. Almost all
previous authors have assumed that 𝑐1 = 𝑐2 = 0, because they
used normalized data:

𝑌 = 𝑋 − E𝑋√Var𝑋 (46)

(see part (j) ofTheorem 2) as explained below. In this section
we explain why it is important not to restrict Gram-Charlier
distributions or series in that way. The first reason for not
doing so is that enlarging the parameter space can only
be a good thing. The second one is that in fitting those
distributions to data there may be very real advantages in
letting 𝑐1 and 𝑐2 be different from zero. The only downside
of letting 𝑐1 and 𝑐2 take nonzero values, and it is of no real
importance, is that 𝑐3 and 𝑐4 lose their simple relationship
with skewness and excess kurtosis (see part (h) ofTheorem2).
A third reason is that after an exponential change of measure
a Gram-Charlier distribution will rarely have 𝑐1 = 𝑐2 = 0; see
Section 2.4.

We now show, using an example that can be worked out
explicitly, that it is not always best to use normalized data
when fitting Gram-Charlier distributions, because choosing
another affine transformation of the data may well yield a
much better fit.

The “standard” Gram-Charlier expansion for a function𝑓(⋅) is
𝜙 (𝑥) ∞∑

𝑘=0

𝑐𝑘𝐻𝑒𝑘, (47)

where

𝑐𝑘 = 1𝑘! ∫
∞

−∞
𝐻𝑒𝑘 (𝑥) 𝑓 (𝑥) 𝑑𝑥 = 1𝑘!E𝐻𝑒𝑘 (𝑋) . (48)

A classical result about Hermite series, proved by Cramér
[17], is that sufficient conditions for the Gram-Charlier
expansion (47) to converge to

12 (𝑓 (𝑥−) + 𝑓 (𝑥+)) (49)

for all 𝑥 ∈ R are that (i) 𝑓(⋅) has finite variation in every
bounded interval, and (ii) satisfies

∫∞
−∞

𝑒𝑥2/4𝑓 (𝑥) 𝑑𝑥 < ∞. (50)

If 𝑋 has density 𝑓(⋅), then the last condition is E𝑒𝑋2/4 < ∞.
This condition cannot be improved upon, in the sense that
there are cases where the Gram-Charlier series defined above
diverges, althoughE𝑒𝜌𝑋2 < ∞ for all 𝜌 < 1/4 (it will be shown
below that one such case is the normal distributionwithmean
0 and variance 2).

Let us first calculate

ℎ𝑞,𝑘 = E𝐻𝑒𝑘 (𝑋) , 𝑋 ∼ N (0, 𝑞2) . (51)

Using the generating function (16) we find

ℎ𝑞,𝑘 = {{{{{
0 if 𝑘 is odd

𝑘!2𝑘/2 (𝑘/2)! (𝑞2 − 1)𝑘/2 if 𝑘 is even. (52)

The Gram-Charlier expansion corresponding to the N(0, 𝑞2)
density is thus

𝜙 (𝑥) ∞∑
𝑘=0

ℎ𝑞,𝑘𝑘! 𝐻𝑒𝑘 (𝑥)
= 𝜙 (𝑥) ∞∑

𝑛=0

12𝑛𝑛! (𝑞2 − 1)𝑛𝐻𝑒2𝑛 (𝑥) .
(53)

It is possible to determinewhether this converges or notwhen𝑥 = 0; the Gram-Charlier series for 𝑓(0) is
1√2𝜋

∞∑
𝑛=0

(−1)𝑛 (2𝑛)!22𝑛 (𝑛!)2 (𝑞2 − 1)𝑛 . (54)

From Stirling’s formula,

(2𝑛)!22𝑛 (𝑛!)2 ∼ 1√𝜋𝑛 (55)

as 𝑛 tends to infinity, which implies that there are three
possibilities: expansion (54) (i) converges absolutely if 0 <𝑞2 < 2, (ii) converges simply if 𝑞2 = 2, and diverges if 𝑞2 > 2.
(The preceding calculations are from Cramér [17].)

Let us now consider a random variable 𝑋𝑝, 0 ≤ 𝑝 ≤ 1,
with density

𝑔𝑝 (𝑥) = 𝑝𝜙 (𝑥) + (1 − 𝑝) 1𝑝𝜙(𝑥𝑝) . (56)
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In words, 𝑋𝑝 has a N(0, 1) distribution with probability 𝑝
and aN(0, 𝑝2) distribution with probability 1 − 𝑝. Define the
normalized variable

𝑌𝑝 = 𝑋𝑝

√Var𝑋𝑝

= 𝑋𝑝𝜎𝑝 ,
𝜎2𝑝 = Var𝑋𝑝 = 𝑝 + 𝑝2 − 𝑝3.

(57)

The coefficients 𝑐𝑝,𝑘 of the Gram-Charlier expansion for 𝑌𝑝
are

𝑐𝑝,𝑘 = 1𝑘!E𝐻𝑒𝑘 (𝑌𝑝)
= 1𝑘! (𝑝ℎ1/𝜎𝑝 ,𝑘 + (1 − 𝑝) ℎ𝑝/𝜎𝑝 ,𝑘) .

(58)

We have shown that (53) diverges if 𝑞2 > 2. Here we see that𝑐𝑝,𝑘 involves ℎ𝑞,𝑘 with 𝑞 = 1/𝜎𝑝 and 𝑞 = 𝑝/𝜎𝑝; in the second
case there is no problem, as (𝑝/𝜎𝑝)2 < 2 for all 𝑝 ∈ (0, 1]. In
the first case,

1𝜎2𝑝 > 2 ⇐⇒ 𝑝 + 𝑝2 − 𝑝3 < 12 . (59)

This condition is satisfied for 𝑝 smaller than 𝑝∗ ≈ 0.403,
and so the Gram-Charlier expansion for 𝑌𝑝 diverges for all𝑝 < 𝑝∗. This is a sad state of affair: a series designed to work
for distributions that are “close to the normal” that fails for
combinations of two normal densities!

There is an easy solution: use a different scaling for 𝑋𝑝.
Rather than multiplying 𝑋𝑝 by 1/𝜎𝑝, use a factor 𝑟 such that
the series converges. In this example we know that the series
converges if and only if 𝑟 < √2. Say we choose 𝑝 = .3; this
implies

1
Var𝑋𝑝

= 10.3 + 0.32 − 0.33 = 2.75482 > 2. (60)

Figure 1 shows how the true density for𝑋0.3 is approximated
by order 10 and 20 Gram-Charlier truncated series if 𝑟 =1/𝜎0.3 ≐ 1.66 is chosen; the graph is not surprising, the
infinite Gram-Charlier expansion diverges. Figure 2 shows
the same except that 𝑟 is set to 1.4. The latter is smaller than√2, so the infinite expansion converges. In this example the
density to be approximated is symmetrical about 0, so 𝑐1 is
always 0, while

𝑞 = 1𝜎0.3 󳨐⇒ 𝑐2 = 0;
𝑞 = 1.4 󳨐⇒ 𝑐2 = −0.14426.

(61)
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Figure 1: Gram-Charlier approximations to the density 𝑔0.3(𝑥)
(solid line) when 𝑞 = 1/𝜎0.3 ≐ 1.66, resulting in 𝑐1 = 𝑐2 = 0. The
curve with long dashes is the order 10 approximation, and the one
with short dashes is the order 20 approximation.
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Figure 2: Gram-Charlier approximations to the density 𝑔0.3(𝑥)
(solid line) when 𝑞 = 1.4. The curve with long dashes is the order
10 approximation, and the one with short dashes is the order 20
approximation.

2.4. Exponential Change of Measure. The one-dimensional
Cameron-Martin formula may be stated as follows: if 𝑋 ∼
N(𝜇, 𝜎2) then for 𝑞 ∈ R and 𝑓 ≥ 0,

E𝑒𝑞𝑋𝑓 (𝑋) = 𝑒𝜇𝑞+(1/2)𝜎2𝑞2E𝑓 (𝑋 + 𝜎2𝑞) . (62)

The same property may be expressed in terms of a change of
measure. If 𝑋 P∼ N(𝜇, 𝜎2) and a change of measure is defined
by

𝑃󸀠 = 𝑒𝑞𝑋
EP𝑒𝑞𝑋 ⋅ 𝑃, (63)

then 𝑋 P󸀠∼ N(𝜇 + 𝜎2𝑞, 𝜎2). The next result is an extension of
the Cameron-Martin formula for the normal distribution to
the Gram-Charlier distributions. There are different though
equivalent formulas in Schlögl [10] (for the special case 𝑐1 =𝑐2 = 0).
Theorem 4. Suppose that 𝑋 P∼ GC(𝑎, 𝑏; 𝑐1, . . . , 𝑐𝑁) and that
P󸀠 is defined by (63) for 𝑞 ∈ R. Then 𝑋 P󸀠∼ GC(𝑎 + 𝑏2𝑞, 𝑏;𝑐󸀠1, . . . , 𝑐󸀠𝑁), where 𝑐󸀠1, . . . , 𝑐󸀠𝑁 are found from

𝑁∑
𝑘=0

𝑏𝑘𝑐󸀠𝑘𝑠𝑘 = ∑𝑁
𝑘=0 𝑏𝑘𝑐𝑘 (𝑞 + 𝑠)𝑘∑𝑁

𝑗=0 𝑏𝑗𝑐𝑗𝑞𝑗 , 𝑠 ∈ R, (64)
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or, more precisely,

𝑐󸀠𝑘 = 1∑𝑁
𝑗=0 𝑏𝑗𝑐𝑗𝑞𝑗

𝑁∑
ℓ=𝑘

(ℓ𝑘) 𝑏ℓ−𝑘𝑐ℓ𝑞ℓ−𝑘. (65)

Proof. It is sufficient to calculate the mgf of𝑋 under P󸀠:

E𝑃
󸀠𝑒𝑠𝑋 = 1

EP𝑒𝑞𝑋EP𝑒(𝑞+𝑠)𝑋 = (⋅ ⋅ ⋅)
= 𝑒(𝑎+𝑏2𝑞)𝑠+(1/2)𝑏2𝑠2 𝑁∑

𝑘=0

𝑏𝑘𝑠𝑘 1∑𝑁
𝑗=0 𝑏𝑗𝑐𝑗𝑞𝑗

⋅ 𝑁∑
ℓ=𝑘

(ℓ𝑘) 𝑏ℓ−𝑘𝑐ℓ𝑞ℓ−𝑘.
(66)

Example 5. If 𝑋 P∼ GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4) and 𝑞 = 1 the change
of measure (63) leads to

𝑐󸀠1 = 3𝑏2𝑐3 + 4𝑏3𝑐41 + 𝑏3𝑐3 + 𝑏4𝑐4 ,
𝑐󸀠2 = 3𝑏𝑐3 + 6𝑏2𝑐41 + 𝑏3𝑐3 + 𝑏4𝑐4 ,
𝑐󸀠3 = 𝑐3 + 4𝑏𝑐41 + 𝑏3𝑐3 + 𝑏4𝑐4 ,
𝑐󸀠4 = 𝑐41 + 𝑏3𝑐3 + 𝑏4𝑐4 .

(67)

Hence, assuming 𝑐1 = 𝑐2 = 0 does not imply that 𝑐󸀠1 and 𝑐󸀠2
are also zero. In other words, the familyGC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4) is
not closed under a change of measure that occurs naturally in
option pricing (see Section 5).

2.5. Simulating Gram-Charlier Distributions. Simulation is
required for many kinds of options, and it turns out that the
Gram-Charlier distributions are very easy to generate, as we
now show; there is no need to invert their distribution func-
tions. When estimating some quantity 𝑚 = E𝑔(𝑋1, . . . , 𝑋𝑠)
by simulation, one generates 𝑛 independent vectors

(𝑋(𝑗)
1 , . . . , 𝑋(𝑗)

𝑠 ) , 𝑗 = 1, . . . , 𝑛, (68)

with the same distribution. Suppose all the 𝑋’s are inde-
pendent and have the same Gram-Charlier distribution with
density

𝑓𝑋 (𝑥) = 𝜙 (𝑎, 𝑏, 𝑥) 𝑝 (𝑥) , (69)

where the polynomial 𝑝(𝑥) is given in (5). Then

E𝑔 (𝑋1, . . . , 𝑋𝑠) = ∫
R𝑠
𝑔 (𝑥1, . . . , 𝑥𝑠)

⋅ 𝑠∏
𝑘=1

[𝜙 (𝑎, 𝑏, 𝑥𝑘) 𝑝 (𝑥𝑘)] 𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑠
= EQ [𝑔 (𝑋1, . . . , 𝑋𝑠) 𝑠∏

𝑘=1

𝑝 (𝑋𝑘)] ,
(70)

where under the measure Q the 𝑋’s have a normal distri-
bution N(𝑎, 𝑏2). Hence, estimating E𝑔(𝑋1, . . . , 𝑋𝑠) by sim-
ulation can be performed by generating ordinary normal
random variables (𝑋(𝑗)

1 , . . . , 𝑋(𝑗)
𝑠 ), 𝑗 = 1, . . . , 𝑛, and then

using the estimator

𝑚̂𝑛 = 1𝑛
𝑛∑
𝑗=1

[𝑔 (𝑋(𝑗)
1 , . . . , 𝑋(𝑗)

𝑠 ) 𝑠∏
𝑘=1

𝑝 (𝑋(𝑗)

𝑘
)] . (71)

This is an application of the likelihood ratio method.

3. Convolution of Gram-Charlier
Distributions; Gram-Charlier Processes

The simplest way to find the distribution of the sum of
two independent Gram-Charlier distributed variables is to
multiply their moment generating functions. Suppose 𝑋𝑗 ∼
GC(𝑎𝑗, 𝑏𝑗; 𝑐(𝑗)1 , . . . , 𝑐(𝑗)𝑁 ), 𝑗 = 1, 2 are independent. Then

E𝑒𝑧(𝑋+𝑌)
= 𝑒(𝑎1+𝑎2)𝑡+(𝑏21+𝑏22 )(𝑡2/2)(𝑁(1)∑

𝑘=0

𝑐(1)𝑘 𝑡𝑘)(𝑁(2)∑
𝑘=0

𝑐(2)𝑘 𝑡𝑘) . (72)

Expanding the product, this says that

𝑋 + 𝑌 ∼ GC(𝑎1 + 𝑎2, √𝑏21 + 𝑏22 ; 𝑐1, . . . , 𝑐𝑁(1)+𝑁(2)) ,
𝑐𝑘 = 𝑘∑

𝑗=0

𝑐(1)𝑗 𝑐(2)𝑘−𝑗.
(73)

It is then possible to know the explicit distribution of

𝑍𝑛 = 𝑋1 + ⋅ ⋅ ⋅ + 𝑋𝑛, (74)

where the 𝑋’s are independent and have a Gram-Charlier
distribution, constituting a discrete-timeGram-Charlier pro-
cess. If the𝑋’s have the sameGC(𝑎, 𝑏; 𝑐1, . . . , 𝑐𝑁) distribution
then {𝑍𝑛, 𝑛 ≥ 0} is a random walk. The derivation of the
distribution of 𝑍𝑛 can be done recursively, using (73), or it
can be done by finding the Taylor expansion of

( 𝑁∑
𝑘=0

𝑐𝑘𝑡𝑘)
𝑛 = 𝑛𝑁∑

𝑘=0

𝑐(𝑛)𝑘 𝑡𝑘
= 1 + 𝑐1𝑛𝑡 + (𝑐2𝑛 + 12𝑐21𝑛 (𝑛 − 1)) 𝑡2 + ⋅ ⋅ ⋅
+ 𝑐𝑛𝑁𝑡𝑛𝑁,

(75)
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and thus

𝑍𝑛 ∼ GC(𝑎𝑛, 𝑏√𝑛; 𝑐1𝑛, 𝑐2𝑛 + 12𝑐21𝑛 (𝑛 − 1) , . . . , 𝑐𝑛𝑁) . (76)

These computations are simple using symbolic mathematics
software. An example is given at the end of Section 6.1.

The above raises the question of whether there is a
continuous-time process that has Gram-Charlier distributed
increments. There is such a process with normal increments
(Brownian motion), and it is moreover a Lévy process.

Theorem 6. The only Lévy process with Gram-Charlier dis-
tributed increments is Brownian motion.

Proof. It is sufficient to show that, besides the normal distri-
bution, any Gram-Charlier distribution cannot be infinitely
divisible. If 𝑋 has a Gram-Charlier distribution then its
moment generating function is of the form

𝑀(𝑧) = E𝑒𝑧𝑋 = 𝑒𝑎𝑧+𝑏2(𝑧2/2)𝜋 (𝑧) , (77)

where 𝜋(⋅) is a polynomial. Suppose 𝑋𝑛,1, . . . , 𝑋𝑛,𝑛 are inde-
pendent, have the same distribution, and add up to𝑋 (in law).
Fubini’s theorem implies that E𝑒𝑡𝑋𝑛,1 is finite for all real 𝑡, and
thus

𝑀𝑛 (𝑧) = E𝑒𝑧𝑋𝑛,1 (78)

is an analytic function of 𝑧 in the whole complex plane. We
then have the identity

𝑀𝑛 (𝑧)𝑛 = 𝑀(𝑧) , 𝑧 ∈ C, (79)

for every 𝑛 = 1, 2, 3, . . .. This means that the function 𝜋(𝑧)1/𝑛,
which is well defined for all 𝑧 that is not a zero of 𝜋, has an
analytic continuation over the whole of C for each 𝑛 ≥ 1,
which is impossible, for instance, take 𝑛 larger than the degree
of 𝜋.

More precisely, this says that if we exclude Brownian
motion, no increment of any Lévy process can have a Gram-
Charlier distribution. Any Gram-Charlier process with inde-
pendent increments must be discrete-time.

4. The Log Gram-Charlier Distribution

The distribution of the exponential of a Gram-Charlier dis-
tributed variable will naturally be called “logGram-Charlier”,
as we do for the lognormal: if 𝑌 ∼ GC(𝑎, 𝑏; 𝑐̃), then 𝐿 =
exp(𝑌) ∼ LogGC(𝑎, 𝑏; 𝑐̃). The density of 𝐿 is

𝑓𝐿 (𝑧) = 1𝑧𝑓𝑌 (log 𝑧) , 𝑧 > 0. (80)

This distribution has all moments finite, and they are given
by Theorem 2(b). The log Gram-Charlier distribution shares
one property with the lognormal, it is “moment indetermi-
nate.”

Theorem 7. The log Gram-Charlier distribution is not deter-
mined by its moments. More precisely, there is a noncountable
number of other distributions that have the same moments as
any particular log Gram-Charlier distribution.

Proof. There is a well-known way to construct a family of
distributions that have the same moments as the lognormal
(Feller [18], p. 227); the trick works for arbitrary parameters
but, for simplicity, let 𝐿 ∼ LogN(0, 1); that is,

𝑓𝐿 (𝑧) = 1𝑧√2𝜋𝑒−(1/2)log
2𝑧, 𝑧 > 0. (81)

All the functions

𝑓𝛼 (𝑧) = 𝑓𝐿 (𝑧) (1 + 𝛼 sin (2𝜋 log 𝑧)) , − 1 ≤ 𝛼 ≤ 1, (82)

are nonnegative, integrate to 1, and have the same moments
as 𝐿 (as a result of the symmetry of the standard normal
distribution, after an obvious change of variable). Now,
suppose 𝐿 ∼ LogGC(0, 1; 𝑐̃) (once again the same arguments
work for other values of 𝑎 and 𝑏), and consider

𝑔𝛼 (𝑧) = 𝑓𝐿 (𝑧) + 𝛼𝜙 (𝑧) sin (2𝜋 log 𝑧) . (83)

By the same change of variables used for the lognormal
one immediately finds that 𝑔𝛼 integrates to one and has the
same moments as 𝐿. The only difference with the case of
the lognormal is that 𝑔𝑎 is not necessarily nonnegative for−1 ≤ 𝛼 ≤ 1. Two cases may arise. The first one is that the
polynomial

𝑝 (𝑦) = 𝑁∑
𝑘=0

𝑐𝑘𝐻𝑒𝑘 (𝑦) (84)

has no real zero. In that case its infimum is strictly greater
than zero, and one can find a nonempty interval 𝐼 = (−𝜖, 𝜖)
such that 𝑔𝛼 is nonnegative for all 𝛼 ∈ 𝐼. In the second case𝑝(⋅) has one or more zeros and the previous argument breaks
down but can be modified to yield the same conclusion, if the
function sin(2𝜋𝑦) is replaced with

𝑠 (𝑦) = sin (2𝜋𝑦) 1{𝑦∉𝐽}, (85)

where 𝐽 is a collection of intervals that include the zeros of𝑝(⋅), so defined that 𝑠(⋅) is not identically zero and satisfies

𝑠 (𝑦 + 2𝑘𝜋) = 𝑠 (𝑦) ,
𝑠 (−𝑦) = −𝑠 (𝑦) . (86)

(These two conditions are sufficient for

∫∞
−∞

𝑒𝑘𝑦𝜙 (𝑦) 𝑠 (𝑦) 𝑑𝑦 = 0 (87)
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to hold for 𝑘 = 1, 2, . . ..)The details are omitted. Another way
to prove that the log Gram-Charlier distribution is moment
indeterminate when 𝑝(𝑦) has no zero (and thus the density𝑓𝐿(𝑧) does not take the value zero for any 𝑧 > 0) is to use
a Krein condition (Stoyanov [19], p. 941), which says that a
continuous distribution on R+ with positive density 𝑓(⋅) is
not determined by its moments if

−∫∞
0

log𝑓 (𝑧2)
1 + 𝑧2 𝑑𝑧 < ∞. (88)

5. Option Pricing Formulas

The formulas below hold for any vector (𝑐1, . . . , 𝑐𝑁) and thus
extend those that have been derived by previous authors
for the case where the log return has a GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4)
distribution or a “squared”Gram-Charlier distribution (León
et al. [11]). Schlögl [10] derives a formula equivalent to (90)
but for densities expressed as an infinite Gram-Charlier series
with 𝑐1 = 𝑐2 = 0.

As previous authors have done, we consider amarket with
a risky security 𝑆 and a risk-free security with annual return 𝑟
and suppose that the log return for period [0, 𝑇] (denoted as𝑋𝑇) has a Gram-Charlier distribution under the risk-neutral
(or “pricing”) measure, which we denote as Q. The physical
measure (usually denoted as P) is not specified (nothing says
that the log return has or does not have a Gram-Charlier
distribution under the physical measure).

The market model may have one or more periods, but
since we consider the pricing of ordinary European puts
and calls only the distribution of the log return for the
whole period [0, 𝑇] is required. For other types of options,
in particular the applications presented in the next section, it
may be necessary to use the one-period returns separately, as
is done inTheorem 11.

The risky security has price 𝑆0 at time 0, and 𝑆𝑇 = 𝑆0𝑒𝑋𝑇 .
Theorem 8. Suppose that a risky security pays dividends at
a constant rate 𝛿 over [0, 𝑇] and that the risk-free rate of
interest is 𝑟. Suppose also that under the risk-neutral measure
Q the log return of the risky security over [0, 𝑇] is 𝑋𝑇

Q∼
GC(𝑎, 𝑏; 𝑐1, . . . , 𝑐𝑁), which satisfies the martingale condition

𝑒𝑎+(𝑏2/2) 𝑁∑
𝑘=0

𝑏𝑘𝑐𝑘 = 𝑒(𝑟−𝛿)𝑇. (89)

Then the time-0 price of a European call option with maturity𝑇 and strike price 𝐾 is

𝐶0 = 𝑆0𝑒−𝛿𝑇Φ(𝑑1) − 𝐾𝑒−𝑟𝑇Φ(𝑑2) + 𝐾𝑒−𝑟𝑇𝜙 (𝑑2)
⋅ 𝑁∑
𝑘=1

[𝑐∗𝑘𝐻𝑒𝑘−1 (−𝑑1) − 𝑐𝑘𝐻𝑒𝑘−1 (−𝑑2)] , (90)

where 𝑑2, 𝑑1, and {𝑐∗𝑘 } are given by (97), (101), and (105). The
price of the corresponding European put is

𝑃0 = 𝐾𝑒−𝑟𝑇Φ(−𝑑2) − 𝑆0𝑒−𝛿𝑇Φ(−𝑑1) − 𝐾𝑒−𝑟𝑇𝜙 (𝑑2)
⋅ 𝑁∑
𝑘=1

[𝑐∗𝑘𝐻𝑒𝑘−1 (−𝑑1) − 𝑐𝑘𝐻𝑒𝑘−1 (−𝑑2)] . (91)

If𝑁 = 4, then the above simplify to

𝐶0 = 𝑆0𝑒−𝛿𝑇Φ(𝑑1) − 𝐾𝑒−𝑟𝑇Φ(𝑑2) + 𝑏𝐾𝑒−𝑟𝑇𝜙 (𝑑2)
⋅ [𝑐2 + (𝑏 − 𝑑2) 𝑐3 + (𝑏2 − 𝑏𝑑2 + 𝑑22 − 1) 𝑐4] ,

𝑃0 = 𝐾𝑒−𝑟𝑇Φ(−𝑑2) − 𝑆0𝑒−𝛿𝑇Φ(−𝑑1) − 𝑏𝐾𝑒−𝑟𝑇𝜙 (𝑑2)
⋅ [𝑐2 + (𝑏 − 𝑑2) 𝑐3 + (𝑏2 − 𝑏𝑑2 + 𝑑22 − 1) 𝑐4] .

(92)

Proof. Absence of arbitrage implies that EQ𝑆𝑇 = 𝑒(𝑟−𝛿)𝑇𝑆0, or
𝑆0𝑒𝑎+(𝑏2/2) 𝑁∑

𝑘=0

𝑏𝑘𝑐𝑘 = 𝑒(𝑟−𝛿)𝑇𝑆0. (93)

This justifies (89). The price of the call is

𝐶0 = 𝑒−𝑟𝑇EQ (𝑆𝑇 − 𝐾)+ = 𝐶+0 − 𝐶−0
𝐶+0 = 𝑒−𝑟𝑇EQ𝑆𝑇 (1{𝑆𝑇>𝐾}) ,
𝐶−0 = 𝐾𝑒−𝑟𝑇EQ (1{𝑆𝑇>𝐾}) .

(94)

The second part is easier to deal with

𝐶−0 = 𝐾𝑒−𝑟𝑇Q(𝑋𝑇 > log(𝐾𝑆0)) . (95)

Theprobability of the event𝑋𝑇 > log(𝐾/𝑆0) can be calculated
explicitly by recalling that (𝑋𝑇 − 𝑎)/𝑏 Q∼ GC(0, 1; 𝑐1, . . . , 𝑐𝑁)
and usingTheorem 3:

Q(𝑋𝑇 > log(𝐾𝑆0))
= Q(𝑋𝑇 − 𝑎𝑏 > 1𝑏 (log(𝐾𝑆0) − 𝑎))
= Φ (𝑑2) + 𝜙 (𝑑2) 𝑁∑

𝑘=1

𝑐𝑘𝐻𝑒𝑘−1 (−𝑑2) ,
(96)

where

𝑑2 = 1𝑏 (log(𝑆0𝐾) + 𝑎) . (97)

To calculate 𝐶+0 use the exponential change of measure
formula, defining

Q󸀠 = 𝑆𝑇
EQ𝑆𝑇 ⋅Q = 𝑒𝑋𝑇

EQ𝑒𝑋𝑇 ⋅Q. (98)
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Then

EQ (𝑆𝑇1{𝑆𝑇>𝐾}) = (EQ𝑆𝑇)EQ󸀠 (1{𝑆𝑇>𝐾}) . (99)

Since𝑋𝑇

Q󸀠∼ GC(𝑎 + 𝑏2, 𝑏; 𝑐󸀠1, . . . , 𝑐󸀠𝑁),
(EQ𝑆𝑇)EQ󸀠 (1{𝑆𝑇>𝐾}) = 𝑆0𝑒(𝑟−𝛿)𝑇Q󸀠 (𝑋𝑇 − 𝑎 − 𝑏2𝑏
> 1𝑏 (log(𝐾𝑆0) − 𝑎 − 𝑏2)) = 𝑆0𝑒(𝑟−𝛿)𝑇Φ(𝑑1)
+ 𝑆0𝑒(𝑟−𝛿)𝑇𝜙 (𝑑1) 𝑁∑

𝑘=1

𝑐󸀠𝑘𝐻𝑒𝑘−1 (−𝑑1) ,
(100)

where

𝑐󸀠𝑘 = 1∑𝑁
𝑗=0 𝑏𝑗𝑐𝑗

𝑁∑
ℓ=𝑘

(ℓ𝑘) 𝑏ℓ−𝑘𝑐ℓ, 𝑘 = 1, . . . , 𝑁,
𝑑1 = 1𝑏 [log(𝑆0𝐾) + 𝑎 + 𝑏2] = 𝑑2 + 𝑏.

(101)

Hence,

𝐶0 = 𝑆0𝑒−𝛿𝑇Φ(𝑑1) − 𝐾𝑒−𝑟𝑇Φ(𝑑2)
+ 𝑆0𝑒−𝛿𝑇𝜙 (𝑑1) 𝑁∑

𝑘=1

𝑐󸀠𝑘𝐻𝑒𝑘−1 (−𝑑1)
− 𝐾𝑒−𝑟𝑇𝜙 (𝑑2) 𝑁∑

𝑘=1

𝑐𝑘𝐻𝑒𝑘−1 (−𝑑2) .
(102)

Using

𝑆0𝑒−𝛿𝑇𝜙 (𝑑1)∑𝑁
𝑘=0 𝑏𝑘𝑐𝑘 = 𝑆0𝑒𝑎+(𝑏2/2)−𝑟𝑇𝜙 (𝑑1) = 𝐾𝑒−𝑟𝑇𝜙 (𝑑2) (103)

(a consequence of (89) and (101)), it is possible to write

𝑆0𝑒−𝛿𝑇𝜙 (𝑑1) 𝑐󸀠𝑘 = 𝐾𝑒−𝑟𝑇𝜙 (𝑑2) 𝑐∗𝑘 , (104)

where

𝑐∗𝑘 = 𝑐󸀠𝑘 𝑁∑
𝑘=0

𝑏𝑘𝑐𝑘 = 𝑁∑
ℓ=𝑘

(ℓ𝑘) 𝑏ℓ−𝑘𝑐ℓ, 𝑘 = 1, . . . , 𝑁. (105)

This proves (90).
The price of a European put can be found from the put-

call parity identity

𝑃0 = 𝐶0 − 𝑆0 + 𝐾𝑒−𝑟𝑇. (106)

Finally, if𝑁 = 4 then the summation in (90) becomes

4∑
𝑘=1

𝑐∗𝑘𝐻𝑒𝑘−1 (−𝑑1) − 4∑
𝑘=1

𝑐𝑘𝐻𝑒𝑘−1 (−𝑑2)
= 𝑏𝑐2 + (𝑏2 − 𝑏𝑑2) 𝑐3 + (𝑏3 − 𝑏2𝑑2 + 𝑏𝑑22 − 𝑏) 𝑐4.

(107)

This ends the proof.

The option price formulas are of the form “Black-Scholes
plus correction term.” Observe, however, that the values of𝑑1 and 𝑑2 are different from what they would be in the
Black-Sholes formula. More precisely, in the Black-Scholes
model (where 𝑐𝑘 = 0 for all 𝑘 ≥ 1) we have 𝑎 =
EQ𝑋𝑇 and 𝑏2 = VarQ𝑋𝑇, but this does not happen with
Gram-Charlier distributed log returns, first because of the
martingale condition (89) and second because of the result
in part (j) of Theorem 2.

5.1. Sensitivities (“Greeks”). The previous literature includes
formulas for sensitivities of Gram-Charlier option prices, but
only in the case of the four-parameter GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4)
Gram-Charlier distributions; see Jurczenko et al. [7], Rouah
and Vainberg [20], and Chateau [3]. Below we give sensi-
tivities of the option prices calculated above with respect to
all the parameters for a general Gram-Charlier distribution,
taking the martingale condition (89) into account. This
means that 𝑎 is a function of 𝛿, 𝑏, {𝑐𝑘}, 𝑟 and 𝑇 (we might have
written 𝑎 = 𝑎(𝛿, 𝑏, {𝑐𝑘}, 𝑟, 𝑇)). However, 𝑎 is not a function
of 𝑆0.
Theorem 9. Let 𝐶0 be the price of the European call option
described in Theorem 8. Then

Δ = 𝜕𝐶0𝜕𝑆0
= 𝑒−𝛿𝑇(Φ(𝑑1) + 𝜙 (𝑑1) 𝑁∑

𝑘=1

𝑐󸀠𝑘𝐻𝑒𝑘−1 (−𝑑1)) ,

𝛾 = 𝜕2𝐶0𝜕𝑆20 = 𝑒𝑎+(𝑏2/2)−𝑟𝑇𝑏𝑆0 𝜙 (𝑑1) 𝑁∑
𝑘=0

𝑐𝑘𝐻𝑒𝑘 (−𝑑2) ,
𝜌 = 𝜕𝐶0𝜕𝑟
= 𝐾𝑇𝑒−𝑟𝑇(Φ(𝑑2) + 𝜙 (𝑑2) 𝑁∑

𝑘=1

𝑐𝑘𝐻𝑒𝑘−1 (−𝑑2)) ,
𝜅 = 𝜕𝐶0𝜕𝑏 = 𝑆0𝑒−𝛿𝑇𝜙 (𝑑1)
⋅ 𝑁∑
𝑘=0

[𝑐󸀠𝑘 − 𝑐󸀠1𝑐󸀠𝑘+1 + (𝑘 + 2) 𝑐󸀠𝑘+2]𝐻𝑒𝑘 (−𝑑1) ,
𝜕𝐶0𝜕𝑐𝑗 = 𝐾𝑒−𝑟𝑇𝜙 (𝑑2)

⋅ (𝑗−1∑
𝑘=1

𝑏𝑘𝐻𝑒𝑗−1−𝑘 (−𝑑2) − 𝑏𝑗 𝑁∑
𝑘=1

𝑐󸀠𝑘𝐻𝑒𝑘−1 (−𝑑1)) ,
𝑗 ≥ 1.

(108)

In the formula for 𝜅 the symbols 𝑐󸀠𝑁+1 and 𝑐󸀠𝑁+2 are equal to zero.
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Proof. The following lemma is obtained by elementary calcu-
lations.

Lemma 10. For any integrable random variable 𝑈 and any
constant 𝐾,

𝜕𝜕𝑠E (𝑠𝑈 − 𝐾)+ = E (𝑈1{𝑠𝑈>𝐾}) . (109)

If 𝑈 has a continuous density 𝑓𝑈, then
𝜕2𝜕𝑠2E (𝑠𝑈 − 𝐾)+ = 𝐾

2

𝑠3 𝑓𝑈 (𝐾𝑠 ) . (110)

From 𝑆𝑇 = 𝑆0𝑒𝑋𝑇 and (100),

Δ = 𝜕𝜕𝑆0 [𝑒−𝑟𝑇EQ (𝑆0𝑒𝑋𝑇 − 𝐾)+] = 1𝑆0𝐶+0
= 𝑒−𝛿𝑇(Φ(𝑑1) + 𝜙 (𝑑1) 𝑁∑

𝑘=1

𝑐󸀠𝑘𝐻𝑒𝑘−1 (−𝑑1)) .
(111)

From the lemma,

𝛾 = 𝜕2𝜕2𝑆0𝐶0 = 𝑒−𝑟𝑇
𝜕2𝜕2𝑆0EQ (𝑆0𝑈 − 𝐾)+

= 𝐾2𝑒−𝑟𝑇𝑆30 𝑓𝑈 (𝐾𝑆0) , 𝑈 = 𝑒𝑋,
(112)

where 𝑋𝑇

Q∼ GC(𝑎, 𝑏; 𝑐1, . . . , 𝑐𝑁). Now the density of 𝑈 may
be expressed in terms of the density of 𝐺 = (𝑋𝑇 − 𝑎)/𝑏 Q∼
GC(0, 1; 𝑐1, . . . , 𝑐𝑁):

𝑓𝑈 (𝑢) = 1𝑏𝑢𝑓𝐺 (1𝑏 (log 𝑢 − 𝑎))
= 1𝑏𝑢𝜙 (𝑦)

𝑁∑
𝑘=0

𝑐𝑘𝐻𝑒𝑘 (𝑦)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=(1/𝑏)(log 𝑢−𝑎) .

(113)

Setting 𝑢 = 𝐾/𝑆0 and then using (103), we obtain

𝛾 = 𝐾𝑒−𝑟𝑇𝑏𝑆20 𝜙 (𝑑2) 𝑁∑
𝑘=0

𝑐𝑘𝐻𝑒𝑘 (−𝑑2)
= 𝑒𝑎+(𝑏2/2)−𝑟𝑇𝑏𝑆0 𝜙 (𝑑1) 𝑁∑

𝑘=0

𝑐𝑘𝐻𝑒𝑘 (−𝑑2) .
(114)

Next,

𝜌 = 𝜕𝜕𝑟EQ (𝑆0𝑒𝑎+𝑏𝐺−𝑟𝑇 − 𝐾𝑒−𝑟𝑇)+ = 𝜕𝜕𝑟EQℎ (𝐺, 𝑟) , (115)

where 𝐺 Q∼ GC(0, 1, 𝑐̃). For fixed 𝐺, the function 𝑔(𝑟) =ℎ(𝐺, 𝑟) is absolutely continuous and thus

𝜌 = EQ [ 𝜕𝜕𝑟 (𝑆0𝑒𝑎+𝑏𝐺−𝑟𝑇 − 𝐾𝑒−𝑟𝑇)] 1{𝑆0𝑒𝑎+𝑏𝐺−𝑟𝑇>𝐾𝑒−𝑟𝑇}. (116)

Now, from (89),

𝑒𝑎+𝑏𝐺−𝑟𝑇 = 𝑒𝑏𝐺−(𝑏2/2)−𝛿𝑇∑𝑁
𝑘=0 𝑏𝑘𝑐𝑘 (117)

does not depend on 𝑟, so
𝜌 = EQ (𝐾𝑇𝑒−𝑟𝑇1{𝑆0𝑒𝑎+𝑏𝐺−𝑟𝑇>𝐾𝑒−𝑟𝑇})
= 𝐾𝑇𝑒−𝑟𝑇 [Φ (𝑑2) + 𝜙 (𝑑2) 𝑁∑

𝑘=1

𝑐𝑘𝐻𝑒𝑘−1 (−𝑑2)] . (118)

The same line of reasoning shows that the sensitivity to 𝑏 is
𝜅 = 𝑆0𝑒−𝑟𝑇EQ [( 𝜕𝜕𝑏𝑒𝑎+𝑏𝐺) 1{S0𝑒𝑎+𝑏𝐺>𝐾}] . (119)

Define

𝑚(𝑏) = E𝑒𝑏𝐺−(𝑏2/2) = ∑
𝑘=0

𝑏𝑘𝑐𝑘,
𝑚󸀠 (𝑏) = ∑

𝑘=1

𝑘𝑏𝑘−1𝑐𝑘 = 𝑐∗1 .
(120)

In order to shorten the formulas we will write (from (89))

𝑒𝑎 = 𝑒(𝑟−𝛿)𝑇−(𝑏2/2)𝑚(𝑏) (121)

and thus find an expression for

𝑆0𝑒−𝛿𝑇EQ [( 𝜕𝜕𝑏 𝑒
𝑏𝐺−(𝑏2/2)

𝑚(𝑏) ) 1{𝐺>−𝑑2}]

= 𝑆0𝑒−𝛿𝑇−(𝑏2/2)𝑚(𝑏)2
⋅ EQ [(𝐺𝑒𝑏𝐺𝑚(𝑏) − 𝑒𝑏𝐺 (𝑚󸀠 (𝑏) + 𝑏𝑚 (𝑏)))
⋅ 1{𝐺>−𝑑2}] .

(122)

For arbitrary 𝑦 ∈ R,

EQ (𝑒𝑏𝐺1{𝐺>−𝑦}) = 𝑒𝑏2/2 [𝑚 (𝑏)Φ (𝑦 + 𝑏)

+ 𝜙 (𝑦 + 𝑏) 𝑁∑
𝑘=1

𝑐∗𝑘𝐻𝑒k−1 (−𝑦 − 𝑏)] .
(123)

To calculate

EQ (𝐺𝑒𝑏𝐺1{𝐺>−𝑦}) = 𝜕𝜕𝑏EQ (𝑒𝑏𝐺1{𝐺>−𝑦}) (124)

we need (see (105))

𝜕𝑐∗𝑘𝜕𝑏 = 𝜕𝜕𝑏
𝑁∑
ℓ=𝑘

(ℓ𝑘) 𝑏ℓ−𝑘𝑐ℓ = (𝑘 + 1) 𝑐∗𝑘+1,
𝑘 = 1, . . . , 𝑁 − 1,

𝜕𝑐∗𝑁𝜕𝑏 = 0.
(125)
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Then, noting that 𝑚󸀠(𝑏) = 𝑐∗1 = 𝑐󸀠1𝑚(𝑏) and (𝜙𝐻𝑒𝑘−1)󸀠 =−𝜙𝐻𝑒𝑘,
EQ (𝐺𝑒𝑏𝐺1{𝐺>−𝑦}) = 𝑏EQ (𝑒𝑏𝐺1{𝐺>−𝑦}) + 𝑒𝑏2/2𝑚(𝑏)
⋅ [𝑐󸀠1Φ(𝑦 + 𝑏) + 𝜙 (𝑦 + 𝑏)
⋅ 𝑁−2∑
𝑘=0

(𝑘 + 2) 𝑐󸀠𝑘+2𝐻𝑒𝑘 (−𝑦 − 𝑏) + 𝜙 (𝑦 + 𝑏)
⋅ 𝑁∑
𝑘=0

𝑐󸀠𝑘𝐻𝑒𝑘 (−𝑦 − 𝑏)] .

(126)

Setting 𝑦 = 𝑑2 and putting the pieces together yield the
result. When 𝑐̃ = 0 this reduces to 𝑆0𝑒−𝛿𝑇𝜙(𝑑1), which is the
sensitivity of the Black-Scholes call price to 𝑏 = 𝜎√𝑇.

Finally, turn to the sensitivities with respect to 𝑐𝑗, 𝑗 ≥ 1.
First, let us derive 𝜕𝑎/𝜕𝑐𝑗; from (89),

𝜕𝑎𝜕𝑐𝑗 𝑒𝑎+(𝑏
2/2)

𝑁∑
𝑘=0

𝑏𝑘𝑐𝑘 + 𝑏𝑗𝑒𝑎+(𝑏2/2) = 0
or 𝜕𝑎𝜕𝑐𝑗 = −

𝑏𝑗∑𝑁
𝑘=0 𝑏𝑘𝑐𝑘 = −𝑏

𝑗𝑒𝑎+(𝑏2/2)+(𝛿−𝑟)𝑇.
(127)

Next,

𝑒−𝑟𝑇 𝜕𝜕𝑐𝑗EQ (𝑆0𝑒𝑎+𝑏𝐺 − 𝐾)+
= 𝑒−𝑟𝑇 𝜕𝜕𝑐𝑗 ∫

∞

−𝑑2

(𝑆0𝑒𝑎+𝑏𝑦 − 𝐾)𝜙 (𝑦) 𝑁∑
𝑘=0

𝑐𝑘𝐻𝑒𝑘 (𝑦) 𝑑𝑦
= 𝑒−𝑟𝑇∫∞

−𝑑2

𝑆0 𝜕𝑎𝜕𝑐𝑗 𝑒𝑎+𝑏𝑦𝜙 (𝑦)
𝑁∑
𝑘=0

𝑐𝑘𝐻𝑒𝑘 (𝑦) 𝑑𝑦
+ 𝑒−𝑟𝑇∫∞

−𝑑2

(𝑆0𝑒𝑎+𝑏𝑦 − 𝐾)𝜙 (𝑦)𝐻𝑒𝑗 (𝑦) 𝑑𝑦.

(128)

The first integral reduces to 𝑆0Δ𝜕𝑎/𝜕𝑐𝑗 (see the derivation ofΔ above).The second integral is evaluated by repeated partial
integration: if 𝑔(𝑥) is continuously differentiable 𝑘 times and
does not grow too fast,

∫∞
𝑦
𝑔 (𝑥) 𝜙 (𝑥)𝐻𝑒𝑗 (𝑥) 𝑑𝑥
= 𝜙 (𝑦) 𝑗−1∑

𝑘=0

𝑔(𝑘) (𝑦)𝐻𝑒𝑗−1−𝑘 (𝑦)
+ ∫∞

𝑦
𝑔(𝑗) (𝑥) 𝜙 (𝑥) 𝑑𝑥.

(129)

Hence the second integral in (128) becomes

𝑆0𝑒𝑎−𝑏𝑑2−𝑟𝑇𝜙 (𝑑2) 𝑗−1∑
𝑘=1

𝑏𝑘𝐻𝑒𝑗−1−𝑘 (−𝑑2)
+ 𝑆0𝑒𝑎−𝑟𝑇∫∞

−𝑑2

𝑏𝑗𝑒𝑏𝑦𝜙 (𝑦) 𝑑𝑦
= 𝑆0𝑒𝑎−𝑏𝑑2−𝑟𝑇𝜙 (𝑑2) 𝑗−1∑

𝑘=1

𝑏𝑘𝐻𝑒𝑗−1−𝑘 (−𝑑2)
+ 𝑏𝑗𝑆0𝑒𝑎−𝑟𝑇+(𝑏2/2)Φ(𝑑1) .

(130)

Putting all this together (using (103)) we get the formula for𝜕𝐶0/𝜕𝑐𝑗.
6. Two Applications

6.1. Equity Indexed Annuities. Hardy [12] describes the main
types of equity indexed annuities (EIAs), point-to-point,
annual ratchet and high water mark, in which an embed-
ded European call option has to be priced. We consider
compound ratchet EIAs without life-of-contract guarantee
to explore the dependence of ratchet premium options on
skewness and kurtosis of returns.

A single premium 𝑃 is paid by the policy-holder, and the
benefit under the ratchet premium contract is ([12], p. 248)

𝐵𝑛 = 𝑃 𝑛∏
𝑡=1

[1 +max(𝛼( 𝑆𝑡𝑆𝑡−1 − 1) , 0)] . (131)

Here, 𝑛 is the term of the contract in years, 𝛼 is the
participation rate (a number between 0 and 1), and 𝑆𝑡 is the
value of the equity index, usually the S&P500 index.

In [12], p. 249, the formula

𝑃 [𝑒−𝑟 + 𝛼 (𝑒−𝛿Φ(𝑑1) − 𝑒−𝑟Φ(𝑑2))]𝑛 (132)

for 𝐵𝑛 is proved for the value of the premium option
under a compound annual ratchet contract in the Black-
Scholes model. The same reasoning will now be applied
when index log returns have a Gram-Charlier distribution.
To find a formula for the price of this option, we assume that
under the risk-neutral measure the one-year log returns are
independent Gram-Charlier distributed random variables

𝑅𝑡 Q∼ GC (𝑎, 𝑏; 𝑐̃) , 𝑡 = 1, . . . , 𝑛. (133)

Independence of the variables across time implies that the
value of the ratchet premium option is (if the annual risk-free
rate of interest is 𝑟)
𝑉0 = EQ (𝑒−𝑟𝑛𝐵𝑛)
= 𝑃 𝑛∏

𝑡=1

{𝑒−𝑟EQ [1 +max(𝛼( 𝑆𝑡𝑆𝑡−1 − 1) , 0)]} .
(134)

As Hardy notes ([12], p. 249), each factor in the product is the
price of a one-year European call option on 𝑆𝑡, if initial index
price and strike are both equal to one.
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Theorem 11. The no-arbitrage price of the EIA ratchet pre-
mium option described above is

𝑉0 = 𝑃 (𝑒−𝑟 + 𝛼𝐶0)𝑛 , (135)

where 𝐶0 is the price of a one-year call (see (90)) with 𝑆0 = 1
and 𝐾 = 1. The first-order sensitivities are

𝜕𝑉0𝜕𝜉 = 𝛼𝑃 (𝑒−𝑟 + 𝛼𝐶0)𝑛−1 𝜕𝐶0𝜕𝜉 , (136)

with 𝜉 replaced with one of 𝑆0, 𝑟, 𝑏, 𝑐𝑗, and 𝜕𝐶0/𝜕𝜉 given in
Theorem 9. The second-order sensitivity with respect to 𝑆0 is

𝜕2𝐶0𝜕𝑆20 = 𝛼2𝑃 (𝑒−𝑟 + 𝛼𝐶0)𝑛−2 (𝜕𝐶0𝜕𝑆0 )
2

+ 𝛼𝑃 (𝑒−𝑟 + 𝛼𝐶0)𝑛−1 𝜕2𝐶0𝜕𝑆20 .
(137)

We now show the effect of skewness and kurtosis on the
ratchet premium option values; this is done using the four-
parameter distribution GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4), for which this is
especially simple. We also compute prices using the six-
parameter GC(𝑎, 𝑏; 𝑐1, 𝑐2, 𝑐3, 𝑐4) distribution.

Our application involves an annual ratchet, and so the
option 𝐶0 in Theorem 11 has a maturity of one year; we
thus need the distribution of one-year returns. For pric-
ing that is consistent with the (derivatives) market what
is needed is the one-year distribution of returns under
the risk-neutral measure, which should be obtained from
observed derivative prices; see León et al. [11] or Rompolis
and Tzavalis [21] for more details. For illustrative purposes,
we estimated the four parameters of that distribution by
maximum likelihood ([6, 22]) to obtain the parameters of
the GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4):

𝑎 = 0.0687,
𝑏 = 0.1685,
𝑐3 = −0.1150,
𝑐4 = 0.03598.

(138)

This says that the skewness and excess kurtosis of the fitted
distribution are

𝑠 = 6𝑐3 = −0.6898,
𝑘 = 24𝑐4 = 0.8634. (139)

This point is on the boundary of the feasible (𝑠, 𝑘) region; see
Figure 3.

We use the parameters 𝑎 and 𝑏 while varying the values
of 𝑐3, 𝑐4 to show how EIA premiums vary with skewness and
excess kurtosis. Figure 4 shows the ratchet premium option
values (Theorem 11) of an EIA with participation rate 𝛼 = 0.6
and single premium 𝑃 = 100, as a function of skewness 𝑠 and
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Figure 3: Feasible region for the skewness and excess kurtosis of the
GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4) distributions and maximum likelihood estimate.
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Figure 4: Ratchet premium option prices as a function of skewness
and excess kurtosis, withGC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4) distributions.

excess kurtosis 𝑘. The risk-free rate is 3%, the dividend rate
is 2%, and the term is 7 years. The martingale condition (89)
must hold and so 𝑎 is replaced with 𝑎󸀠 so that (89) is satisfied.
(N.B.The Black-Scholes model corresponds to 𝑐3 = 𝑐4 = 0, in
which case 𝑎󸀠 = (𝑟 − 𝛿)𝑇 − 𝑏2/2; this is −0.004193 with the
values of 𝑟, 𝛿, and 𝑏 we are using and 𝑇 = 1.)

The effect of varying (𝑐3, 𝑐4) is quite significant. The
highest and lowest ratchet premium options in the graph
are 109.30 to 104.24, which is the range [95%, 100%] as a
proportion of the Black-Scholes premium option ($109.26),
which has skewness and excess kurtosis equal to zero. (The
maximum value of the premiumoption is reached at (𝑐3, 𝑐4) =(0.0230, 0.00332567) and the minimum at (−0.0836, 0.163);
these points correspond to (𝑠, 𝑘) equal to (.138, .0798) and
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(0.023, 0.003326), resp.) The dependence on (𝑠, 𝑘) is nearly
linear. This is easily explained. The price of a call is

𝐶0 = 𝑒−𝑟𝑇EQ (𝑆𝑇 − 𝐾)
= 𝑒−𝑟𝑇∫∞

(1/𝑏)(log(𝐾/𝑆0)−𝑎󸀠)
(𝑆0𝑒𝑎󸀠+𝑏𝑥 − 𝐾)𝜙 (𝑥)

⋅ ( 𝑁∑
𝑘=0

𝑐𝑘𝐻𝑒𝑘 (𝑥))𝑑𝑥.
(140)

The sensitivity of 𝐶0 to 𝑐𝑗 (𝑗 = 3, 4) is thus
𝑒−𝑟𝑇 𝜕𝑎󸀠𝜕𝑐𝑗 EQ (𝑆𝑇1𝑆𝑇>𝐾)
+ 𝑒−𝑟𝑇∫∞

(1/𝑏)(log(𝐾/𝑆0)−𝑎󸀠)
(𝑆0𝑒𝑎󸀠+𝑏𝑥 − 𝐾)𝜙 (𝑥)

⋅ 𝐻𝑒𝑗 (𝑥) 𝑑𝑥.
(141)

The first term above is relatively small, and the second one is
almost constant, since 𝑎󸀠 does not change much with 𝑐𝑗. This
carries over to the sensitivity of the ratchet premium option𝑉0 to changes in 𝑐𝑗 (see the first formula inTheorem 11).

The parameters fitted by maximum likelihood for the
GC(𝑎, 𝑏; 𝑐1, 𝑐2, 𝑐3, 𝑐4) distribution are

𝑎 = 0.1174,
𝑏 = 0.1595,
𝑐1 = −0.3053675695201066,
𝑐2 = 0.09542079373489153,
𝑐3 = −0.12383971126335243,
𝑐4 = 0.06120331530131559.

(142)

The martingale condition implies 𝑎󸀠 = 0.0451, and the
EIA premium option has value 107.90. The skewness and
excess kurtosis of the fitted distribution are 𝑠 = −0.5437
and 𝑘 = 0.5092. (N.B. The feasible region for (𝑠, 𝑘) in
the GC(𝑎, 𝑏; 𝑐1, 𝑐2, 𝑐3, 𝑐4) case is naturally larger than the
one for the GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4); in this case (𝑠, 𝑘) are just
outside the region in Figure 3.) It was checked numeri-
cally that the parameters 𝑐1 to 𝑐4 lead to a nonnegative
function.

Table 1 shows ratchet premium option values based on
Gram-Charlier with four parameters that are lower than the
Black-Scholes based ones. Rows A and F are Black-Scholes
cases, row B is our estimation of the four-parameter Gram-
Charlier (as explained above), row C is the four-parameter
Gram-Charlier with the largest negative skewness possible
(see Figure 1), row D is similar but with the largest positive
skewness, and row E hasmaximum kurtosis but no skewness.
Rows A to E have the same parameter 𝑏, the one we estimated
from 𝑆&𝑃500 for a four-parameter Gram-Charlier, while row
F has the same 𝑏 as the six-parameter Gram-Charlier we
estimated. Skewness and kurtosis are shown, followed by the

break-even (or “fair”) 𝛼 (“B-E 𝛼” in the table) and then the
ratchet premium option values for two specific choices for𝛼. Percentage differences with the values in row A (resp., F)
are also displayed (“Δ𝐴%” in the table). It is notable that
in all cases the effect of moving away from Black-Scholes
is more pronounced for the break-even participation rates
than for the option values themselves. The scenario with
the greatest impact (compared to Black-Scholes) is the one
zero skewness and maximal excess kurtosis (row E). Insurers
are unlikely to accept a cost of contract (𝑉0) greater than
the received initial premium ($100); they may thus wish to
adjust the participation rate 𝛼 down to the break-even rate
(to wit, see Lin and Tan [23]). The Black-Scholes break-even
participation rate in row A is 41.9%, but it increases from
44.3% up to 49.3% in rows B to E. These are significant
increases, ranging from5.5% to 17.5%. Rows F andG are based
on two quite different risk-neutral probability distributions,
but the ratchet premium options are surprisingly similar.The
parameters we estimated may not be those that a practitioner
would use, but what this example says is that skewness and
kurtosis have a very real importance in the pricing of equity
indexed annuities and that the fair participation rate is, at
least here, more sensitive to nonzero skewness and excess
kurtosis than are option values. (See also [24] regarding the
separate effects of skewness and excess kurtosis on option
values.)

Let us compare this with the approach in [11]. That
paper is about a subclass of the Gram-Charlier distributions
described in this paper; the authors call their distributions
“seminonparametric” and have density (6), where 𝑝(⋅) is the
square of the polynomial 𝑞(⋅) If 𝑞(𝑥) is of order 𝑚, then it is
possible to express 𝑝(𝑥) = 𝑞(𝑥)2 as

𝑝 (𝑥) = 2𝑚∑
𝑗=0

𝛿𝑗𝐻𝑒𝑗 (𝑥) . (143)

However,most nonnegative polynomials cannot be expressed
as squares of another polynomial, so the order-𝑚 SNP family
is a strict subset of the order-2𝑚 Gram-Charlier family.
The order 2𝑚 SNP family has 2𝑚 + 2 free parameters (the
coefficients of an order-2𝑚 polynomial plus the location and
dispersion parameters 𝑎, 𝑏, subject to density integrating to
one, which in effect removes one parameter); by comparison,
theGC(𝑎, 𝑏; 𝑐1, . . . , 𝑐2𝑚) distributions have 2𝑚+2 parameters,
but they are not “free” because the resulting density must be
nonnegative. It is then not a priori clear which of SNP(2𝑚)
or GC(𝑎, 𝑏; 𝑐1, . . . , 𝑐2𝑚) would do best. We looked at this
problem with the S&P500 annual prices, comparing SNP(2)
and GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4), which both have four parameters.
The likelihood function is written the sameway in both cases;
there are just different restrictions on the parameters. The
results forGC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4) are given in (138), and those for
the SNP(2) are

𝑎 = −0.2445,
𝑏 = 0.1940,
𝑐1 = 1.6140,
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Table 1: Comparison of ratchet option values computed with the Black-Scholes formula and Gram-Charlier distributions. Rows A to F are
based on the four-parameter GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4), while row G is based on a six-parameter GC(𝑎, 𝑏; 𝑐1, 𝑐2, 𝑐3, 𝑐4).

𝑎󸀠 𝑏 𝑐1 𝑐2 𝑐3 𝑐4 𝑠 𝑘 B-E 𝛼 Δ(𝐴)% 𝑉0 (𝛼 = 0.6) Δ(𝐴)% 𝑉0 (𝛼 = 0.419) Δ(𝐴)%
A −0.0042 0.1685 0 0 0 0 0 0 0.419 0 109.26 0 100.00 0
B −0.0035 0.1685 0 0 −0.1150 0.0360 −0.6898 0.8634 0.443 5.5 107.60 −1.5 98.92 −1.1
C −0.0034 0.1685 0 0 −0.1749 0.1021 −1.0493 2.4508 0.478 13.9 105.42 −3.5 97.50 −2.5
D −0.0051 0.1685 0 0 0.1749 0.1021 1.0493 2.4508 0.446 6.3 107.39 −1.7 98.78 −1.2
E −0.0043 0.1685 0 0 0 0.1667 0 4.0000 0.493 17.5 104.59 −4.3 96.96 −3.0𝑎󸀠 𝑏 𝑐1 𝑐2 𝑐3 𝑐4 𝑠 𝑘 B-E 𝛼 Δ(𝐹)% 𝑉0 (𝛼 = 0.6) Δ(𝐹)% 𝑉0 (𝛼 = 0.441) Δ(𝐹)%
F 0.0027 0.1595 0 0 0 .0 0 0 0.441 0 107.69 0 100.00 0
G 0.0451 0.1595 −.3054 .09542 −0.12384 0.06120 −0.5437 0.5091 0.438 −0.7 107.90 0.2 100.14 0.14

𝑐2 = 1.1733,
𝑐3 = 0.4253,
𝑐4 = 0.07320.

(144)

This translates into the following moments for the SNP(2)
fitted distribution:

mean 0.0687
standard deviation 0.1671

skewness − 0.6289
excess kurtosis 2.5502.

(145)

The excess kurtosis is strikingly far from the data’s 0.8903.
The likelihood function evaluated at that estimate was lower
than the likelihood evaluated at the parameters of the
GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4) distribution. This is a puzzling result that
does not mean that GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4) will always do better
than SNP(2); it does however show that restricting the search
to squares of polynomials does have consequences. León et
al. [11] derive formulas for European option prices, taking
the martingale restriction into account, based on expression
(143); in this paper we do the same calculation for an arbitrary
Gram-Charlier distribution. It is easy to see that the SNP
class is not closed under convolution; that is, the distribution
of the sum of two independent SNP variables is in general
not an SNP distribution; the general formulas we derive
are essential in order to add independent Gram-Charlier
distributed variables (including those in the SNP subset), and
therefore the general formulas are needed to define Gram-
Charlier processes. León et al. [11] are correct in pointing
out that there is an advantage in using 𝑝(𝑥) = 𝑞(𝑥)2 as far
as the nonnegativity constraint is concerned, but we believe
that it is no more difficult to estimate the parameters of
a general Gram-Charlier distribution, including the non-
negativity constraint in the maximization procedure (rather
than limiting the parameter space). A full comparison of
the numerical and statistical advantages/disadvantages of our
approach versus the one in [11] is an interesting avenue for
further research.
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Figure 5: Lookback option prices as a function of skewness and
excess kurtosis.

6.2. Lookback Options. Consider a European lookback call
option with fixed strike, with payoff (𝑆 − 𝐾)+, where 𝑆 is
the maximum of the stock price between time 0 and time𝑇. We let the time points used to determine the maximum
be equally spaced. There is no closed form formula for the
distribution of the maximum price nor for the price of
such a discretely monitored lookback option, so simulation
is used. We generated normal random variables and used
the technique described in Section 2.5. The assumptions are
maturity𝑇 = 1, monthlymonitoring, annual volatility 0.1685
(where this number comes from is explained in the next
subsection). The interest rate is set to 0, initial stock price is
$100, and strike price is also $100.

Figure 5 shows the option prices for values of skew-
ness and excess kurtosis that can be achieved with the
GC(𝑎, 𝑏; 0, 0, 𝑐3, 𝑐4) family for monthly rates of return.
Roughly speaking, prices decrease when excess kurtosis
increases, and also as kurtosis decreases, though the depen-
dence on 𝑐3 and 𝑐4 becomes less linear as 𝑘 increases. When𝑐3 = 𝑐4 = 0 (Gaussian case) the option price is 11.277.
The price is a little higher ($11.286) when 𝑠 = 0.75 and𝑘 = 1.0. The lowest price ($10.163) occurs when 𝑠 = 0
and 𝑘 = 4. Skewness and kurtosis thus have a significant
effect on lookback option prices; the effect will of course vary
depending on the parameters. (Observe that all those prices
are quite far from the Black-Scholes continuous-monitoring
lookback price, $14.17.)
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7. Discussion and Conclusion

This paper tries to provide a framework for applying Gram-
Charlier series to option pricing. We have shown that option
prices may be significantly affected by varying skewness
or kurtosis away from their Gaussian values. The practi-
cal consequence is that using the Black-Scholes formula
(i.e., zero skewness and excess kurtosis) may distort option
prices. Gram-Charlier distributions capture skewness and
kurtosis and retain a lot of the tractability of the normal
distribution. Estimating parameters remains a challenge
for Gram-Charlier distributions involving more than four
parameters.

Convergence of Gram-Charlier and other expansions
in option pricing and other applied problems is an area
for further research. The heuristic derivation of the Gram-
Charlier/Edgeworth series of a density 𝑔(⋅) in terms of the
normal density and its derivatives (see, e.g., [25], Section 3.2)
may give the impression that the inverted series should con-
verge or at least have some asymptotic property; this is not the
case in general. Gram-Charlier (or Edgeworth) expansions
do not always converge to the true probability distribution,
as Section 2.3 indicates; see [26], Section 17, or [25] for more
details. In the context of the Central Limit Theorem, the
Edgeworth series for the density of the normalized sum
or random variables have asymptotic properties, when the
number of summands 𝑛 tends to infinity. Details are given in
[25]. Multivariate versions of the Gram-Charlier series exist,
for instance, [10, 27, 28], apply such generalizations.

The Gram-Charlier type B series are based on the Pois-
son distribution, rather than the normal. There are several
other expansions that can be used. For instance, series of
Laguerre polynomials may be used for densities on the
positive half-line (a convergent Laguerre series has some
numerical success in pricing Asian options; see [29]). The
Jacobi polynomials [30] are orthogonal over the interval(−1, 1), but any other finite interval may be chosen bymaking
the obvious change of variable, and this leads to series
expansions for densities with compact support, based on the
beta distribution. An application of log-transformed shifted
Jacobi polynomials to arbitrary approximation of probability
distributions on the positive half-line may be found in [31].
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