Hindawi Publishing Corporation

International Journal of Reconfigurable Computing
Volume 2014, Article ID 287205, 12 pages
http://dx.doi.org/10.1155/2014/287205

Research Article

Hindawi

Practical Education Fostered by Research Projects in

an Embedded Systems Course

Vanderlei Bonato,! Marcio M. Fernandes,’ Joao M. P. Cardoso,’ and Eduardo Marques

1

! Department of Computer Systems, Institute of Mathematical and Computing Sciences,

The University of Sao Paulo, 13560-970 Séo Carlos, SP, Brazil

2 Department of Computer Science, Federal University of Sdo Carlos, 13565-905 Sio Carlos, SP, Brazil
3 Department of Informatics Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal

Correspondence should be addressed to Vanderlei Bonato; vbonato@icmc.usp.br

Received 30 January 2014; Accepted 21 May 2014; Published 29 June 2014

Academic Editor: Michael Hubner

Copyright © 2014 Vanderlei Bonato et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The very nature of universities makes them unique environments for research and teaching. Although both activities constantly
borrow from each other, a deeper level of interaction is not always achieved for several reasons. This paper presents a successful
experience on conducting an undergraduate course on embedded systems, based on strong interaction with related research
activities previously conducted by the authors. Known for being everywhere, embedded systems are constantly expanding in both
complexity and volume production. In addition, heterogeneous systems are becoming prevalent in modern applications, standing
as an additional difficulty to students in this area. In this context, this paper presents experiences in teaching embedded systems
using a project-based learning pedagogical approach, with strong emphasis on mobile robotic applications previously developed
by MSc and PhD students. As a result, it has been observed that undergraduate students have the opportunity to build a strong

background and feel better prepared to face the challenges to be found in their future professional activities.

1. Introduction

In recent years embedded computing has emerged as the new
paradigm for the design and implementation of modern com-
puter systems, succeeding mainframes, minicomputers, and
finally desktop computers. They consist in the fastest growing
market share for computing products, already accounting for
the largest number of systems being deployed. As shown
by Ebert and Jones [1], in 2009 for each person living in
a developed country there were about 30 embedded pro-
cessors, clearly exceeding the number of any other kind of
computing system. Typical examples of embedded systems
include tablets, smart phones, digital cameras, TV set-top
boxes, security systems, personal robots, automotive control
devices, and medical equipment. In addition, as systems
requirements grow in complexity, the need for highly special-
ized hardware/software platforms becomes more critical.

A design option of growing interest is the use of a
heterogeneous computing platform, which may contain pos-
sible combinations of CPUs, DSPs, and custom devices and
accelerators based on reconfigurable hardware. A typical
example of such architecture is the MORPHEUS platform [2].
As shown in that article, the platform was shown to be viable
for the successful implementation of complex embedded sys-
tems such as wireless telecommunications, video processing,
networking, and smart cameras. Those implementations also
stress the need for a robust toolset, as the programming
model for a heterogeneous platform can be quite complex.
In the case of the MORPHEUS platform, the toolset is based
on the MOLEN paradigm, which allows general purpose
conventional code and hardware descriptions to coexist in a
program. This programming model was originally employed
by the MOLEN Polymorphic Processor, another example of
heterogeneous architecture [3]. Heterogeneous computing



also stresses the need for multitarget programming frame-
works, able to reduce the required implementation effort. The
Accelerator System [4] is an example of this kind of program-
ming system, being able to target multicore processors with
vector instructions, GPUs, and FPGAs using a single source
code described in conventional high level languages, such as
C++. Liquid metal [5] is a similar tool, also targeting CPUs,
GPUs, and FPGAs but using Lime as source code, a new
programming language.

As it happens during any technology shift period, skills
shortage can be a problem as the current curriculum may
not address the whole set of issues involved. According to
Ricks et al. [6], developers need to have a detailed knowledge
about devices and applications in order to master the current
embedded system sophistication. The range of skills required
for embedded systems design encompasses knowledge about
digital logic, computer architecture, hardware description
languages, real-time requirements, and resource-aware soft-
ware development. Although these topics are adequately
taught in computer science courses, students tend to see them
as isolated units, with little relation to embedded systems.
Reconfigurable computing can be used as a common plat-
form for teaching all of those subjects and also to expose stu-
dents to some of the main concepts and practices in the field.

Reconfigurable hardware, such as FPGAs (field-program-
mable gate arrays), is a rich and flexible platform, where
students can create any kind of digital system, ranging from a
single circuit to a very complex and heterogeneous embed-
ded system architecture [7]. This is a good platform to
teach students hardware/software codesign, allowing them
to simulate and debug software and hardware together, to
create or configure softcore microprocessors, and to optimize
the system in terms of performance, resources usage, and
power consumption. However, since programming hardware
requires a different way of thinking than developing software,
it is desirable that computer science degrees add more
emphasis on teaching how to program systems with both
components.

A well-recognized way to motivate students to learn about
design, implementation, and programming of embedded sys-
tems is via contemporary and challenging applications, such
as those found in the embedded mobile robotics field [8].
Practical-based approaches have been used by other educa-
tors as a way to catch student attention [9-11]. Mobile robotics
is an emerging topic, and although significant advances have
been observed in recent years, there are still many challenges
to be faced, mainly when autonomous and customized robots
are considered [12]. According to Touretzky [13], computer
science students should be better prepared for the robotic
revolution, since real robots are computationally complex,
comprising both hardware and software processing cores.

As a result of studying mobile robotics, students learn
reconfigurable computing and embedded systems, otherwise
rather unpopular among many computer science students.
However, the growing complexity of embedded systems
design and applications makes real projects a far goal to the
typical one-semester course. One way to bridge this gap is
to foster practical teaching by means of stronger interaction
between classroom and research labs at the university level.

International Journal of Reconfigurable Computing

In this context, the main contributions of this paper are as
follows:

(i) showing a way to reinforce undergraduate courses
on embedded systems by using research results and
expertise produced by graduate students, which can
be seen as a strategy to put a project-based learning
(PBL) pedagogical approach into practice

(ii) presenting real teaching experiences (at ICMC-USP,
Brazil) and reasons for using FPGA platforms and
mobile robotics to teach embedded systems in com-
puter science programs

(iii) pointing out the main difficulties faced by the stu-
dents with this methodology, which may help to
reproduce and improve the strategies to be presented.

2. A Project-Based Learning Approach

The dynamic and multidisciplinary nature of computer sci-
ence (CS), both in its core subjects and the ever-growing
application domains, makes CS education particularly chal-
lenging. The primary approach to CS education is still based
on knowledge transmission, which can be considered essen-
tial in some instances. However, it is also perceived as limited
for a number of reasons, such as not promoting higher order
thinking or advanced reasoning skills [14]. An alternative
approach to CS education is project-based learning [15].

According to [16], project-based courses can be con-
sidered as a method within the problem-based learning
toolkit, being common in computing education. Problem-
based learning [17] seeks to empower students such that they
take responsibility for their own learning. It was originally
envisioned for medical education, a field where it is well
established and is considered successful [18].

The difference between problem- and project-based
approaches may be fuzzy in its principles and strategies. It
can be argued that a problem is more loosely defined, while
a project is a well-defined problem, with clear objectives.
According to [19], a project can be considered as an instance
of PBL if it adheres to the following five criteria.

(1) Centrality. Projects are central, not peripheral, to the
curriculum contents and main objectives.

(2) Driving Question. Projects are focused on questions
or problems that “drive” students to encounter the
central concepts and principles of a discipline.

(3) Constructive Investigation. Projects involve students
in a constructive investigation (goal directed process),
involving inquiry, knowledge building, and resolu-
tion.

(4) Autonomy. Projects are student-driven to some signif-
icant degree, not being totally teacher-led, scripted, or
packaged.

(5) Realism. Projects are realistic (not school-like), giving
a feeling of authenticity to students.

A comprehensive analysis and categorization of practical
problem-based learning in computing education can be
found in [14]. It has been concluded in that article that



International Journal of Reconfigurable Computing

the penetration of problem-based learning into the average
computing curricula is still shallow, with faculty members
working in isolation. On the other hand, it was concluded
that lecturers and students” experiences are usually positive.
A more specific investigation on project-based course is
reported in [16], focusing on course design, composition of
groups, and assessment.

The educational approach described in this paper fits
well in the five-criterion scenario defined by [19]: centrality,
driving question, constructive investigation, autonomy, and
realism. As such, it can be considered as a realistic case study
of a project-based course in the later stages of a computer
science degree.

Embedded systems have a complex nature when com-
pared to desktop or server software, the prevalent platform
adopted by most courses in the typical CS curriculum. A
diverse mix of software and hardware components, func-
tional and nonfunctional requirements, and significant dif-
ferences between target applications make it difficult to adopt
a conventional approach to embedded systems teaching. Pre-
vious experiences have shown to the authors that applying the
conventional pedagogical approach to embedded systems
teaching can be very effective for the particular scenario
considered by the course. However, it was perceived that a sig-
nificant number of students would feel reluctant to undertake
a new project in embedded systems, even after a successful
completion of the standard course. One of the reasons for
that, the authors believe, is that those students would not feel
confident enough to propose by themselves a significantly
different design for the new project. By adopting a PBL
approach and employing a hands-on and realistic project in
the first course on embedded system, the authors aim to
empower students with the skills necessary to tackle other
complex and diverse projects in this field. This is a desirable
outcome, considering that embedded systems development is
an area of ever-increasing interest and presents a shortages of
well qualified professionals.

The use of realistic projects in the course described in this
paper is central to the adopted pedagogical approach. Rather
than using the project as an illustration of theoretical con-
cepts, it is a trigger for knowledge discovering and assembling
of new and revisited techniques.

The remainder of this paper is organized as follows. The
importance of reconfigurable hardware is discussed in the
next section. Then, Section 4 argues about the importance of
mobile robotics for the success of the approach presented in
this paper. Section 5 presents the actual teaching scenario in
which embedded systems are taught, along with the learning
outcomes expected. Section 6 details the mobile robotic
projects used in an undergraduate course teaching embedded
systems. Section 7 presents the teaching platforms employed
(hardware and software). Section 8.2 presents and examines
the feedback given by students, followed by conclusions in the
last section.

3. Reconfigurable Hardware

Field-programmable gate arrays (FPGAs) are reconfigurable
hardware devices composed of an array of logic blocks,

an interconnection network, and a set of I/O cells. The
programmability of FPGAs comes from the configurability
of these three elements in such a way that any computational
function can be implemented [20]. The main FPGA advan-
tage over dedicated devices—application specific integrated
circuit (ASIC), which is very costly to be designed—is
the flexibility of adapting the computational architecture
according to the user needs after the silicon fabrication
process is completed. However, to provide such flexibility,
FPGAs come at higher cost in area, delay, and power con-
sumption, when compared to ASIC devices [21]. In spite of
those drawbacks, FPGA devices are gaining more and more
importance over the years, as they bridge the gap between
ASICs and microprocessors [22]. For this reason, they have
been extensively used in both academic and industrial fields
for prototyping new hardware architectures, for accelerating
a wide variety of applications, and also for developing and
deploying commercial products. However, knowledge about
digital systems and hardware description languages is needed
to efficiently program reconfigurable hardware, which can be
considered a barrier for an even higher acceptance of this
technology.

The best practices when designing for FPGAs include the
description of the architecture in a high level description
language (HDL), such as VHDL, Verilog, Bluespec, Sys-
temVerilog, SystemC, or Handel-C. The textual description is
synthesizable and is used as input to logic and RTL (register-
transfer level) synthesis tools that automatically generate the
circuit netlist. The netlist is then mapped, placed, and routed
to create the bitstreams that are responsible for programming
the target FPGA device. This development flow does not
require full mastering of those methods and techniques, espe-
cially the ones related to logic synthesis and place and routing.
In some way the flow can be seen as a black box, similar to
the one used by students when compiling a software program
to a target microprocessor. As it happens with software
programming, to optimize or use some specific resources
of the target system, students may need some knowledge
about the underlying target architecture. Of course, if fully
optimized hardware is required, more knowledge about
hardware design, the underlying FPGA architecture, and the
tools used in the development flow may be necessary.

University programs maintained by companies such as
the one from Xilinx [23] and Altera’s companies [24] allow the
use of state-of-the-art commercial tools to program FPGAs.
Despite of presenting some restrictions, simulators such as
ModelSim [25] are also freely available for teaching purposes.
Students can also download copies of those tools to use
at home to work on homework assignments, thus improv-
ing their experience. The available EDA tools and FPGA
platforms provide nearly every resource needed to master
embedded systems design. Project development may have to
accomplish the partitioning of software code in order to shift
some processing tasks to dedicated hardware components.
The first implementation may be a software-centric one, after
which students may realize that hardware/software partition-
ing can be the only alternative to enforce system constraints
(e.g., energy consumption, performance, etc.). By doing so,
students can acquire knowledge related to Amdahl’s Law [26],



profiling, identification of the computational structures more
suited to be implemented as dedicated hardware components,
interfacing schemes, communication overheads, and so forth.

To conduct the necessary practical experiments there is
however the need to expose students to complex examples,
allowing them to have a perception of the problems they
might face in the real world. So a question may arise: what
kind of applications shall students work on in order to acquire
all the expertise that is needed to develop embedded systems?
Bearing in mind the answer to this question, mobile robotics
tasks and applications have been selected, as described in the
next sections.

4. Why Mobile Robotics?

Developing mobile robots encompasses several challenges
and can be a suitable set-up to teach students many aspects
of modern and future embedded systems. Personal robots,
for instance, are usually mobile and need a large degree of
autonomy for localization, navigation, and mapping tasks.
Many of the requirements usually presented by this kind
of system are prevalent in almost all other kinds of the
embedded system applications. More specifically, mobile
robotics has been chosen as the target application for teaching
purposes based on the following reasons.

(i) It includes all the characteristics of embedded sys-
tems, ranging from simple to complex ones.

(ii) It requires students to deal with concepts such as
video, audio, sensors, wireless networking, motor
control, and navigation.

(iii) It usually demands miniaturization, frequently lead-
ing to a system-on-a-chip (SoC) solution.

(iv) It accommodates many interesting requirements such
aslow cost, low energy consumption, and high perfor-
mance.

(v) It needs flexibility and programmability.

(vi) It typically needs hardware/software codesign, since
for most robotic kernels using software implementa-
tions alone does not permit achieving the required
performance.

(vii) It is a very attractive topic to students.

(viii) All of those reasons are desirable when conducting a
PBL course.

Based on previous and ongoing experiences conducted
by our research group on this field, students seem to be
very motivated to study subjects and work with examples
targeting a mobile robot platform. Since embedded systems
and reconfigurable computing expertise is acquired during
the implementation of robotic kernels, the strategy can be
considered as an important element to attract computer
science students to topics otherwise not considered by them.
Other authors have also successfully used robotics to teach
concepts in digital design and in other courses as well [27, 28].
The work presented in this paper is similar to the ones in a
broader context but differs significantly by the nature of the

International Journal of Reconfigurable Computing

TaBLE 1: SSC0711: course schedule.

Week Topics
Theoretical Practical
1 Introduction: embedded systems —
2 Embedded systems design flow Tools
3 State machines Candidate projects
4 Concurrent process Problem analysis
5 Interfaces and protocols SW implementation
6 Control systems SW implementation
7 HW/SW partitioning Performance analysis
8 HW/SW integration HW modelling
9 — HW implementation
10 — HW implementation
11 — HW implementation
12 SoC technology HW implementation/tests
13 State-of-art HW/SW codesign HW/SW integration
14 — HW/SW integration/tests
15 — Demonstration

applications worked on by the students: Bindal’s work focuses
on a robotic arm, while Kim’s work employs the well-known
Lego Mindstorms Kkits.

5. Teaching Embedded Systems to
Undergraduate Students

At ICMC-USP, one of the leading computer science depart-
ments in Brazil, mobile robotics has been used as practical
study cases to teach embedded system theory and practice in
an undergraduate, one-semester course, offered as part of the
Computer Science Bachelors curriculum. The course is inter-
nally referred to as SSC0711—Embedded Systems HW/SW Co-
Design (more information about this course (in Portuguese)
can be obtained at https://sistemas.usp.br/jupiterweb/obter-
Disciplina?sgldis=SSCO0711 or directly from the first author),
running during 15 weeks. In terms of supervised teaching,
the course is equally split between theory and practice (2
hours/week each). However, students spend significantly
more time developing their chosen projects out of classes,
receiving help from tutors whenever necessary.

Table1 shows a summary of the course contents. The
theoretical part of this course starts giving a brief review
about ASICs and general purpose processors in the embed-
ded system scenario. Performance, power consumption,
development, and update costs are also analysed (week 1).
Then, a typical embedded system design flow is presented
(week 2), followed by HW/SW specification and modeling.
Computation models are presented, including finite state
machine, data flow, and Petri nets (weeks 3 and 4). The
next topics give an overview about interfaces, protocols, and
control systems (weeks 5 and 6). After this point, teaching
is focused on process and development tools, showing how
to identify HW/SW partitioning (week 7), design HW/SW
integration, and synthesize the whole computing system on
a SoPC, using FPGA technology (week 8). Different IC
technologies for implementing SoCs are discussed (week



International Journal of Reconfigurable Computing

12). Finally, state-of-the-art work is presented regarding
embedded system development, encompassing new tools,
models, and integrated circuit technology (week 13).

In practical terms, the initial 4 weeks are devoted to the
set-up of EDA tools and definition and analysis of the projects
to be undertaken by each group (limited to 3 students). Dur-
ing weeks 5 and 7, students work on a preexisting software-
only solution. The emphasis is on functionality and perfor-
mance analysis, trying to identify possible bottlenecks to be
improved by using hardware implementations. This leads to
a SW/HW partitioning, modelling, and implementation of
a hardware solution for selected processing kernels (weeks
8-12). Typically, the hardware implementation is in the form
of a custom instruction for the Nios II processor. Integration
and tests of the whole HW/SW solution are carried out in
weeks 13-14, followed by the system final demonstration for
evaluation purposes.

The core objective of this course is to teach hardware,
software, and system design in an embedded system context.
Students are allowed to take this course only after a series
of prerequisites is met, which give them a solid background
on digital logic, computer architecture and organization, and
HDL languages. Students typically enroll for this course in
their 4th year of studies. The practical projects used in the
course are based on fundamental tasks used in autonomous
mobile robotics: localization, mapping, and navigation, along
with image processing algorithms for data extraction from
the operating environment and for human-robot interface.
The adopted algorithms are implemented as embedded sys-
tems based on FPGAs, with students being asked to achieve
a set of goals for each problem, as defined by the assigned
instructor. The learning outcomes (L;) expected from those
students after successfully developing such projects can be
summarized by the 5 items shown below:

L1: ability to design and implement custom embedded
systems, in the form of SoCs;

L2: ability to perform hardware/software codesign for a
realistic project;

L3: fluency in using a HDL for the development of a
medium-complexity problem;

L4: experience in using embedded operating systems,
possibly an RTOS (real-time operating systems);

L5: ability to engage on graduate-level research on custom
embedded systems based on reconfigurable comput-
ing.

5.1. Course Overview. As already said, the course contents are
equally divided between theoretical and practical activities.
The robotic-based applications come as a complement to the
material found in theoretical-orientated embedded system
books, such as Marwedel [29], Wolf [30], and Vahid and
Givargis [31]. They give students the essential knowledge
about embedded systems, describing the main hardware and
software components along with some design techniques.
Given the theoretical background needed to develop embed-
ded systems, students start to work on practical experiments,
customizing systems for robotic algorithms computations.

The details of the assigned projects are presented in Section 6.
The algorithms are initially provided to the undergraduate
students as C/C++ code developed by graduate students
during their research projects. As shown in Figurel, the
development flow for a practical project is divided into five
steps.

(1) Run the C/C++ code on a PC platform, in order to
better understand the algorithm implementation and
also to gather code profiling information using gcc
and gprof Linux tools. These first steps aim to identify
the most demanding sections of code, by measuring
the number of function calls and the time spent on
each of them.

(2) Run the C/C++ code again on an embedded proces-
sor, in order to get new profiling information, com-
paring it with the previous run. That helps students
to understand the main differences and limitations
between a standard PC platform and an embedded
processor (possibly a softcore such as Altera’s Nios II).

(3) Reason and exploit the possibilities to meet the system
requirements such as performance, resources usage,
and flexibility. In this phase students basically engage
on the hardware/software codesign, considering pos-
sible software optimizations, new custom instructions
(implementing the corresponding custom hardware),
multicore solutions, operating system tuning, and the
development of new hardware components. In that
case, they could operate as stand-alone blocks or as
a coprocessor, either by directly being connected to a
central processor or viaa DMA channel.

(4) Analyse the performance and reliability of the new
customized embedded system for both hardware
and software modules, using software profiling tools
such as gprof and hardware simulation tools such
as ModelSim. Students have also the opportunity to
validate their final projects in a real mobile robot,
integrating it with on-going research developments
undertaken by graduate students.

(5) Present the project to instructors and classmates, and
write a technical report for evaluation purposes.

6. Practical Projects in Embedded Robotics

Every project used in the undergraduate course has already
been deeply exploited by other graduate students from the
department, as part of their MSc or Ph.D. degrees, as docu-
mented in these publications: [32-38]. This knowledge is then
presented to the undergraduate students via papers or theses
as reference material, which gives them a detailed description
of the problem and corresponding algorithms, along with
a reference design for comparison purposes. All of those
materials, along with tutorials, tools, and source code are
central to conduct the PBL course described in this paper. The
next subsections describe the main robotic-based projects
used so far in this course format. Each of those projects can
be developed by a group of up to 3 students.



PC (SW)

> gprof

Nios IT (SW)

> nios2-gcc

> nios2-elf-gprof

International Journal of Reconfigurable Computing

>> INPUT <<
C/C++ code of

> gec “-pg” / mobile robotic applications

HW/SW codesign

Design

exploration

HW/SW

cosimulation

> nios2-gcc
> nios2-elf-gprof

Real robot
experiment

> HW_monitor
> Modelsim

Work evaluation

Presentation of

the results and

technical report
preparation

FIGURE 1: Embedded system development flow adopted by students.

6.1. Localization. 'The problem of autonomous robot localiza-
tion can be solved using the Monte Carlo localization (MCL)
algorithm [39], which uses a set of particles to estimate
the real robot position inside a map constantly updated by
sensor readings during its movements (most experiments are
evaluated with offline data from test bench maps available
from Radish [40]). This algorithm is quite interesting, since
each particle can be evaluated independently of each other,
allowing the students to exploit a high level of parallelism
in hardware. As the number of particles scales, subject to
a set of conditions such as sensor type and environment
characteristics, balancing the computing hardware to meet
system requirements is an interesting challenge. The easiest
solution would be to code the whole MCL algorithm in C and
run it in an embedded processor (software), while the hardest
would be to code it in a synthesizable HDL and then generate
the custom hardware. To find the balance between those two
alternatives is a typical hardware/software codesign problem.
In addition to design options influencing performance, the
students also need to pay attention to some qualitative aspects
of the system, such as random number generator supporting
the MCL algorithm and the numerical precision regarding
floating to fixed-point conversions. Bonato et al. [32] present
the MCL algorithm implemented on an FPGA using the
Mersenne Twister pseudorandom number generator, where a
good balance between hardware and software is achieved. The
design described in that paper is presented to the students and
used as a guide for developing and evaluating their solutions.

6.2. Mapping. In mobile robotics a mapping algorithm aims
to create a map of the navigation environment. This problem
can be subdivided in two classes: when mapping is performed
with knowledge of the robot position and when the position
is estimated simultaneously during the mapping process.
The latter case is known as simultaneous localization and
mapping (SLAM) problem, with most solutions being based
on probabilistic inferences derived from Bayesian filters
involving high computational complexity and a large volume
of data. The extended Kalman filter (EKF) algorithm [41] is
a classical Bayesian derived solution, able to build a feature-
based map without previously knowing the robot position.
Bonato et al. [33] presented the first SoPC (system-on-
a-programmable chip) of the EKF applied to the SLAM
problem, which has been used as reference by students during
the course. Differently than MCL, the implementation of this
method exhibits high data dependency, basically consisting
of multiplication and addition of matrices. In this case,
parallelism exploitation is more complicated, as the students
need to look more carefully to the problem in order to find
how to split the internal operations without violating the code
semantics. To better understand how to optimize the matrix
operations on hardware, students are encouraged during the
course to investigate state-of-the-art solutions, such as those
presented by Irturk et al. [42].

6.3. Navigation. The navigation problem consists of defining
a way for the robot to achieve its destination following some



International Journal of Reconfigurable Computing

Hardware

________________________________________________

DoG

cascade and

difference of
Gaussians

Ori and mag (25 bits)

FIFO_octv0 (42 x 127

FIFO_octvl (40 x 256

FIFO_octv2 (38 x 512

OriMag i Software
Orientation and | FIFOA (32 x 2048)
. I
gradient 'FIFOB (32 x 1024)
magnitude |
computation ! FIFOC (32 x 512) Descriptor
X computation
Kp ! (Nios IT
- ! processor)
Key point :FIFOD 24 x 1024
detection with . (24 )
stability checks i

1
1
1
1
1
1
1
1
1
1
1
| Gaussian filter
1
1
1
1
1
1
1
1
1
1
1

Pixel stream

Source (up to 30 fps-320 x 240 pixels)

FIGURE 2: A hardware/software embedded system codesign comprising of three hardware blocks to extract features from images and
precompute data for the descriptors and one software block to associate descriptors with features; the blocks communicate via dedicated
channels along with FIFOs to store temporary data while receiver blocks are busy [34].

strategy, such as the fastest, the safest, or the easiest path.
A quite simple algorithm used for navigation is potential
fields (PF). In spite of presenting some limitations, such as
trapping the robot in a particular place due to local minima
[43], it is a well-known solution used in mobile robotics. In
this method the navigation strategy is to reach a destination
without collision, with obstacles being the repulsive forces and
the destination being the attraction force. Due to its simplicity,
a software-only implementation of the PF algorithm is not as
interesting as a design option in an embedded system course.
However, a hardware implementation poses some challenges,
in particular a set of trigonometric functions that can be
difficult to be implemented as custom hardware. For this
reason, students are first asked to optimize the software by
solving trigonometric functions based on Taylor series and
then try to solve the problem in hardware using CORDIC
algorithms and fixed-point representation. The hardware
solution is similar to the one previously presented in [32],
where a hardware implementation of the CORDIC algorithm
is integrated into the system as custom instruction as well.

6.4. Image Processing. An interesting application in terms
of students motivation and learning outcomes is the scale-
invariant feature transform (SIFT) algorithm [44], which is
considered one of the most robust solutions to extract features
from images. This algorithm has been applied to many areas.
In mobile robotics mapping it can be used as a data source
to build feature-based maps from images. Its implementation
as an embedded system is quite complex, specially if a high
frame processing rate is required (e.g., 30 frames/second).
A software-only implementation, such as running the appli-
cation on the softcore Nios II processor at 150 MHz, would
take more than one hour to extract the features from a single
input image of 320 x 240 pixels. However, hardware and
software customizations can lead to an embedded system able
to process the input image in 1/30 seconds. For instance,
a typical SIFT algorithm configuration needs to apply 18
different Gaussian filter kernels over an image in order
to extract a feature candidate (known as key point). This
throughput requirement represents 18.1 M pixel/s, which can

be achieved by an efficient pipeline architecture, as demon-
strated in Bonato et al. [34]. As the entire SIFT algorithm
is too complex to be implemented by one student group
during a semester, the problem is split between a num-
ber of groups, with each of them having to meet perfor-
mance targets for its corresponding assignment. Figure 2
demonstrates the whole SIFT algorithm divided in blocks,
with each block being assigned to a group of students.

6.5. Auxiliary Resources. In order to validate the embedded
system produced, students are encouraged to integrate their
system into a real Pioneer 3DX robot [45] running the Player
control software [46]. Instructors provide students with a
client for this software running on an embedded processor,
in order to mitigate the integration task [35]. Additionally,
students are given a set of auxiliary cores (in VHDL/Verilog)
to support the project implementation, such as the IEEE-
754 FPU (floating-point unit) module, an AMBA bus con-
troller (ARM standard), an Ethernet module (MAC 10/100),
hardware performance monitors, and a pseudorandom num-
ber generator based on the Mersenne Twister algorithm.
Students are also allowed to get other cores from third-
party providers, for instance, from the OpenCores website
(http://opencores.org/). We believe this kind of support is
particularly important to give a “real world” aspect to the
course and would be infeasible without close interaction
between undergraduate and graduate projects.

7. Teaching Platforms and Tools

FPGAs are a suitable alternative to introduce many con-
cepts in labs and to let students implement real systems.
That is mainly due to their programmability, availability
of intellectual property (IP) cores for easy interfacing to
external devices, availability of softcores that program part
of the FPGA resources as a microprocessor, and availability
of embedded hardcore components (DSPs—digital signal
processors, memory blocks, and high speed I/O ports). All
those features are extensively used throughout the course and
lab projects presented in this paper. In addition, they are



widely available at a relatively low cost, with good supply of
development tools. This is a desirable feature for an eventual
replication of the PBL course described in this paper.

71. FPGA Boards. Typical FPGA boards include the neces-
sary physical interfaces to connect them to other components
in order to set up an almost real operating environment. In
our laboratory experiments we have adopted Altera DE2-70
development board, provided by Terasic company, equipped
with a 4.3" LCD touch panel with resolution of 800 x 480
points and a 5M pixel CMOS camera. The DE2-70 board
features an Altera Cyclone II 2C35 FPGA and a myriad of
other interfaces. Experience shows that, when students work
with an environment close to what they are used to see on
their gadgets (e.g., touch screen display from smart phones),
there is an extra motivation for embracing exercises and
projects related to embedded systems, since they get curious
to understand how the actually system works internally.

7.2. Microprocessor Cores. FPGA companies provide RISC
softcores that can be used in FPGA devices. Examples
of such softcores are Xilinx’s MicroBlaze, Altera’s Nios II,
and Aeroflex Gaisler’s LEON. They also permit exploiting
of multiprocessor systems by instantiating more than one
softcore in the same FPGA. Those companies provide the
integrated design environments needed to develop complex
systems using hardware/software components. With those
environments students can start with software solutions and
then add cores to improve performance, for instance. Those
environments include C compilers, debuggers, and simula-
tors to program target microprocessors.

By practising such approach students can also acquire the
required skills in computing system organization since they
are real system architects during the development of their
projects. The impact of cache, floating-point units, multipli-
ers, and dividers on system performance is easily realized by
students through execution. They study the impact on perfor-
mance of the adopted scheme to couple dedicated hardware
components to a microprocessor. To measure performance,
students understand the need for hardware monitors. All of
those features have proven to be valuable in the teaching
process.

Using softcore processors allows students to acquire
many embedded systems concepts. Memory mapped devices,
input/output ports, existence or not of instruction and data
memory caches, existence or not of an operating system,
and existence or not of floating-point units are all concepts
acquired by students when developing those systems. As the
aforementioned, the reuse policy when developing tasks is
also fomented. Students are also required to use modules
already developed by others and to deal with the needed

interfaces.

7.3. Custom Instructions and Coupling Hardware Modules. By
using the Nios II microprocessor, students also study the
impact of adding custom instructions to the softcore, which
are used to improve the performance of time critical sections
of code. With this approach, they realize the need and

International Journal of Reconfigurable Computing

advantages of doing hardware/software codesign at the very
beginning of the project. Facing students with the design of
systems including both hardware and software components
has shown to be a key element to tackle embedded system
concepts.

74. EDA Tools. The practical experiments developed along
the course can be conducted with either Altera or Xilinx’s
tools. However, in this course we have adopted the first
option, since the development kit available in the laboratory
is the DE2-70 featuring an Altera’s FPGA. The tools used
are SoPC Builder and Quartus II for hardware development
and nios2-gcc and nios2-elf-gprof for software compilation,
debugging, and profiling for the Nios II processor [24].
Additionally, Altera’s ecosystem also provides the ModelSim
tool for hardware and software simulation and hardware
monitors for online performance analysis.

8. Evaluation of the Pedagogical Approach

In order to evaluate the effectiveness of the pedagogical
approach described in this paper, two kinds of analysis were
conducted: one is based on the instructor point of view, and
the other is based on the student’s perceptions and feedback.
Those analyses are presented in the next subsections.

8.1 Instructors Evaluation. We believe the desired learning
outcomes listed in Section 5 are achieved, noticed via the
final project quality. Most projects are as complete as the
reference one, encompassing software and hardware on a
single chip, accessing external and onchip memory, using
embedded operating system or a single hardware abstraction
layer, and also using external interface for debugging and
for sending and receiving data to the embedded system. For
instance, a group of students developed a project evolving
the potential field algorithm where optimized mathematical
operations for hardware were applied in such a way that the
achieved results in relation to performance and area were
better than the reference project adopted. This medium to
high complexity problem prepares the students to face real
project development.

Around 15% of the students that completed this course
are working directly with embedded systems development
in Brazilian companies and 20% have engaged in graduate
course in the same area. What students have said is that the
practical approach of the course gives them more confidence
to face a job interview in the area of embedded systems and
also to perform the actual work for those who get the job. We
also have had the opportunity to analyse the students during
their graduate course and we could notice that they were able
to produce research results very soon when compared to their
colleagues with other backgrounds.

8.2. Students’ Feedback. We have collected responses to an
anonymous questionnaire given to students. All the students
have answered mobile robotics as the most important factor
to motivate them to realize the embedded systems projects
using reconfigurable computing technology. One of the



International Journal of Reconfigurable Computing

13.3%

13.3%

13.3%

26.7%

m Problems with the
development board

m Lack of necessary
knowledge

M Problems with VHDL

B Problems with EDA tools

B Problems with VHDL
simulator
B Others

FIGURE 3: Percentage of student responses concerning the difficul-
ties in concluding their projects.

reasons is that the students quickly realize the importance of
the work to be done and see the results once it is implemented
(e.g., image processing tasks). Based on the experiences we
have had, their motivation is “application-driven,” and they
always pay more attention to and concentrate their energies
on more visible and stand-alone projects.

The student responses concerning the aspects they had
more difficulties when exposed to this teaching approach are
shown in Figure 3. In general the main set of complaints
is about the EDA tools and FPGA boards. The second set
of aspects they refer more often are related to the VHDL
simulator, the VHDL language, and the lack of some specific
background knowledge. Some of the students indicate the
memory limitations of the board as the main difficulty to
implement some projects. Another important difficulty factor
pointed out by students is the problems related to developing
C programs when no operating system is used. In this context,
they refer to the problems associated with allocating and
reallocating memory as the most difficult one. Some of them
also refer to the rather long initial time needed to begin a
project, which is strongly related to the long learning curves
needed to master the initial skills on using the tools and the
VHDL language.

In terms of the skills students recognize they should have
been acquired before, 50% of them mention advanced digital
design as the most important one. About 10% of them refer
to the need for learning more about computer architecture.
These two aspects reinforce the importance of having courses
in computer architecture where the design of a microproces-
sor is fully understood (including pipelining issues) and not
only courses explaining assembly languages and superficial
computer architecture concepts. About 30% refer to the need
of learning more about applications (control systems, digital
signal processing, image processing, etc.). Only one student
referred to the importance of knowledge on parallel and
multiprocessing systems.

Concerning the VHDL language, a very high percentage
of students (about 50%) refer to its concurrency model as the
most difficult issue to master. About 30% refer to the global
semantic of the VHDL language as a difficult property to mas-
ter. One of them refers to the previous and long experiences
in software imperative programming as one of the reasons for
the difficulties. Strangely, another one mentioned that his pre-
vious experience in designing hardware using schematics did
not help and created some confusion in the first time using
VHDL. According to the responses, students do not find the
syntax and structure of the language a problem but reveal the
new programming paradigm as the most difficult issue. One
student complained about the lack of good tutorials, while
another one about the complexity of the language and the
not so clear and understandable subset of VHDL behaviours
for synthesis. Those complaints were somehow expected,
given the major areas those students are undertaking (either
computer science or computer engineering).

The increasing importance of heterogeneous architec-
tures has led to a number of projects aiming to develop com-
piling environments targeting multiple executing platforms,
such as CPUs, GPUs, DSPs, and even FPGAs [47]. Those
tools use in source code either well-established programming
languages such as C/C++ [4] or special purpose languages
such as Lime [5]. Hardware and FPGAs targets are of
particular interest and have been the object of several efforts
trying to automatically bridge the gap between high level pro-
gramming languages and hardware custom structures [48].
Although several research tools have been developed and
made available, we believe they are currently not appropriate
to be used in a first course in embedded systems for under-
graduate students, as they may abstract important aspects
that should be exposed to them. Nonetheless, some of those
tools and technologies are reaching mainstream use, such
as Xilinx Vivado Design Suite [49], and should be adopted
at least partially in our course, as those kinds of tools are
gaining increasing importance when targeting heterogeneous
platforms. Another promising alternative is Altera SDK for
OpenCL [50], a framework allowing software programmers
to write kernel functions in OpenCL C, to be compiled for
execution on FPGA targets. The typical use of such system
is mixing hardware accelerated functions with host code
running on a CPU (e.g., ARM Cortex A9).

Concerning the level of difficulties of the projects, about
56% of the students reckon that the difficulty level is similar
to the most difficult problems they have experienced during
their academic trail. The remaining students consider the
difficulty level of the proposed projects to be average, when
compared to other assignments. Interestingly, none of the
students considered the projects as being the easiest ones
during his/her undergraduate or graduate program.

8.3. Ongoing Improvements. Current research work in the
department is concerned with an EDA tool dubbed RoboArch
being developed by MSc students. RoboArch is a component-
based tool for developing hardware architectures for mobile
robots [36]. The tool supports system modelling based on the
MARTE profile [51] and simulation in electronic system level
(ESL) integrated into real/simulated mobile robot platforms



10

Stimulus Monitor
Embedded system N
Player/stage architecture Player/stage
(sensors) (actuators)
— Test bench

FIGURE 4: A hardware-in-the-loop simulation environment for
embedded mobile robotics development.

(see Figure 4). When available, the tool should allow for
easier access to more realistic experiences with robotics.
The components will be stored in a repository using IP-
XACT pattern [52], facilitating the exchange of hardware
and software kernels among students. Considering that ESL
simulation can be more than 3 orders of magnitude faster
than register-transfer level (RTL) simulation, undergraduate
students benefit from this by modelling and debugging whole
embedded system in a feasible time, even before having
the actual hardware implemented. Having the ESL model
validated, the hardware part of the system can either manually
or automatically be converted into RTL (Verilog/VHDL),
depending on the ESL language adopted. When available to
undergraduate students, we believe it should improve the
development flow as a whole and so the students motivation
and commitment to the assigned projects. As already pointed
out, the use of HLS tools is an option which has been
considered to complement developments based on VHDL
language. In particular, some experiments are being carried
out to evaluate the suitability of Xilinx Vivado [49] for the
course purposes.

9. Concluding Remarks

This paper has shown experiences in using mobile robotic
kernels to teach embedded systems based on reconfig-
urable hardware. Specifically, FPGAs and related EDA tools
are being used so that students can realize systems with
hardware and software components. Mobile robotic kernels
accommodate most embedded system characteristics and
requirements, and students seem to have higher levels of
motivation to accomplish the kind of tasks that have been
proposed in this area. A crucial aspect of the methodology is
the close interaction between teaching and related research
activities, which has allowed the development and testing
of rather complex projects, not otherwise feasible using
standard textbooks. This strategy effectively implements a
project-based learning approach, which is specially desirable
towards the end of a student’s graduation period. After some
years of developing and applying this methodology, some

International Journal of Reconfigurable Computing

satisfactory results have been achieved. That is revealed by
the increased interest shown by students to follow research
projects related to embedded systems, the improved per-
formance of graduates working in this area, and also some
feedback from former students working in the industry. It
should be noticed that students do not need deep skills
in robotics to implement robotic kernels for their projects.
However, some of the students feel so motivated that they
learn by themselves many concepts related to mobile robotics,
which is obviously very positive and has encouraged the
authors to refine and continue using the PBL pedagogical
approach described in this paper.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to acknowledge the partial support
given by the bilateral cooperation CNPq/Grices (Brazil/
Portugal) program that permitted missions from both groups
to Brazil and Portugal during 4 years and thus the exchange of
experiences and knowledge between the authors. The authors
also would like to thank FAPESP for the financial support
given to publish this work.

References

[1] C.Ebert and C. Jones, “Embedded software: facts, figures, and
future,” Computer, vol. 42, no. 4, pp. 42-52, 2009.

[2] N. S. Voros, M. Hubner, J. Becker et al., “MOrpheus: a het-
erogeneous dynamically reconfigurable platform for designing
highly complex embedded systems,” Transactions on Embedded
Computing Systems, vol. 12, no. 3, article 70, 2013.

[3] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. L. M. Bertels, G.
Kuzmanov, and E. M. Panainte, “The MOLEN polymorphic
processor;” IEEE Transactions on Computers, vol. 53, no. 11, pp.
1363-1375, 2004.

[4] S. Singh, “Computing without processors,” Communications of
the ACM, vol. 54, no. 8, pp. 46-54, 2011.

[5] J. Auerbach, D. E Bacon, I. Burcea et al., “A compiler and run-
time for heterogeneous computing,” in Proceedings of the 49th
Annual Design Automation Conference (DAC ’12), pp. 271-276,
ACM, New York, NY, USA, 2012.

[6] K. G. Ricks, D. J. Jackson, and W. A. Stapleton, “An embedded
systems curriculum based on the IEEE/ACM model curricu-
lum,” IEEE Transactions on Education, vol. 51, no. 2, pp. 262—
270, 2008.

[7] S. Vassiliadis and D. Soundris, Fine-and Coarse-Grain Reconfig-
urable Computing, Springer, Berlin, Germany, 2007.

[8] T. Brdunl, Embedded Robotics: Mobile Robot Design and Appli-
cations with Embedded Systems, Springer, Berlin, Germany, 2nd
edition, 2006.

[9] C.S. Lee, J. H. Su, K. E. Lin, J. H. Chang, and G. H. Lin, ‘A
project-based laboratory for learning embedded system design
with industry support,” IEEE Transactions on Education, vol. 53,
no. 2, pp. 173-181, 2010.



International Journal of Reconfigurable Computing

[10] B. Benson, A. Arfaee, C. Kim, R. Kastner, and R. K. Gupta,
“Integrating embedded computing systems into high school
and early undergraduate education,” IEEE Transactions on Edu-
cation, vol. 54, no. 2, pp. 197-202, 2011.

[11] P. Bertels, M. D'Haene, T. Degryse, and D. Stroobandt,
“Teaching skills and concepts for embedded systems design,”
SIGBEDRevelation 6, 4:1-4:8, 2009.

[12] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, MIT
Press, Cambridge, Mass, USA, 2005.

[13] D. S. Touretzky, “Preparing computer science students for the
robotics revolution,” Communications of the ACM, vol. 53, pp.
27-29, 2010.

[14] M.]J. O’Grady, “Practical problem-based learning in computing
education,” ACM Transactions on Computing Education, vol. 12,
no. 3, article 10, 2012.

(15] J. S. Krajcik and P. C. Blumenfeld, The Cambridge Handbook of
the Learning Sciences, Cambridge University Press, Cambridge,
UK, 2006.

[16] D. Richards, “Designing project-based courses with a focus
on group formation and assessment,; ACM Transactions on
Computing Education, vol. 9, no. 1, article 2, 2009.

[17] D. Boud and G. Feletti, The Challenge of Problem-Based Learn-
ing, Kogan Page, London, UK, 1997.

J. Strobel and A. van Barneveld, “Whem is pbl more effeective?
A meta-synthesis of meta-analyses comparing pbl to conven-
tional classrooms,” Interdisciplinary Journal of Problem-Based
Learning, vol. 3, no. 1, pp. 44-58, 2009.

[18

[19] J. W. Thomas, “A review of research on project-based learning,”
2000, http://www.bie.org.

[20] C. Bobda, Introduction to Reconfigurable Computing: Architec-
tures, Algorithms, and Applications, Springer, Berlin, Germany,
1st edition, 2007.

[21] I. Kuon, R. Tessier, and J. Rose, “FPGA architecture: Survey
and challenges,” Foundations and Trends in Electronic Design
Automation, vol. 2, no. 2, pp. 135-253, 2007.

[22] R. Hartenstein, “A decade of reconfigurable computing: a
visionary retrospectiv;’ in Proceedings of the conference on
Design, Automation and Test in Europe Table of Contents, pp.
642-649.

[23] Xilinx Inc., ISE Design Suite, 2014, http://www.xilinx.com.

[24] Altera Corporation, Quartus IT Web Edition, 2011, http://www
.altera.com.

[25] Mentor Graphics, ModelSim—Advanced Simulation and
Debugging, 2011, http://www.mentor.com.

[26] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33-38, 2008.

[27] A. Bindal, S. Mann, B. N. Ahmed, and L. A. Raimundo,
“An undergraduate system-on-chip (SoC) course for computer
engineering students,” IEEE Transactions on Education, vol. 48,
no. 2, pp. 279-289, 2005.

[28] S.H.Kim and J. W. Jeon, “Introduction for freshmen to embed-
ded systems using LEGO mindstorms,” IEEE Transactions on
Education, vol. 52, no. 1, pp. 99-108, 2009.

[29] P. Marwedel, Embedded System Design: Embedded Systems
Foundations of Cyber-Physical Systems, Springer, Berlin, Ger-
many, 2nd edition, 2011.

[30] W. Wolf, Computers as Components, Second Edition: Principles
of Embedded Computing System Design, Morgan Kaufmann, San
Francisco, Calif, USA, 2008.

1

[31] E Vahid and T. Givargis, Embedded System Design: A Unified
Hardware/Software Introduction, John Wiley & Sons, New York,
NY, USA, 1st edition, 2002.

[32] V. Bonato, B. E. Mazzotti, M. M. Fernandes, and E. Marques,
“A mersenne twister hardware implementation for the Monte
Carlo localization algorithm,” Journal of Signal Processing Sys-
tems, vol. 70, no. 1, pp. 75-85, 2013.

[33] V. Bonato, E. Marques, and G. A. Constantinides, “A floating-
point extended kalman filter implementation for autonomous
mobile robots,” Journal of Signal Processing Systems, vol. 56, no.
1, pp. 41-50, 2009.

[34] V. Bonato, E. Marques, and G. A. Constantinides, “A parallel
hardware architecture for scale and rotation invariant feature
detection,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 18, no. 12, pp. 17031712, 2008.

[35] D. E. Wolf, J. A. Holanda, V. Bonato, R. Peron, and E. Marques,
“An FPGA-based mobile robot controller,” in Proceedings of the
3rd Southern Conference on Programmable Logic (SPL "07), pp.
119-123, February 2007.

[36] V. Bonato and E. Marques, “Roboarch: a component-based
tool proposal for developing hardware architecture for mobile
robots,” in Proceedings of the 4th IEEE International Symposium
on Industrial Embedded Systems (SIES "09), pp. 249-252, July
20009.

[37] M. C. Sacchetin, J. J. Lopes, D. E. Wolf, J. L. Silva, and E.
Marques, “Analysis and implementation of localization and
mapping algorithms for mobile robots based on reconfigurable
computing,” Latin American Applied Research, vol. 37, no. 1, pp.
31-34, 2007.

[38] 7J. Silva, M. M. Fernandes, V. Bonato, R. Menotti, ]. M. Cardoso,
and E. Marques, “Using mobile robotics to teach reconfigurable
computing,” in Proceedings of the IEEE Computer Society Work-
shop on Reconfigurable Computing Education (WRCE *06), p. 6,
Karlsruhe, Germany, 2006.

[39] E Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo
localization for mobile robots,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA
’99), vol. 2, pp. 1322-1328, Detroit, Mich, USA, May 1999.

[40] A. Howard and N. Roy, “Radish: the robotics data set reposi-
tory,” 2003, http://radish.sourceforge.net.

[41] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain
spatial relationships in robotics,” Autonomous Robot Vehicles,
pp. 167193, 1990.

[42] A. Irturk, B. Benson, S. Mirzaei, and R. Kastner, “GUSTO:
An automatic generation and optimization tool for matrix
inversion architectures;” Transactions on Embedded Computing
Systems, vol. 9, no. 4, article 32, 2010.

[43] Y. Koren and J. Borenstein, “Potential field methods and their
inherent limitations for mobile robot navigation,” in Proceedings
of the IEEE International Conference on Robotics and Automa-
tion (ICRA *91), pp. 1398-1404, Sacramento, Calif, USA, April
1991.

[44] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60, no.
2, pp. 91-110, 2004.

[45] Adept Technology Inc, Research Robots, 2011, http://www
.mobilerobots.com/ResearchRobots.aspx.

[46] B.P. Gerkey, R. T. Vaughan, K. Stey, A. Howard, G. S. Sukhatme,
and M. J. Matari¢, “Most valuable player: a robot device server
for distributed control,” in Proceedings of the IEEE/RS] Interna-
tional Conference on Intelligent Robots and Systems (IROS 01),
pp- 1226-1231, Maui, Hawaii, Maui, November 2001.



12

[47] D. E Bacon and S. Singh, “Compiling complete programs into
circuits (ccpe 2012),” in A Workshop Co-Located with ASPLOS,
London, UK, 2012.

[48] J. M. P. Cardoso and P. C. Diniz, Compilation Techniques
for Reconfigurable Architectures, Springer, Berlin, Germany, Ist
edition, 2009.

[49] Xilinx Inc, Vivado Design Suite, 2014, http://www.xilinx.com.

[50] Altera Corporation, Altera SDK for OpenCL, 2014, http://www
.altera.com.

[51] OMG, UML Profile for MARTE: Modeling and Analysis of
Real-Time Embedded Systems, 2009, http://www.omgmarte
.org/.

[52] Spirit Consortium, IP-XACT v1.4: a specification for XML
meta-data and tool interfaces, 2008, http://www.spiritconsor-
tium.org/home.

International Journal of Reconfigurable Computing



International Journal of

Rotating
Machinery

International Journal of

The Scientific oA Distributed
World Journal Sensors Sensor Networks

Journal of
Control Science
and Engineering

Advances in

Civil Engineering

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of
Electrical and Computer
Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Modelling &
oot (il St perospags
Observation in Engineering

e

Aoes

5//{/?

International Journal of nas and Active and Passive
Chemical Engineering Propagation Electronic Components




