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The nonlinear vector precoding (VP) technique has been proven to achieve close-to-capacity performance in multiuser multiple-
input multiple-output (MIMO) downlink channels. The performance benefit with respect to its linear counterparts stems from
the incorporation of a perturbation signal that reduces the power of the precoded signal. The computation of this perturbation
element, which is known to belong in the class of NP-hard problems, is the main aspect that hinders the hardware implementation
of VP systems. To this respect, several tree-search algorithms have been proposed for the closest-point lattice search problem in VP
systems hitherto. Nevertheless, the optimality of these algorithms has been assessed mainly in terms of error-rate performance and
computational complexity, leaving the hardware cost of their implementation an open issue.Theparallel data-processing capabilities
of field-programmable gate arrays (FPGA) and the loopless nature of the proposed tree-search algorithms have enabled an efficient
hardware implementation of a VP system that provides a very high data-processing throughput.

1. Introduction

Since the presentation of the vector precoding (VP) technique
[1] for data transmission over the multiuser broadcast chan-
nel, many algorithms have been proposed in the literature
to replace the computationally intractable exhaustive search
defined in the original description of the algorithm. To
this respect, lattice reduction approaches have been widely
used as a means to compute a suboptimum perturbation
vector with a moderate complexity. The key idea of lattice-
reduction techniques relies on the usage of an equivalent
and more advantageous set of basis vectors to allow for the
suboptimal resolution of the exhaustive search problem by
means of a simple rounding operation. This method is used
in [2], where the Lenstra-Lenstra-Lovász (LLL) reduction
algorithm [3] is used to yield the Babai’s approximate closest-
point solution [4]. Similar approaches can be found in [5–
7]. Despite achieving full diversity order in VP systems [8,
9], the performance degradation caused by the quantization
error due to the rounding operation still remains. More-
over, many lattice reduction algorithms have a considerable

computational complexity, which poses many challenges to a
prospective hardware implementation.

An appropriate perturbation vector can also be found by
searching for the optimum solution within a subset of can-
didate vectors. These approaches, also known as tree-search
techniques, perform a traversal through a tree of hypotheses
with the aim of finding a suitable perturbation vector.

In spite of the high volume of research work published
around the topic of precoding algorithms, the issues raised by
their implementation have not been given the same attention.
Some of the few publications on this area, such as [10–12],
describe precoding systems that either have a considerable
complexity in terms of allocated hardware resources or
provide a rather low data transmission rate.

Despite the lack of published research in the area of
hardware architectures for precoding algorithms, the imple-
mentation issues of tree-search schemes in MIMO detection
scenarios have been widely studied. For example, the field
programmable gate array (FPGA) implementation of the
fixed-complexity sphere decoder (FSD) detector has been
analyzed in [13–15], whereas the hardware architecture of
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the K-best tree search considering a real equivalent model
was researched in [16–21]. Moreover, the implementation
of a K-best detector with suboptimum complex-plane enu-
meration was performed in [22, 23]. A thorough review of
K-best tree-search implementation techniques was carried
out in [24]. The adaptation of these tree-search schemes
to precoding systems implies many variations with respect
to the original description of the algorithms. Even if many
lessons can be learned from the hardware architecture of
tree-search techniques for point-to-pointMIMOsystems, the
peculiarities of the precoding scenario render the results of
the aforementioned publications inadequate for the current
research topic.

Consequently, this contribution addresses the high-
throughput implementation of fixed-complexity tree-search
algorithms for VP systems. More specifically, two state-of-
the-art tree-search algorithms that allow for the parallel
processing of the tree branches have been implemented
on a Xilinx Virtex VI FPGA following a rapid-prototyping
methodology. In order to achieve a high throughput, both
schemes operate in the complex plane and have been imple-
mented in a fully-pipelined fashion providing one output per
cycle.

This contribution is organized as follows: in Section 2 the
system model is introduced, followed by a short review pro-
vided in Section 3 on the noniterative tree-search algorithms
to be implemented. Next, the general hardware architecture
of the data perturbation process is outlined in Section 4
whereas the specific features of the K-best and FSE modules
are analyzed in Sections 5 and 6, respectively. An analysis on
the tree-search parameters for both techniques is performed
in Section 7 and the hardware implementation results are
shown in Section 8. Finally, some concluding remarks are
drawn in Section 9.

Notation. In the remainder of the paper the matrix transpose
and conjugate transpose are represented by (⋅)

𝑇 and (⋅)
𝐻,

respectively. We use I
𝑁

to represent the 𝑁 × 𝑁 identity
matrix and Mod(⋅) to denote the modulo operator. The set
of Gaussian integers of dimension 𝑁, namely, Z𝑁 + 𝑗Z𝑁, is
represented by CZ𝑁.

2. System Model

Consider the multiuser broadcast channel with𝑀
𝑇
antennas

at the transmitter and 𝑁 single-antenna users, denoted as
𝑀
𝑇
×𝑁where𝑀

𝑇
≥ 𝑁.We assume that the channel between

the base station and the𝑁 users is represented by a complex-
valued matrix H ∈ C𝑁×𝑀𝑇 , whose element ℎ

𝑛,𝑚
represents

the channel gain between transmit antenna 𝑚 and user 𝑛.
For all simulations, the entries of the channel matrix are
assumed independent and identically distributed with zero-
mean circularly symmetric complex Gaussian distribution
and 𝐸[|ℎ

𝑛,𝑚
|
2
] = 1.

The precoding system under study is shown in Figure 1.
According to the aforementioned model, the data received at

𝑠 𝑧 𝑠
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Figure 1: Block diagram of a VP system.

the 𝑁 user terminals can be collected in the vector y ∈ C𝑁,
which is given by

y = Hx + w, (1)

where w ∈ C𝑁 represents the additive white Gaussian noise
vector with covariance matrix 𝐸[ww𝐻] = 𝜎2I

𝑁
.

In precoding systems such as the one depicted in Figure 1,
the independent data acquisition at the receivers is enabled
by a preequalization stage at the base station.This procedure,
which is carried out by means of a precoding filter P,
anticipates the distortion caused by the channel matrix in
such a way that the received signal is (ideally) fully equalized
at the receive terminals. However, the precoding process
causes variations in the power of the user data streams, and
therefore, a power scaling factor 𝛽−1 = √𝐸Tr/𝐸[‖q‖

2
] ∈

R
+
is applied to the vector of precoded symbols q prior to

transmission to ensure a certain transmit power 𝐸Tr. At the
user terminals, the received signal is scaled by𝛽 again to allow
for an appropriate detection of the data symbols. Hence, the
signal prior to the detection stage reads as

z = Hq + 𝛽w. (2)

From this equation, one can notice that in the event of
𝐸[‖q‖2] > 𝐸Tr, or equivalently𝛽 > 1, an increase in the power
of the noise vector is experienced at the receivers, which
greatly deteriorates the error-rate performance of the system.
To this respect, nonlinear signal processing approaches aim
at reducing the power of the linearly precoded symbols, in
such a way that a considerable performance enhancement
can be attained. In VP systems, this objective is achieved
by incorporating a perturbation signal prior to the linear
precoding stage.

Thedata perturbation process is supported by themodulo
operator at the receivers, which provides the transmitter with
additional degrees of freedom to choose the perturbation
vector that is most suitable. Note that the perturbation
signal must be composed of integer multiples of the modulo
constant 𝜏, namely, a ∈ Q with Q = 𝜏CZ𝑁, so that it can be
easily removed at the receivers by means of a simple modulo
operation.

The VP system model that achieves the best error-rate
performance targets the minimization of the mean square
error (MSE) instead of the traditional goal of reducing the
average power of the transmitted symbols [25]. In this model,
the precoding matrix is designed as P = H𝐻Ψ, with Ψ =

(HH𝐻 + 𝑁𝜎2/𝐸TrI𝑁)
−1, and the triangular matrix used for

the computation of the perturbation signal is computed as
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U𝐻U = Ψ. Finally, the optimum perturbation vector is
obtained by evaluating the following cost function:

a = arg min
â∈𝜏CZ𝑁

‖U (s + â) ‖2
2
. (3)

The computation of the perturbing signal in (3) entails a
search for the closest point in a lattice. Several techniques to
efficiently obtain the perturbation signal will be analyzed in
the following section.

3. Tree-Search Techniques for
Vector Precoding

The triangular structure of the matrix U in (3) enables the
gathering of all the solution vector hypotheses in an orga-
nized structurewhich resembles the shape of a tree. Following
the analogy with the tree structure, the concatenation of 𝜓 <

𝑁 lattice elements or nodes is referred to as a branch, where
a branch of length 𝑁 represents a candidate solution vector.
The search for the perturbation vector is then performed by
traversing a tree of 𝑁 levels (each one representing a user)
starting from the root level 𝑖 = 𝑁, and working backwards
until 𝑖 = 1.

Since the elements of the solution vector belong to the
expanded search space Q, the amount of nodes that originate
from each parent node in the tree equals |Q| = ∞ in
theory. However, depending on the tree-traversal strategy to
be followed, the cardinality of this set can be reduced either
artificially, by limiting the search space to the group L of
closest points to the origin, or by identifying the set of eligible
nodes following a distance control policy (also known as the
sphere constraint). Note that, as opposed to the point-to-
point MIMO detection scenario, the amount of child nodes
that stem from the same parent node does not depend on the
modulation constellation in use. This way, the computation
of the (squared) Euclidean distances in (3) can be distributed
across multiple stages as follows:

𝐷
𝑖
= 𝑢
2

𝑖𝑖

𝑎𝑖 + 𝑧𝑖

2
+

𝑁

∑
𝑗=𝑖+1

𝑢
2

𝑗𝑗


𝑎
𝑗
+ 𝑧
𝑗



2

= 𝑑
𝑖
+ 𝐷
𝑖+1
, (4)

where

𝑧
𝑖
= 𝑠
𝑖
+

𝑖−1

∑
𝑗=1

𝑢
𝑖𝑗

𝑢
𝑖𝑖

(𝑎
𝑗
+ 𝑠
𝑗
) . (5)

The partial Euclidean distance (PED) associated with a
certain node at level 𝑖 is denoted as 𝑑

𝑖
, while the accumulated

Euclidean distance (AED) down to level 𝑖 is given by 𝐷
𝑖
=

∑
𝑁

𝑗=𝑖
𝑑
𝑗
. Since the elements of the solution vector belong

to the expanded search space Q, the amount of nodes that
originate from each parent node in the tree equals |Q| = ∞

in theory. However, depending on the tree-traversal strategy
to be followed, the cardinality of this set can be reduced either
artificially, by limiting the search space to the groupL of |L|

closest points to the origin, or by identifying the set of eligible
nodes following a distance control policy (also known as the
sphere constraint).

The traversal of the search tree is usually performed
following either a depth-first or breadth-first strategy.

3.1. Depth-First Tree-Search Techniques. Depth-first tree-
search techniques traverse the tree in both forward and
backward directions enabling the implementation of a sphere
constraint for pruning of unnecessary nodes based on, for
example, the Euclidean distance associated with the first
computed branch. The pruning criterion, which is updated
every time a leaf node at level 𝑖 = 1 with a smaller AED is
reached, does not impose a per-level run-time constraint, and
therefore, the complexity of these algorithms is of variable
nature.

One of the most noteworthy depth-first techniques is
the SE algorithm [26, 27], which restricts the search for
the perturbation vector to the set of nodes with 𝐷

𝑖
≤ 𝑅

that lie within a hypersphere of radius 𝑅 centered around
a reference signal. The good performance of the algorithm
is a consequence of the identification and management of
the admissible set of nodes at each stage of the tree search.
Every time a forward iteration is performed (𝑖 → 𝑖 − 1)
the algorithm selects and computes the distance increments
of the nodes that fulfil the sphere constraint and continues
the tree search with the most favorable node according to
the Schnorr-Euchner enumeration [28] (the node resulting
in the smallest 𝑑

𝑖
). This process is repeated until a leaf node

is reached (which will result in a radius update) or no nodes
that satisfy the sphere constraint are found. In any case, the
SE will proceed with a backward iteration (𝑖 → 𝑖 + 1)
where a radius check will be performed among the previously
computed set of candidate points. If a node with 𝐷

𝑖
< 𝑅 is

found, the tree traversal is resumed with a forward iteration.
The optimum solution has been found when the hypersphere
with the updated radius contains no further nodes.

The radius reduction strategy along with the tracking of
potentially valid nodes at each level of the algorithm prevents
unnecessary distance computations but ultimately results in
a rather complex tree-search hardware architecture.

3.2. Breadth-First Tree-Search Techniques. Breadth-first tree-
search algorithms with upper-bounded complexity traverse
the tree in only forward direction, identifying a set of
potentially promising nodes and expanding only these in
the subsequent tree-levels. These algorithms benefit from
a fixed and high data-processing throughput that stems
from the parallel processing of the branches. Nevertheless,
the speculative pruning carried out during the tree search
prevents bounded breadth-first algorithms from achieving an
optimum performance.

As one can guess from its name, the K-best precoder
[29, 30] selects the 𝐾 best branches at each level of the
tree regardless of the sphere constraint or any other distance
control policy. At each stage 𝑖 of the K-best tree search,
an ordering procedure has to be performed on the eligible
𝐾|L| candidate branches based on their AEDs down to
level 𝑖. After the sorting procedure, the 𝐾 paths with the
minimum accumulated distances are passed on to the next
level of the tree. Once the final stage of the tree has been
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Figure 2: General hardware architecture of the fixed-complexity tree-search techniques for an𝑁 = 4 user system.

reached, the branch with the minimum Euclidean distance is
selected as the K-best solution. Clearly, the main bottleneck
in this scheme stems from the node ordering and selection
procedures performed at every level of the tree search.

Thefixed-complexity sphere encoder (FSE)was presented
in [31] as a sort-free alternative to the aforementioned K-
best precoder. The proposed scheme avoids the intricate
sorting stages required by the K-best by defining a node
selection procedure based on a tree configuration vector
n = [𝑛

1
, . . . , 𝑛

𝑁
]. This vector specifies the number of child

nodes to be evaluated at each level (𝑛
𝑖
) following the Schnorr-

Euchner enumeration.Therefore, only 𝑛
𝑖
PEDs are computed

per parent node at each level, yielding a total candidate
branch count of 𝑛

𝑇
= ∏
𝑁

𝑖=1
𝑛
𝑖
.

Both fixed-complexity algorithms achieve a high data-
processing throughput due to their capability of parallel
branch computation.This high-speed data-processing feature
will be assessed by carrying out the hardware implementation
of a 4 × 4 vector precoder based on the fixed-complexity
algorithms under study. The main objectives of this study
are twofold: on one hand, the quantification of the data-
transmission throughput of the proposed architectures, and
on the other hand, the assessment of the hardware resource
allocation required for their implementation.

4. General Architecture Overview

Both tree-search schemes share the same general distance
computation structure, as can be seen in Figure 2. The lack
of loops in the hardware architecture of the fixed-complexity
tree-search techniques enables a high throughput and fully-
pipelined implementation of the data perturbation process,
thus being its implementation specially suitable for a target
FPGA device.

The AEDs of the candidate branches are computed by
accumulating the PEDs calculated at the local distance

processing units (DPUs) to the AEDs of the previous level.
This way, the AEDs down to level 𝑖 corresponding to the
considered candidate branches, namely, [𝐷(1)

𝑖
, . . . , 𝐷

(𝜓𝑖)

𝑖
], are

passed on from DPU 𝑖 to DPU 𝑖 − 1. The parameter 𝜓
𝑖
stands

for the number of candidate branches at each level of the
tree search, being it 𝜓

𝑖
= 𝐾 for all 𝑖 for the K-best and

𝜓
𝑖
= ∏
𝑁

𝑗=𝑖
𝑛
𝑗
for the FSE model.

Two input memory blocks, named Data Memory and
Channel Memory, have been included to store the data
symbols and the values of the triangular matrix U, respec-
tively. The off-diagonal matrix coefficients are stored as
𝑢
𝑖𝑗
/𝑢
𝑖𝑖
, whereas the diagonal values are in the form of 𝑢2

𝑖𝑖

to simplify the calculation of (4) and (8). Note that the
matrix preprocessing stage required by the FSE and K-best
approaches has not been included in the hardware design.The
computation of the intermediate points 𝑧

𝑖
requires the values

of all previous 𝛿
𝑗
= 𝑎
𝑗
+ 𝑠
𝑗
. To avoid redundant calculations,

the set of values [𝛿(1)
𝑗
, . . . , 𝛿

(𝜓𝑗)

𝑗
] for all 𝑗 > 𝑖 is transferred to

DPU 𝑖, as is shown in Figure 2.
The hardware structure of the first DPU is common in

both schemes. The computation of the Euclidean distances
in this level does not involve any data from previous levels,
and therefore, the only operation to be performed is to select
the 𝜓
𝑁
lattice values closest to 𝑠

𝑁
and to compute the corre-

sponding PEDs. Given that the position of the modulation’s
constellationwithin the complex lattice is known beforehand,
and considering the symmetries of the complex lattice, it
is possible to select the nodes to be passed on to the next
level without performing any extra distance calculations and
sorting procedures. Additionally, the hardware structure of
the last DPU is also equal for both algorithms, as only the
most favorable child node that stems from each one of the 𝜓

2

parent nodes needs to be expanded at this level. Such a task
can be performed by simply rounding the value of 𝑧

1
to the

position of the nearest lattice point.



International Journal of Reconfigurable Computing 5

Themain and crucial differences between the FSE and K-
best tree-search algorithms rely on the DPUs of levels 1 < 𝑖 <
𝑁.

5. DPU for the 𝐾-Best

The difficulty of performing the sorting procedure in the
complex plane, where the amount of nodes to be considered is
higher, and the intricacy of complex-plane enumeration have
led to the dominance of real-valued decomposition (RVD)
as the preferred technique when implementing the K-best
tree search. Nevertheless, direct operation on the complex
signals is preferred from an implementation point of view as
the length of the search tree is halved, and hence, the latency
and critical path of the design can be shortened.

5.1. Structure of the Sorting Stage. Regardless of the domain of
the signals to be used, the bottleneck in this type of systems
is usually the sorting stage performed at each tree level.
The number of child nodes that stem from the same parent
node will be defined as 𝐵, being its value 𝐵 = |L| for the
complex-plane model, whereas 𝐵 = √|L| will be required
for the RVD scheme. The PED calculation and subsequent
sorting procedure on the 𝐾𝐵 child nodes at each level is
a computationally expensive process that compromises the
throughput of the whole system. With the aim of alleviating
the burden of the sorting stage, the use of the Schnorr-
Euchner ordered sequence of child nodes and the subsequent
merging of the sorted sublists is proposed in [17]. Even if the
proposed scheme is implemented on an RVD model due to
the simplicity of the local enumeration, it is possible to extend
it to the complex plane if a low-complexity enumerator,
such as the puzzle enumerator presented in [32], is utilized.
Additionally, a fully-pipelined RVD architecture of the sorted
sublists algorithm is proposed in [33] for high-throughput
systems. By dividing the real axis into 2𝐵 regions and storing
the corresponding enumeration sequences in look-up tables
(LUTs), the algorithm is able to determine the child node
order by means of a simple slicing procedure. Nevertheless,
this technique is advantageous only when operating with
RVD symbols as the amount of data to be stored and the
quantity of nonoverlapping regions grow remarkably when
complex-valued symbols are utilized. In any case, the use
of any of the aforementioned sublist merging approaches
reduces the amount of PED computations to be performed
at each level to 𝐾2 ≤ 𝐾𝐵.

5.1.1. The Winnersec Path Extension Algorithm. The number
of costly distance computations can be further reduced by
implementing the winner path extension (WPE) selection
approach presented in [34] and incorporated into the RVD
hardware architecture of the K-best tree search in [35, 36].
The proposed scheme selects the 𝐾 most favorable branches
in𝐾 iterations by performing just 2𝐾−1 PED computations.
An illustrative example of the WPE algorithm is depicted in
Figure 3 for a systemwith𝐵 = 4 and𝐾 = 3.The child nodes at
a certain tree level 𝑖 are tagged as 𝑎(𝑥,𝑦)

𝑖
, where𝑥 represents the

index of the parent node and 𝑦 denotes the position of that
certain node within the ordered Schnorr-Euchner sequence
of child nodes.

The WPE sorting procedure is based on the generation
and management of a node candidate list A. This way, the
child node corresponding to the 𝑘th most favorable branch
is extracted from the candidate list of the 𝑘th sorting stage
A
𝑘
. The initial values in the candidate list are comprised

of the AEDs down to level 𝑖 of the best child nodes that
stem from each one of the 𝐾 parent nodes, which gives
A
1
= {𝑎
(1,1)

𝑖
, . . . , 𝑎

(𝐾,1)

𝑖
}. The winner branch in the initial

sorting stage, or equivalently the first of the𝐾most favorable
branches, is selected as the branch with the smallest AED
withinA

1
. The PED of the second most favorable child node

that stems from the same parent node as the latest appointed
winner branch is computed (𝑎(3,2)

𝑖
in the example illustrated

in Figure 3) and the AED of the resulting tree branch is added
to the candidate listA

2
. The algorithm proceeds accordingly

until the𝐾 required branches have been identified.
Additionally note that, according to the complexity anal-

ysis based on the amount of comparisons in a WPE-enabled
K-best tree search published in [35], the complexity of an
RVD-based tree traversal doubles that of its complex-plane
counterpart.

5.2. Structure of the K-best DPU. The structure of the pro-
posed K-best DPU is depicted in Figure 4 for a system with
𝐾 = 3. The branch selection procedure is carried out in 𝐾

fully-pipelined sorting stages following a modified version
of the WPE algorithm presented in [33, 34]. First of all, the
computation of the intermediate points is performed for each
one of the 𝐾 branches that are passed on from the previous
level. The set of best child nodes that stem from each parent
node can be computed by simply rounding off the value of the
intermediate point to the nearest lattice point. The distance
increments (𝑑

𝑖
in (4)) for those𝐾-best children are computed

by 𝐾 metric computation unit (MCU) and are accumulated
with their corresponding 𝐷

𝑖−1
values. These distance values

and their corresponding branches comprise the candidate list
Λ
1
.TheminimumAEDwithinΛ

1
is found at theminimum-

search unit (MSU) by simple concatenation of compare-and-
select blocks. The MSU also outputs the index of the first
winner branch 𝛼

1
∈ {1, . . . , 𝐾} so that the appropriate value

of 𝑧
𝑖
can be selected for the local enumeration procedure.
At the second stage of the sorting procedure, the 𝑎(𝛼1 ,2)

𝑖

node needs to be identified for any parent node index 𝛼
1
.This

task is performed by the 𝐸
2
block, which comprises a puzzle

enumerator that outputs the second most favorable node
given a certain value of 𝑧

𝑖
. However, in the subsequent stages

of the algorithm, the enumeration procedure will depend
on the index of the previously appointed winner branches.
Hence, if 𝛼

1
= 𝛼
2
, the third most promising child node

will need to be expanded, namely, 𝑎(𝛼1 ,3)
𝑖

, whereas the second
most favorable node in the 𝛼

2
branch (𝑎(𝛼2 ,2)

𝑖
) will be required

if 𝛼
1
̸= 𝛼
2
. Consequently, the new candidate branch to be

included in theA
𝑘
candidate list at the 𝑘th sorting stage will
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Stage 1 Stage 2 Stage 3 

Parent node 1

Parent node 2

Parent node 3

Stage 4

𝑎(1,1)𝑖 𝑎(1,1)𝑖

𝑎(1,2)𝑖

𝑎(2,1)𝑖
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Figure 4: Block diagram of the K-best DPU.

require the expansion of the 𝜌th most favorable child node,
where 𝜌may take any value within the set {2, 3, . . . , 𝑘}.

The enumeration approach at each sorting stage 𝑘 has
been carried out by means of a puzzle enumerator unit
capable of ascertaining the optimum ordered sequence of the
first 𝑘 child nodes in a nonsequential fashion.The node order
determination in the puzzle enumerator can be carried out
without performing any costly distance computations. For
each sorting stage 𝑘 any node in the ordered sequence of best
𝑘 child nodes can be selected for expansion. This way, the
desired child node in the ordered sequence is determined by
an additional input variable which keeps track of the amount
of already expanded child nodes for each parent node. The
puzzle enumerator has been selected as the enumeration
scheme to be used along with the WPE due to its lower
hardware resource demand and nonsequential nature, as
discussed in [32]. Note that, there are no feedback loops in
the structure of the K-best DPU, and therefore, it is possible
to implement it following a fully-pipelined scheme.

6. DPU for the FSE

The intricate node ordering and selection procedure required
by the K-best algorithm is replaced by a simple Schnorr-
Euchner enumerator in the FSE tree-search model. This
derives in a considerably simpler DPU architecture of the FSE
scheme.

Figure 5 depicts the structure of the FSE DPU, where
the block diagram for 𝑛

(𝑖)

𝑇
= ∏

𝑖−1

𝑗=1
𝑛
𝑗

= 3 and 𝑛
𝑖
=

1 is represented. First of all, the data of the {𝛿
𝑖+1
, . . . , 𝛿

𝑛
}

values transferred from level 𝑖 + 1 are used to compute the
intermediate values 𝑧

𝑖
for each one of the parent nodes.

Afterwards, the node selection procedure is performed by
means of a simple rounding operation when 𝑛

𝑖
= 1, as

depicted in the illustrative example in Figure 5, or by means
of the unordered puzzle enumerator [32] for the cases where
𝑛
𝑖
> 1. The PEDs of the selected nodes are then computed by

𝑛
(𝑖)

𝑇
MCUs and accumulated to the AEDs from the previous

level. Finally, as was the case with the K-best DPU, the
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Figure 5: Block diagram of the FSE DPU.

FSE DPU does not have any feedback paths in its design,
and hence, it can be easily implemented following a fully-
pipelined scheme.

7. Design Considerations

This section addresses the design parameter selection for the
fixed-complexity algorithms to be implemented in hardware.
Additionally, the impact of applying an approximate norm for
the computation of the distance increments is studied froman
error-rate-performance point of view.

7.1. Choice of the Design Parameters. Theconfigurable param-
eters𝐾 and 𝑛

𝑇
offer a flexible trade-off between performance

and complexity for theK-best and FSE encoders, respectively.
These configuration parameters establish the shape of the
search tree, which in turn determines the amount of hard-
ware multipliers required for its implementation. Embedded
multipliers are scarce in FPGA devices and are considered an
expensive resource in application-specific integrated circuit
(ASIC) designs. Thus, the number of multiplication units
required by the tree-search algorithm has been regarded
as the critical factor in the current hardware architecture
design. For the sake of a fair comparison, the configuration
parameters of the fixed-complexity tree-searchmethods have
been selected so as to yield a similar amount of allocated
embedded multipliers.

Considering that 3 multipliers are used for the multipli-
cation of two complex terms, the number of multiplication

units required for the K-best tree-search structure can be
computed as

𝑁MUL, 𝐾𝐵 = 6𝐾 + 3 (𝑁 − 2) (2𝐾 − 1) + 3𝐾[
𝑁 (𝑁 − 1)

2
] ,

(6)
whereas the total amount of embeddedmultipliers for an FSE
tree structure is given by

𝑁MUL, FSE = 3
𝑁

∑
𝑖=1

𝑖𝑛
(𝑖)

𝑇
. (7)

The number of required embedded multipliers for the
K-best and FSE tree-search techniques is shown in Figure 6
for a system with 𝑁 = 4 single-antenna users. The amount
of multiplier units is given as a function of the number of
candidate branches, namely,𝐾 and 𝑛

𝑇
for theK-best and FSE

approaches, respectively. As one can notice, the amount of
hardware resources in the K-best tree-search model grows
linearly with the number of considered candidate branches.
However, this constant growth rate does not apply for the FSE
case. This is due to the 𝑛

𝑖
values being differently distributed

through the tree configuration vector depending on the
divisibility of 𝑛

𝑇
. As proved in [37], among all possible tree

configuration vectors that yield the same value of 𝑛
𝑇
, the one

with themost dispersedly distributed values of 𝑛
𝑖
achieves the

best error-rate performance and requires the lowest amount
of allocated embedded multipliers.

In order to assess the hardware resource occupation
required for the the implementation of the different tree-
search algorithms, the design parameter values 𝐾 = 7
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Figure 6: Number of required multipliers for the K-best and FSE
tree-search techniques as a function of the number of candidate
branches.

BE
R

10−1

10−2

10−3

10−4

10−5

10−6

5 10 15 20 25
SNR (dB)

SE

FSE 𝑛𝑇 = 10

K-Best 𝐾 = 7

Figure 7: BER performance of the implemented FSE and K-best
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and 𝑛
𝑇

= 10 have been selected for the K-best and FSE
models, respectively. This choice of parameters ensures a
similar multiplier occupation for both schemes and offers a
significantly better error-rate performance than other lower
𝐾 and 𝑛

𝑇
pairs, for example, 𝐾 = 6 and 𝑛

𝑇
= 9.

The BER versus SNR curves of the implemented fixed-
complexity schemes are depicted in Figure 7. As one can
notice, the error-rate performance of the implemented mod-
els is close to the optimum set by the SE in the low-to-mid
SNR range. However, a performance degradation of 0.5 dBs
is noticeable for the FSE model at high-SNRs, whereas the

performance gap of the K-best structure increases with the
SNR, reaching up to 3 dBs at a BER of 10−6.

7.2. Implementation of an Approximate Norm. A significant
portion of the hardware resources in the implementation of
any tree-search algorithm is dedicated to computing the ℓ2
norms required by the cost function in (3). Additionally, the
long delays associated with squaring operations required to
compute the PEDs account for a significant portion of the
latency of the fixed-complexity tree-search architectures. It is
possible to overcome these problems by using an approximate
norm that prevents the use of the computationally expensive
squaring operations.

The application of the modified-norm algorithm (MNA)
[38] entails two main benefits: on one hand, a simplified dis-
tance computation scheme that immediately reduces silicon
area and delay of the arithmetic units can be performed,
and on the other hand, a smaller dynamic range of the
PEDs is achieved. The key point of the MNA is to compute
the square root of the accumulated and partial distance
increments, namely, 𝐸

𝑖
= √𝐷

𝑖
and 𝑒
𝑖
= √𝑑

𝑖
, respectively.

Hence, the accumulation of the distance increments in this
equivalent model gives 𝐸

𝑖
= √𝐸2

𝑖+1
+ 𝑒2
𝑖
. An approximate

norm can now be applied to get rid of the computationally
expensive squaring and square root operations, such that
𝐸
𝑖
≈ 𝑓(|𝐸

𝑖+1
|, |𝑒
𝑖
|). This way, the accumulated distance

computation in (4) can be reformulated as

𝐸
𝑖
= 𝐸
𝑖+1

+ 𝑒
𝑖
, (8)

with

𝑒
𝑖
= 𝑢
𝑖,𝑖
(
R (𝑎
𝑖
+ 𝑧
𝑖
)
 +

I (𝑎
𝑖
+ 𝑧
𝑖
)
) (9)

for the ℓ1̃-norm variant of the algorithm. The norm approx-
imation can also be performed following the ℓ∞̃-norm
simplified model, in which case the following expressions
should be considered

𝐸
𝑖
= max (𝐸

𝑖+1
, 𝑒
𝑖
) , (10)

with

𝑒
𝑖
= 𝑢
𝑖,𝑖
[max (R (𝑎

𝑖
+ 𝑧
𝑖
)
 ,
I (𝑎
𝑖
+ 𝑧
𝑖
)
)] . (11)

The implementation of an approximate norm impacts
the error-rate performance of the VP system differently
depending on the tree-search strategy used in the perturba-
tion process. This fact is shown in Figure 8, where the BER
performance degradation introduced when approximating
the ℓ2 norm by the suboptimum ℓ1̃ and ℓ∞̃ norms is depicted
for the FSE and K-best tree-search approaches. For the
FSE case depicted in Figure 8(a), the use of an approximate
norm only affects the accumulated distances related to the
candidate branches, but not the branches themselves. This
is due to the fact that the nodes expanded at each level
where 𝑛

𝑖
≤ 2 are the same regardless of the norm used to

compute the distance increments to 𝑧
𝑖
. In the K-best model,

on the other hand, the node selection procedure is solely
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Table 1: Hardware resource occupation and throughput of the tree-
search architectures under study.

𝐾-Best
𝐾 = 7

FSE
𝑛
𝑇
= 10

𝐾-Best ℓ1̃
𝐾 = 7

FSE ℓ1̃
𝑛
𝑇
= 10

Number of occupied slices
(39,360) 25% 10% 26% 10%

Number of slice registers
(314,880) 10% 5% 10% 4%

Number of slice LUTs
(157,440) 20% 7% 20% 7%

Used as logic 11% 6% 11% 6%
Used as memory 27% 2% 27% 2%

Number of DSP48e1s
(576) 40% 40% 31% 29%

𝑄 (Gbps) 5.52 5.63 5.34 5.62

based on previously computed distances, and therefore, the
introduction of an approximate normwill noticeably alter the
structure of the candidate branches. Consequently, a higher
error-rate performance degradation of the K-best algorithm
with an approximate norm can be expected when compared
to the norm-simplified FSE model.

The implementation of the approximate ℓ1̃ norm yields
a high-SNR performance loss of 0.22 dB and 0.25 dB for the
FSE and K-best fixed-complexity algorithms, respectively.
Due to the worse approximation of the Euclidean distances
performed by the suboptimum ℓ

∞̃ norm, the performance
gap with respect to the optimum FSE andK-best structures is
widened in this case.This way, a performance loss of 0.45 dBs
is experienced by the simplified ℓ∞̃-FSE model, whereas an
error-rate degradation of 0.85 dBs is suffered by the K-best in

the high-SNR regime. In any case, the implementation of an
alternative norm does not alter the diversity order of the VP
scheme.

The computational complexity reduction yielded by both
norm approximation approaches is similar, whereas the
performance is slightly better for the ℓ1̃ norm. Consequently,
the ℓ1̃ norm-simplifiedmodelwill be considered for hardware
implementation.

8. Implementation Results

The proposed tree-search architectures have been imple-
mented on a Xilinx Virtex VI FPGA (XC6VHX250T-3). The
occupation results have been obtained by means of the place
and route tool included in the System Generator for DSP
software.

Table 1 depicts the device occupation summary of the
implemented vector precoders for an 𝑁 = 4 users system
with 𝐵 = 25 eligible lattice points. Even if the FSE and K-
best models use a similar amount of embedded multipliers
(DSP48e1), the device occupation in terms of slices is consid-
erably higher for the latter. This is due to the longer latency
of the K-best architecture caused by the distributed sorting
procedure, which ultimately results in a great amount of data
being stored in several pipeline stages. As a consequence to
this, around 27% of the slice LUTs are used as memory in the
K-best implementation, as opposed to the 2% utilized by the
FSE for the same purpose. Other than the higher occupation
due to pipeline registers, the difference in latency between
the two designs is of minor importance as both structures are
fully-pipelined and therefore output a processed data vector
at every clock-cycle. As already anticipated, the utilization of
the approximate ℓ1̃ norm yields a notable reduction in the
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Table 2:Throughput, area occupation and BER loss with respect to the optimum for the𝐾-Best applied toMIMOdetection and the proposed
𝐾-Best and FSE approaches for VP.

[16] [19] [17] [22] [36] 𝐾-Best
(proposed)

FSE
(proposed)

Systems
4 × 4

16-QAM
𝐾 = 10

4 × 4

16-QAM
𝐾 = 5

4 × 4

16-QAM
𝐾 = 5

4 × 4

64-QAM
𝐾 = 64

4 × 4

64-QAM
𝐾 = 64

4 × 4

16-QAM
𝐾 = 7

4 × 4

16-QAM
𝑛
𝑇
= 10

Throughput (Mbps) 10 53.3 424 75 100 5520 5630
Area (kGE) 52 91 68 1790 1760 1732 374
Mbps/kGE 0.19 0.58 6.23 0.04 0.056 3.18 15.05
BER loss at 20 dB <0.5 dB <0.5 dB ∼0.75 dB ∼0.5 dB <0.5 dB 0.7 dB 0.3 dB

amount of allocated embedded multipliers for both fixed-
complexity tree-search models.

The maximum throughput of the implemented architec-
tures in terms of processed gigabits per second is also shown
in Table 1 for a 16-QAM modulation constellation. For a
system with 𝑁 users and a constellation of 𝑃 elements, the
throughput for fully-pipelined architectures can be computed
as

𝑄 = 𝑁𝑓clocklog2 (𝑃) , (12)

where 𝑓clock represents the maximum working frequency
of the design as given by the Post-Place and Route Static
Timing Report. Both tree-search algorithms achieve a very
high data-processing throughput (in the range of 5Gbps) due
to the loopless parallel structure that enables the processing
of a new data vector at every clock cycle. Note that the
maximumworking frequency of the designs presented in this
contribution can be obtained by using (12) and the results in
Table 1.

Additionally note that a higher throughput can be
achieved by increasing the order of the modulation in use.
In such a case, the modifications to be performed in the
proposed architecture are minimal. These include an update
of the considered lattice values (|L|) and the adaptation of
the first DPU where the straightforward node sequencing is
performed. Furthermore, given the low hardware resource
occupation required by the proposed FSE tree-search archi-
tectures, a higher data processing throughput can be easily
obtained by running several tree-search instances in parallel.

Table 2 compares the area and throughput of the pro-
posed K-best and FSE hardware architectures with similar
structures used in point-to-point MIMO detection. Even if
a direct comparison should be done carefully due to the
already described differences between multiuser precoding
and MIMO detection scenarios, it is worth noting the high
Mbps/kGE ratio of the presented FSE approach.

9. Conclusion

This paper has addressed the issues of a fully-pipelined imple-
mentation of the FSE and K-best tree-search approaches for

a 4 × 4 VP system. The sorting stages required by the K-
best scheme have been performed by means of the WPE dis-
tributed sorting strategy alongwith a nonsequential complex-
plane enumerator, which has also been incorporated into the
FSE structure to determine the child nodes to be expanded
in those tree levels 𝑖 < 𝑁 where 𝑛

𝑖
> 1. The design

parameters that establish the performance-complexity trade-
off of these nonrecursive tree-search approaches have been
set so as to yield a similar count of allocated embedded
multipliers. Additionally, the use of an approximate norm to
reduce the computational complexity of the PED calculations
has been contemplated.

Provided performance results have shown a close-to-
optimal performance and a very high achievable throughput
in the range of 5Gbps for both techniques. Nevertheless,
the error-rate performance of the FSE has been shown
to considerably outperform the K-best in the high-SNR
range. Additionally, the provided FPGA resource occupation
results have demonstrated the greater efficiency of the FSE
architecture when compared to the K-best fixed-complexity
structure.

Due to the good performance, occupation results, and
simplicity of implementation, it is concluded that the FSE
is best suited for the practical implementation of fixed-
complexity and high-throughput vector precoders.
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