
Research Article
Discrete Bat Algorithm for Optimal Problem of Permutation
Flow Shop Scheduling

Qifang Luo, Yongquan Zhou, Jian Xie, Mingzhi Ma, and Liangliang Li

College of Information Science and Engineering, Guangxi University for Nationalities, Nanning, Guangxi 530006, China

Correspondence should be addressed to Qifang Luo; l.qf@163.com

Received 22 June 2014; Accepted 30 July 2014; Published 27 August 2014

Academic Editor: Shifei Ding

Copyright © 2014 Qifang Luo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat
algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem intomany subscheduling
problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with
certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated
into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and
efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.

1. Introduction

Scheduling problems are taking the very important effect
in both manufacturing systems and industrial process for
improving the utilization efficiency of resources [1], such
as, aircraft landing scheduling problem, job shop scheduling
problem, and flow shop scheduling problem. In the past
several decades, scheduling problems are widely researched.
Permutation flow shop scheduling problem (PFSP) is one
of best known production scheduling problems, which can
be viewed as a simplified version of the flow shop problem
and has been proved that non-deterministic polynomial
(NP) time [2]. Due to its significance in both academic and
engineering applications, the permutation flow shop with the
criterion of minimizing the makespan, maximum lateness
of jobs, or minimizing total flow time, a great diversity
of methods have been proposed to solve PFSP and some
achievements were obtained.

So far, there aremanymethods that have been introduced
for solving PFSP with the objective of minimizing the
makespan. To sum up, these methods can be classified into
three categories: exact methods, constructive heuristic meth-
ods, and metaheuristic algorithms based on the constructive
operation and neighborhood search. Exact methods include

branch and bound method [3], integer linear programming
method [4], and so on. Constructive heuristicmethodswhich
build some rule to construct a feasible scheduling, such as,

Johnson method, Rajendran NEH can be viewed as
the typical cases [5]. Among them, the NEH is one of
the most successful constructive methods and can provide
comparable results with metaheuristics. The metaheuristics
mainly include genetic algorithm (GA) [6], particle swarm
optimization algorithm (PSO) [7], differential evolution (DE)
[8], and bat algorithm (BA) [9] and so on. Many metaheuris-
tic algorithms are used to solve flow shop scheduling based
on the constructive operation and neighborhood search in
the past few years. In [6], Wang and Zheng proposed a
SGA to solve flow shop scheduling, which used the well-
known NEH combined with GA to generate the initial
population and applied multicrossover operators to enhance
the exploring potential. In [10], Tasgetiren et al. applied the
PSO algorithm to solve PFSP for makespan and total flow
time minimization by using the smallest position value rule
borrowed from the random key representation of GA, and
the proposed algorithm was combined with the variable
neighborhood-based local search, as called PSO VNS. Liu
et al., in [11], proposed an efficient particle swarm optimiza-
tion based mimetic algorithm (MA) for PFSP to minimize

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 630280, 15 pages
http://dx.doi.org/10.1155/2014/630280

2 The Scientific World Journal

the maximum completion time. In [12], two effective heuris-
tics are used during the local search to improve all generated
chromosomes in every generation. Yagmahan and Yenisey
have proposed a multiobjective ant colony system algorithm
to simultaneously minimize objectives of makespan and total
flow time [13]. Tasgetiren et al. present a discrete artificial bee
colony algorithm hybridized with a variant of iterated greedy
algorithms to find the permutation that gives the smallest
total flow time [14]. In [15], a novelmechanism is employed in
initializing the pheromone trails based on an initial sequence,
and the pheromone trail intensities are limited between lower
and upper bounds which change dynamically. Moreover, a
local search is performed to improve the performance quality
of the solution. In [16], Li and Yin applied a differential evolu-
tion based memetic algorithm, named ODDE, to solve PFSP
by combining with NEH heuristic initialization, opposition-
based learning, pairwise local search, and fast local search
in ODDE. In [17], Liu et al. a multipopulation PSO based
memetic algorithm for permutation flow shop scheduling is
proposed. In [18], Mirabi proposed a novel hybrid genetic
algorithm to solve the sequence-dependent permutation flow
shop scheduling problem. In [19], Victor and Framinan
use on insertion tie-breaking rules in heuristics for the
permutation flow shop scheduling problem.

In recent years, a bat algorithm (BA) as a newmetaheuris-
tic optimization algorithm is proposed [9]. BA is inspired
by the intelligent echolocation behavior of microbats when
their foraging. After the bat algorithm is proposed by Yang
in 2010, bat algorithm is used to solve various optimization
problems. For example, Gandomi et al. focus on solving con-
strained optimization tasks [20]. Yang and Gandomi apply
bat algorithm to solvemany global engineering optimizations
[21]. Mishra et al. present a model for classification using
bat algorithm to update the weights of a functional link
artificial neural network (FLANN) classifier [22].Meanwhile,
there are improved bat algorithms that are applied to various
optimization problems; Xie et al. proposed a DLBA bat
algorithm based on differential operator and Lévy flights
trajectory to solve function optimization and nonlinear
equations [23]. Wang et al. proposed a new bat algorithm
with mutation (BAM) to solve the uninhabited combat air
vehicle (UCAV) path planning problem [24]. In this paper,
we propose a discrete bat algorithm (DBA) to solve PFSP.
Here, the DBA is constructed based on the idea of continuous
bat algorithm, which divide whole scheduling problem into
many subscheduling problems, then NEH heuristic was
introduced to solve subscheduling problem. Moreover, some
subsequences are operated with certain probability in the
pulse emission and loudness phases. An intensive virtual
population neighborhood search is integrated into the DBA
to further improve the performance. Finally, the experimental
results show the effectiveness of the discrete bat algorithm for
PFSP.

2. Problem Descriptions and Bat Algorithm

2.1. Permutation Flow Shop Scheduling Problem. The permu-
tation flow shop scheduling problem (PFSP) in the paper

consists of a set of jobs on a set of machines with the objective
of minimizing the makespan. In PFSP, 𝑛 jobs are to be
processed on a series of 𝑚 machines, sequentially. All jobs
are processed in the same permutation; meanwhile, every job
is processed in one machine only once and each machine can
only process one job at a time, and all jobs are processed in
an identical processing order on all machines.

The permutation flow shop scheduling problems are often
denoted by the symbols 𝑛 | 𝑚 | prmu | 𝐶max, where 𝑛
represents the number of jobs;𝑚 is the number of machines;
prmu denotes the type of flow shop scheduling problem; and
𝐶max is the makespan. Let 𝑡

𝑖,𝑗
(1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚) be the

times of job 𝑖 processed on machine 𝑗, assuming preparation
time for each job is zero or is included in the processing time
𝑡
𝑖,𝑗
; 𝜋 = (𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛
) is a scheduling permutation of all jobs.

Π is set of all scheduling permutation. 𝐶(𝑗
𝑖
, 𝑘) is completion

time of job 𝑗
𝑖
onmachine 𝑘, and every jobwill be processed on

machine 1 to machine𝑚 orderly. The completion time of the
permutation flow shop scheduling problem according to the
processing sequence 𝜋 = (𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛
) is shown as follows:

𝐶 (𝑗
1
, 1) = 𝑡

𝑗
1
,1
,

𝐶 (𝑗
𝑖
, 1) = 𝐶 (𝑗

𝑖−1
, 1) + 𝑡

𝑗
𝑖
,1
, 𝑖 = 2, 3, . . . , 𝑛,

𝐶 (𝑗
1
, 𝑘) = 𝐶 (𝑗

1
, 𝑘 − 1) + 𝑡

𝑗
1
,𝑘
, 𝑘 = 2, 3, . . . , 𝑚,

𝐶 (𝑗
𝑖
, 𝑘) = max {𝐶 (𝑗

𝑖−1
, 𝑘) , 𝐶 (𝑗

𝑖
, 𝑘 − 1)} + 𝑡

𝑗
𝑖
,𝑘
,

𝑖 = 2, 3, . . . , 𝑛, 𝑘 = 2, 3, . . . , 𝑚,

𝜋
∗
= arg {𝐶max (𝜋) = 𝐶 (𝑗𝑛, 𝑚)} → min, ∀𝜋 ∈ Π,

(1)

where 𝜋
∗
is the most suitable arrangement which is the goal

of the permutation flow shop problem to find 𝐶max(𝜋∗) is the
minimal makespan.

2.2. Bat Algorithm (BA). The bat algorithm (BA) is an
evolutionary algorithm first introduced by Yang in 2010 [9].
In simulations of BA, under several ideal rules, the updated
rules of their positions 𝑥

𝑖
and velocities V

𝑖
in a D-dimensional

search space are defined. The new solutions 𝑥𝑡
𝑖
and velocities

V𝑡
𝑖
at generation 𝑡 are given by

𝑓
𝑖
= 𝑓min + (𝑓max − 𝑓min) 𝛽,

V𝑡
𝑖
= V𝑡−1
𝑖
+ (𝑥
𝑡

𝑖
− 𝑥
∗
) 𝑓
𝑖
,

𝑥
𝑡

𝑖
= 𝑥
𝑡−1

𝑖
+ V𝑡
𝑖
,

(2)

where 𝛽 ∈ [0, 1] is a random vector drawn from a uniform
distribution, 𝑓

𝑖
denotes frequency of each bat, and the

frequency𝑓
𝑖
∈ [𝑓min, 𝑓max]. Here 𝑥∗ is the current global best

location (solution) which is located after comparing all the
solutions among all the 𝑛 bats.

After the position updating of bat, a random number is
generated; if the random number is greater than the pulse

The Scientific World Journal 3

Begin
Initialization. Set the generation counter 𝑡 = 1; Initialize the population of𝑁𝑃 bats
𝑃 randomly and each bat corresponding to a potential solution to the given problems;
define loudnes 𝐴

𝑖
, pulse frequency 𝑄

𝑖
and the initial velocities V

𝑖
(𝑖 = 1, 2, . . . , 𝑁𝑃);

set pulse rate 𝑟
𝑖
.

While the termination criterion is not satisfied or 𝑡 < 𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
Generate new solutions by adjusting frequency, and updating velocities and location
Solutions (2),
if (rand > 𝑟

𝑖
) then

Select a solution among the best solutions;
Generate a location solution around the selected best solution

endif
Generate a new solution by flying randomly

if (rand < 𝐴
𝑖
&& 𝑓(𝑥

𝑖
) < 𝑓(𝑥

∗
))

Accept the new solution
Increase 𝑟

𝑖
and reduce 𝐴

𝑖

endif
Rank the bats and the find the current best 𝑥

∗

𝑡 = 𝑡 + 1;
endwhile

Post-processing the results and visualization.
end.

Algorithm 1: Basic bat algorithm (BA).

Compute the total processing time for each job on m machine;
Generate a sequence 𝑗 = (𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛
) by sorting the jobs in non-increasing order according to

the total processing time;
The first job is taken. 𝜋

∗
= {𝑗
1
};

for 𝑖 = 1 : 𝑛 − 1
/∗ The implemented operations of NEH and NEH1 is different, the NEH insert a job into all possible

positions of 𝜋
∗
, but the NEH1 only insert a job into the front and rear of 𝜋

∗
. The other operations are

consistent both NEH and NEH1. ∗/
Take job 𝑗

𝑖
form 𝑗 and insert 𝑗

𝑖
into all possible positions of 𝜋

∗
; // Operation of NEH

Take job 𝑗
𝑖
form 𝑗 and insert 𝑗

𝑖
into the front and rear of 𝜋

∗
; // Operation of NEH1

Evaluate the new sequence 𝜋 ← 𝜋
∗
∪ 𝑗
𝑖
;

Select the 𝜋
∗
← 𝜋 with lowest objective value;

endfor
return 𝜋

∗
;

Algorithm 2: The pseudocode of NEH and NEH1.

for each individual
Compute pulse emission rate 𝑟

𝑖
by (6);

if rand > 𝑟
𝑖

/∗ sub-sequence swap ∗/
Randomly select two sub-sequences defined by frequency 𝑓on 𝑥𝑛

𝑖
(𝑡);

Swap the two sub-sequences to generate a new position;
else

/∗ sub-sequence inserting ∗/
Randomly select one sub-sequence defined by frequency 𝑓on 𝑥𝑛

𝑖
(𝑡);

Insert this sub-sequence into a random location in remainder sequence;
endif

endfor

Algorithm 3: The pseudocode of pulse emission rate local operation.

4 The Scientific World Journal

emission rate 𝑟
𝑖
, a new position will be generated around the

current best solutions, and it can be represented by

𝑥 = 𝑥
∗
+ 𝜀𝐴
𝑡
, (3)

where 𝜀 ∈ [−1, 1] is a random number, while𝐴
𝑡
= ⟨𝐴
𝑡

𝑖
⟩ is the

average loudness of all the bats at current generation 𝑡.
Furthermore, the loudness𝐴

𝑖
and the pulse emission rate

𝑟
𝑖
will be updated and a solution will be accepted if a random

number is less than loudness𝐴
𝑖
and 𝑓(𝑥

𝑖
) < 𝑓(𝑥

∗
).𝐴
𝑖
and 𝑟
𝑖

are updated by

𝐴
𝑡+1

𝑖
= 𝛼𝐴
𝑡

𝑖
, 𝑟

𝑡+1

𝑖
= 𝑟
0

𝑖
[1 − exp (−𝛾𝑡)] , (4)

where 𝛼, 𝛾 are constants and 𝑓(⋅) is fitness function. The
algorithm repeats until the termination criterion is reached.
The basic steps of the bat algorithm (BA) can be described in
Algorithm 1.

3. Discrete Bat Algorithm for PFSP

Since standard BA is a continuous optimization algorithm,
the standard continuous encoding scheme of BA cannot be
used to solve PFSP directly. Meanwhile, many combinational
optimization problems are discrete problem, and PFSP is a
typical case. In order to apply BA to PFSP, there are two
methods: the first method is to solve PFSP using continuous
BA, however, this method needs to construct a direct map-
ping relationship between the job sequence and the vector
of individuals in BA; the second method is to construct a
discrete BA for PFSP. Therefore, in this paper, a discrete bat
algorithm is proposed to solve PFSPwithminimalmakespan.

In addition, for PFSP, some neighborhood search meth-
ods always are used to enhance the quality of the solution,
and the performance is remarkable. In this paper, four neigh-
borhood search methods, that is, insert, swap, inverse, and
crossover, will be employed. These neighborhood operations
are shown in Figure 1.The details of these neighborhoods are
as follows.

Swap.Choose two different positions from a job permutation
randomly and swap them.

Insert.Choose two different positions from a job permutation
randomly and insert the back one before the front.

Inverse. Inverse the subsequence between two different ran-
dom positions of a job permutation.

Crossover. Choose a subsequence in a random interval from
another random job permutation and replace the corre-
sponding part of subsequence.

3.1. Solution Representation in DBA. In original BA, the
position of each virtual bat is viewed as a candidate solution
of problem; these bat individuals adjust the flight speed
by randomly selecting frequency of sonic wave which they
emitted and then update the position of bats. Furthermore,
the pulse emission rate and loudness are used to control
the intensive local search that is process to generate a new

individual around the current global best solution. InDBA, in
general, the position𝑥𝑛

𝑖
(𝑡) of individual 𝑖denotes a scheduling

plan on 𝑡th iteration, where 𝑛 represents the scheduling
plan including 𝑛 jobs. The 𝑥𝑛

𝑖
(𝑡) is also viewed as a 𝜋 =

(𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑛
). For example, if 𝑥4

1
(2) = [3 2 1 4], which

represents the processing order of all jobs on all machines, is
3 → 2 → 1 → 4, this permutation represents the position
of first bat individual in second generation.The velocity V𝑁

𝑖
(𝑡)

consists of a part of scheduling plan or whole scheduling plan
on 𝑡th iteration, where𝑁 ≤ 𝑛.

3.2. Population Initialization. In this paper, the DBA is
applied to explore the new search space. Initial swarm is
often generated randomly, and, in DBA, this initial strategy is
adopted. Meanwhile, recent studies have confirmed the supe-
riority ofNEHover themost recent constructive heuristic [5].
Manymetaheuristic algorithms in order to generate an initial
population with certain quality and diversity take advantage
of theNEHheuristic to generate some individuals and the rest
of the individuals are initialized with random values [16]. In
this paper, this kind of initialization strategy is not including
in DBA, but NEH is used in position updating of bat.
However, a discrete bat algorithm with NEH initialization
strategy is experimented. By experiments, we find that the
combination of NEH initialization strategy and succeeding
operation always deteriorates the population diversity, by
tracking offspring, the results showed that all the individuals
in the final population were similar.

In [25], NEH heuristic is regarded as the best heuristic for
the PFSP. The NEH algorithm is based on the idea that the
high processing time on all machines should be scheduled as
early in the sequence as possible. The NEH heuristic has two
phases.

(1) The jobs are sorted in nonincreasing sums of their
processing time.

(2) A job sequence is established by evaluating the partial
schedules based on the initial order of the first phase.
The standard NEH and a variant of standard NEH
(NEH1) can be described as shown in Algorithm 2;
the only difference of two NEH is that the inserted
position of new job in partial schedules is different:
NEH1 have only two possibilities of inserting.

3.3. Position Updating of Bat. Scheduling problemwithmany
jobs can be viewed as a combination of many subscheduling
problems; as we all know, we can apply dynamic program-
ming to solve this problem. However, in this paper, the
idea of partition is adopted, a complete scheduling sequence
is divided into many segments, and each subscheduling
problem is solved by superior NEH.

In continuous BA, the bat individual randomly selects a
certain range of frequency, and its speed is updated according
to their selected frequency; at last, a new position is generated
using its speed and its own position. In DBA, for each
individual, firstly, a frequency 𝑓 is selected in the range of
frequency [𝑓min, 𝑓max]; frequency 𝑓 denotes the number of

The Scientific World Journal 5

i j

ij

i j

ij

i j

ij

i j

qp

qp

Swap

Insert

Inverse

Crossover

i − 1 i + 1

i + 1

i + 1

i + 1i − 1

j − 1

j − 1

j − 1

j − 1

i + 1

i + 1

i + 1j − 1

j − 1

j − 1

j + 1

j + 1

j + 1

j + 1

i − 1

i − 1

i − 1

i − 1

i − 1

i − 1

p − 1 q − 1

q − 1

p + 1

p + 1

j + 1

q + 1

j + 1

j + 1

j + 1

Figure 1: Four neighborhood operations (swap, insert, inverse, and crossover).

subsequences, where 𝑓min, 𝑓max are two integers in the range
of job amount 𝑛,

𝑓 = ⌊𝑓max + (𝑓min − 𝑓max) × (
𝑡

𝑡max
)⌋ , (5)

where ⌊⋅⌋ denotes rounded down function. Secondly, fre-
quency 𝑓 decides the starting location and ending location
of each subsequence, and the position 𝑥𝑛

𝑖
(𝑡) is divided into 𝑓

subsegments; these subsequences are viewed as the velocity
V𝑁
𝑖,𝑓
(𝑡) of bat individual, where𝑁 ≤ 𝑛.Thirdly, these velocities

are updated by NEH; the new velocity is called V𝑁tmp,𝑓(𝑡). At
last, the corresponding part of 𝑥𝑛

𝑖
(𝑡) is replaced by V𝑁tmp,𝑓(𝑡).

In order to facilitate understanding, there is a simple instance:
𝑓 = 3 ∈ [2, 4], 𝑛 = 8, 𝑥(𝑡) = [5, 1, 3, 2, 4, 7, 6, 8]; V

1
=

[5, 1, 3], V
2
= [2, 4, 7], V

3
= [6, 8]; Vtmp,1 = [1, 3, 5], Vtmp,2 =

[4, 2, 7], Vtmp,3 = [6, 8]; V𝑁
𝑖
(𝑡) = [2, 1, 3], so 𝑥(𝑡 + 1) =

[1, 3, 5, 4, 2, 7, 6, 8].

3.4. Pulse Emission Rate Local Operation. In original BA, the
pulse emission rate and loudness are used to control the
intensive local search, that is to generate a new individual
around the current global best individual 𝑔𝑏𝑒𝑠𝑡 𝑥. In DBA,
each individual has its own pulse emission rate 𝑟

𝑖
. The initial

pulse emission rate is a positive and smaller number; with the
increase of iteration, pulse emission rate 𝑟

𝑖
will increase to 1.

The updating of 𝑟
𝑖
using

𝑟
𝑖 (
𝑡) = 1 + exp(− 10

𝑡max
× (𝑡 −

𝑡max
2

) + 𝑟
𝑖 (
1))

−1

. (6)

Figure 2 presents an example of updating curve of pulse
emission rate 𝑟

𝑖
under maximal iterations is 100, pulse

emission rate 𝑟
𝑖
has a value ranging from 0 to 1. Using this

updating formula, the algorithm can not only quickly exploit
near the current optimal position in the early iteration, so
that speed up the convergence rate, but also can mainly
concentrate in diversity in later search and can avoid to fall
into local optima.

6 The Scientific World Journal

0 10 20 30 40 50 60 70 80 90 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pu
lse

 em
iss

io
n

ra
te

Generation t

Figure 2: Updating curve of pulse emission rate 𝑟
𝑖
.

The pulse emission rate 𝑟
𝑖
will control the subsegment

local operation. For each individual, randomly generate a
random number; if this random number is larger than its
𝑟
𝑖
, this position of bat individual will be updated by random

swap two segments defined by frequency 𝑓; otherwise, the
updating operation will be implement by random inserting
operation; the pseudo code can be described as shown in
Algorithm 3.

3.5. Loudness Local Operation. In DBA, the loudness Ld
𝑖
of

bat individual 𝑖 is relative to its own fitness fit
𝑖
; the better

fitness, the less loudness. The loudness can be described by

Ld
𝑖
=

(fit
𝑖
− fitmin)

(fitmax − fitmin)
, (7)

where fit
𝑖
is the fitness of individual 𝑖 and fitmin and fitmax are

the minimum and maximum fitness in current population,
respectively. In DBA, the loudness reflects the quality of indi-
vidual. In this subsection, there are two kinds of local search
embedded into algorithm, random subsequence inverse and
random subsequence inserting. Note that, where inserting
operation is different from inserting operation in Section 3.4.

In this part, for each individual, randomly generate a ran-
dom number; if this random number is larger than its Ld

𝑖
, a

random length of subsequence is randomly selected in range
of [1, ⌊𝐷/2⌋]; this position of bat individual will be updated
by inserting operation with random subsequence; otherwise,
the updating operation will be implement by random sub-
sequence inverse operation. Note that the subsequence is a
portion of the current best position 𝑔𝑏𝑒𝑠𝑡 𝑥; however, the
corresponding replacement portion is the individual 𝑥

𝑖
in bat

population, and the pseudo code can be described as show in
Algorithm 4.

Although this inserting and inverse operation may gen-
erate invalid scheduling sequence,those invalid scheduling
sequences need to adjust to a feasible solution. The adjust-
ment of the pseudo code can be described as show in
Algorithm 5.

In order to facilitate understanding, process of adjust-
ment 𝑥 = [3, 6, 3, 2, 1, 5, 5, 3], {𝑆} = [1, 2, 3, 5, 6], {𝑆𝑖𝑑} =
[5, 4, 8, 7, 2], {𝑅} = [4, 7, 8], {𝑅𝑖𝑑} = [1, 3, 6], 𝐼𝑂 = [3, 1, 2],
and 𝑥adjust = [8, 6, 4, 2, 1, 7, 5, 3].

3.6. Intensive Virtual Population Neighborhood Search. In
this paper, an intensive virtual population neighborhood
search with same population size is easily embedded in
DBA for solving PFSP. The purpose of the virtual population
neighborhood search is to find a better solution from the
neighborhood of the current global best solution. In this part,
three neighborhoods, that is, insert, swap, and single-point
move backward operate, are employed. These operations are
used to improve the diversity of population and enhance the
quality of the solution.

In order to enhance the local search ability and get a better
solution, a new population is generated based on the current
global best solution, and the population size is not less than
original bat population; the new population is called virtual
population. The new population size ps

1
= 𝜇 × ps, 𝜇 ≥ 1 is

real number.
Firstly, the virtual population is generated by randomly

selecting two jobs to perform swap operation. Secondly, the
virtual population is generated by randomly selecting a job
and insert into another random location. At last, the single-
point move backward operation is performed also based on
current global best individual 𝑔𝑏𝑒𝑠𝑡 𝑥. In the simulation, first
of all, a job position 𝑖 is chosen randomly in 𝑔𝑏𝑒𝑠𝑡 𝑥; the
selected job 𝑖 is inserted into the back of job 𝑖, orderly, until the
population size ps

1
is reached. For example, the population

size ps
1
= 3, random job position 𝑖 = 2, and 𝑔𝑏𝑒𝑠𝑡 𝑥 =

[2, 5, 4, 1, 3]; the virtual population is generated as follows:

[2 4 5 1 3]

[2 4 1 5 3]

[2 4 1 3 5]

(8)

3.7. Discrete Bat Algorithm (DBA). In DBA, all individuals
once the update either in bat population or in virtual pop-
ulation, these individuals will be evaluated and one solution
be accepted as the current global best 𝑔𝑏𝑒𝑠𝑡 𝑥 if the objective
fitness of it is better than the fitness of the last 𝑔𝑏𝑒𝑠𝑡 𝑥. The
algorithm terminates until the stopping criterion is reached;
theDBA algorithm for PFSP can be described inAlgorithm 6.

4. Numerical Simulation Results
and Comparisons

To test the performance of the proposed DBA for the per-
mutation flow shop scheduling, computational simulations
are carried out with some well-studied problems taken
from the OR-Library (http://people.brunel.ac.uk/∼mastjjb/
info.html). In this paper, 29 problems from two classes of
PFFSP test problems are selected. The first eight problems
are instances Car1, Car2 through to Car8 designed by Carlier
[26]. The second 21 problems are instances Rec01, Rec03
through to Rec41 designed by Reeves and Yamada [27]. So

The Scientific World Journal 7

for each individual
Compute loudness 𝐿𝑑

𝑖
by (7);

if rand > 𝐿𝑑
𝑖

/∗ random sub-sequence inserting ∗/
Randomly select a length of sub-sequence;
Randomly determine the sub-sequence with selected length in 𝑔𝑏𝑒𝑠𝑡 𝑥;
Insert this sub-sequence into a random location in remainder sequence;

else
/∗ random sub-sequence inverse ∗/
Randomly select a length of sub-sequence;
Randomly determine the sub-sequence with selected length in 𝑔𝑏𝑒𝑠𝑡 𝑥;
Perform inverse operation on selected sub-sequence;
Replace original sub-sequence with inverted sub-sequence

end if
end for

Algorithm 4: The pseudocode of loudness local operation.

for each individual
{𝑆, 𝑆𝑖𝑑} ← Find out all jobs and their position in current scheduling sequence;
{𝑅} ← {1 : 𝑛} − {𝑆}, where 𝑛 denotes the number of jobs in current scheduling problem;
{𝑅𝑖𝑑} ← {1 : 𝑛} − {𝑆𝑖𝑑};
Generate an insert order 𝐼𝑂 randomly;
Select a job in {𝑅} according to 𝐼𝑂 and insert into {𝑅𝑖𝑑};

end for

Algorithm 5: The pseudocode of adjustment.

far, these problems have been widely used as benchmarks to
certify the performance of algorithms by many researchers.

The DBA is coded in MATLAB 2012a, and in our simu-
lation, numerical experiments are performed on a PC with
AMD Athlon(tm) II X4 640 Processor 3.0GHz and 2.0GB
memory. In the experiment, the termination criterion is set
as (𝑛 × 𝑚/2) × 30ms maximum computation time. Setting
the time limitation in this way allows the much computation
time as the job number or the machine number increases.
And, this method is also adopted by many researchers,
such as Jarboui et al. [28], Ruiz and Stützle [29]. Each
instance is independently run 15 times for every algorithm
for comparison.

The comparison method adopts BRE, ARE, and WRE to
measure the quality of solution by the percentage difference
from 𝐶

∗
; these expressions as follows:

BRE =
𝐶
best
max − 𝐶∗
𝐶
∗

× 100%,

ARE =
𝑛

∑

𝑖=1

(

𝐶
𝑖

max − 𝐶∗
𝐶
∗

) ×

1

𝑛

× 100%,

WRE =
𝐶
worst
max − 𝐶∗
𝐶
∗

× 100%,

(9)

where 𝐶
∗
is the optimal makespan or upper bound value

known so far, the makespan of an obtained solution in DBA
is 𝐶max, BRE represents the best relative error to 𝐶

∗
, ARE

denotes the average relative error to 𝐶
∗
, andWRE represents

the worst relative error to 𝐶
∗
. Std denotes the standard

deviation of the makespan. These performance measures are
employed in our experiments; these results are rounded to the
nearest number which contains 2 or 3 digits after the decimal
point.

4.1. Parameter Analysis. In the subsection, parameters of
DBA are determined by experiments, and the impact of
each parameter is analyzed. In DBA, parameters ps, 𝜇 are
tested. ps is population size, A small ps may lead insufficient
information provided, and the diversity cannot guarantee.On
the other side, a large one indicates diversity is sufficient,
but the computing time will increase. 𝜇 determines the
size of virtual population; the large one can perform large
single point neighborhood search, whichmay achieve a better
solution, especially, the current best solution extraordinarily
approximated the exact solution; however, an oversize will
increase the computing time, and the precision of optimal
solution may have lesser improvement. In order to evaluate
the sensitivity of parameters, Car5 and Rec11 are chosen to
run 15 times and the results are shown in Figures 3 and 4.

8 The Scientific World Journal

Begin
Initialize the population 𝑝𝑠, 𝑡 = 1, other parameters and bat population
Evaluate fitness for each individual and find out 𝑔𝑏𝑒𝑠𝑡 𝑥 and 𝑝𝑏𝑒𝑠𝑡 𝑥

while (the termination condition does not satisfy)
/∗ Position Updating of Bat ∗/
for 𝑖 = 1 :𝑝𝑠

Generate frequency 𝑓;
Obtain velocity V𝑁

𝑖,𝑓
(𝑡);

Determine V𝑁tmp,𝑓(𝑡) by NEH method;
Update 𝑥𝑛

𝑖
(𝑡) using V𝑁

𝑖
(𝑡);

Evaluate fitness of individual and update 𝑝𝑏𝑒𝑠𝑡 𝑥;
Perform Pulse Emission Rate Local Operation ; // Algorithm 2
Evaluate fitness of individual and update 𝑝𝑏𝑒𝑠𝑡 𝑥
Perform Loudness Local Operation; // Algorithm 3
𝑥 = adjustment(𝑥); // Algorithm 4
Evaluate fitness of individual and update 𝑝𝑏𝑒𝑠𝑡 𝑥;

endfor
Find out current global best position 𝑔𝑏𝑒𝑠𝑡 𝑥;
/∗ Intensive Virtual Population Neighborhood Search ∗/

for 𝑖 = 1 :𝑝𝑠
1

Execute swap operation based on 𝑔𝑏𝑒𝑠𝑡 𝑥
endfor

Evaluate fitness for each individual and find out 𝑔𝑏𝑒𝑠𝑡 𝑥
for 𝑖 = 1 :𝑝𝑠

1

Execute insert operation based on𝑔𝑏𝑒𝑠𝑡 𝑥
endfor

Evaluate fitness for each individual and find out 𝑔𝑏𝑒𝑠𝑡 𝑥
for 𝑖 = 1 :𝑝𝑠

1

Execute single-point move backward operation based on 𝑔𝑏𝑒𝑠𝑡 𝑥
endfor

Evaluate fitness for each individual and find out 𝑔𝑏𝑒𝑠𝑡 𝑥
𝑡 = 𝑡 + 1;

endwhile
Output result and plot;

end

Algorithm 6: The DBA for PFSP.

Figures 3 and 4 represent the relative error of test case
Car5 and Rec11 after 15 times independent running, which
showed the sensitivity of parameters ps and 𝜇. 𝜇 = 2 when
test parameter ps, and ps = 10 when test parameter 𝜇.
From the two test cases, for Car5, the performance is better
and better while parameter ps gradually increases. But for
Rec11, ps equal to 40 or 50 can achieve exact solution, but
the performances do not follow the laws of Car5. In DBA, the
parameter ps takes a compromise values, ps = 50. Similarly,
parameter 𝜇 equal to 2 is optimal for Car5; however, 𝜇 = 3
is optimal for Rec11. In order to balance all test cases, the
parameter 𝜇 is set as 1 while ps = 50.

4.2. Comparisons of DBA, DBA NEH1, and DBA-IVPNS. In
order to evaluate the performance of each strategy, two

variants of DBA are compared, whose abbreviations are as
follows.

(1) DBA: DBA with NEH.

(2) DBA NEH1: DBA with NEH1.

(3) DBA-IVPNS: DBA without intensive virtual popula-
tion neighborhood search.

At this group experiment, the parameter setting is ps =
10, 𝜇 = 2, termination criterion is set as (𝑛 × 𝑚/2) × 10ms
maximum computation time, and the algorithm is run 15
times independently. The statistical performances of DBA,
DBA NEH1, and DBA-IVPNS are shown in Table 1.

From Table 1, we can find out that the average perfor-
mance of DBA is better than the other two variants of DBA;
for benchmarks Car1 to Car8, the DBA-IVPNS is better; the

The Scientific World Journal 9

Re
lat

iv
e e

rr
or

 (R
E)

Car5

1.2

1

0.8

0.6

0.4

0.2

0

−0.2

ps
=
1
0

ps
=
2
0

ps
=
3
0

ps
=
4
0

ps
=
5
0

𝜇
=
1

𝜇
=
2

𝜇
=
3

𝜇
=
4

𝜇
=
5

Figure 3: Box-and-whisker diagram of Car5.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Re
lat

iv
e e

rr
or

 (R
E)

Rec11

ps
=
1
0

ps
=
2
0

ps
=
3
0

ps
=
4
0

ps
=
5
0

𝜇
=
1

𝜇
=
2

𝜇
=
3

𝜇
=
4

𝜇
=
5

Figure 4: Box-and-whisker diagram of Rec11.

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00

PUB PERLLO LLO IVPNS

N
ew

 b
es

t f
ou

nd
 so

lu
tio

ns
 (%

)

Figure 5: The contribution of each strategy move to finding a new best solution.

10 The Scientific World Journal

0 1000 2000 3000 4000 5000 6000 7000
0

2

4

6

5

5

5

5

5

5

4

4

4

4

4

4

2

2

2

2

2

2

1

1

1

1

1

1

3

3

3

3

3

3

8

8

8

8

8

8

6

6

6

6

6

6

10

10

10

10

10

10

9

9

9

9

9

9

7

7

7

7

7

7

Makespan

M
ac

hi
ne

7720

Figure 6: Gantt chart of an optimal schedule for Car05, 𝜋
∗
= [5, 4, 2, 1, 3, 8, 6, 10, 9, 7].

0 1000 2000 3000 4000 5000 6000 7000 8000
0

2

4

6

8

7

7

7

7

7

7

7

7

7

1

1

1

1

1

1

1

1

1

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

8

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

2

2

2

2

2

2

2

2

2

Makespan

M
ac

hi
ne

8505

Figure 7: Gantt chart of an optimal schedule for Car06, 𝜋
∗
= [7, 1, 5, 6, 8, 3, 4, 2].

0 500 1000 1500
0

2

4

6

8

10

17

17

17

17

17

17

17

17

17

17

13

13

13

13

13

13

13

13

13

13

18

18

18

18

18

18

18

18

18

18

12

12

12

12

12

12

12

12

12

12

9

9

9

9

9

9

9

9

9

9

1

1

1

1

1

1

1

1

1

6

6

6

6

6

6

6

6

6

6

3

3

3

3

3

3

3

3

3

3

8

8

8

8

8

8

8

8

8

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

2

2

2

2

2

2

2

2

2

2

7

7

7

7

7

7

7

7

7

7

15

15

15

15

15

15

15

15

15

15

10

10

10

10

10

10

10

10

10

10

19

19

19

19

19

19

19

19

19

19

11

11

11

11

11

11

11

11

11

16

16

16

16

16

16

16

16

16

14

14

14

14

14

14

14

14

14

14

20

20

20

20

20

20

20

20

20

20

Makespan

M
ac

hi
ne

1566

16

11

8

4

1

Figure 8: Gantt chart of an optimal schedule for Rec7, 𝜋
∗
= [17, 13, 18, 12, 9, 1, 6, 3, 8, 4, 5, 2, 7, 15, 10, 19, 11, 16, 14, 20].

reason may be that the IVPNS implementation is single-
point operation on the current global best individual𝑔𝑏𝑒𝑠𝑡 𝑥;
this operation may improve the quality of solution, bur
this needs much computing time, so the DBA-IVPNS have
more time to explore of more new position. However, from
Rec1 to Rec41, the DBA is much better than other variants.

For DBA NEH, only it has a difference that the position
updating of bat by NEH1.TheNEH1 has lesser computational
complexity than NEH. From experiment results, we can find
out that DBA NEH1 can find better solutions for several
benchmarks. In general, the DBA is better than DBA NEH1
for all benchmarks.

The Scientific World Journal 11

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

16

16

16

16

16

16

16

16

16

16

2

2

2

2

2

2

2

2

2

2

14

14

14

14

14

14

14

14

14

14

9

9

9

9

9

9

9

9

9

9

12

12

12

12

12

12

12

12

12

12

4

4

4

4

4

4

4

4

4

4

20

20

20

20

20

20

20

20

20

20

13

13

13

13

13

13

13

13

13

13

10

10

10

10

10

10

10

10

10

10

19

19

19

19

19

19

19

19

19

19

8

8

8

8

8

8

8

8

8

8

11

11

11

11

11

11

11

11

11

11

3

3

3

3

3

3

3

3

3

3

5

5

5

5

5

5

5

5

5

5

15

15

15

15

15

15

15

15

15

15

17

17

17

17

17

17

17

17

17

17

1

1

1

1

1

1

1

1

1

1

18

18

18

18

18

18

18

18

18

18

7

7

7

7

7

7

7

7

7

7

6

6

6

6

6

6

6

6

6

6

Makespan

M
ac

hi
ne

1431

Figure 9: Gantt chart of an optimal schedule for Rec11, 𝜋
∗
= [16, 2, 14, 9, 12, 4, 20, 13, 10, 19, 8, 11, 3, 5, 15, 17, 1, 18, 7, 6].

Table 1: Statistical performances of DBA, DBA NEH1, and DBA-IVPNS.

Problem 𝑛 | 𝑚 𝐶
∗ DBA DBA NEH1 DBA-IVPNS

BRE ARE WRE Std BRE ARE WRE Std BRE ARE WRE Std
Car1 11 | 5 7038 0 0 0 0 0 0 0 0 0 0 0 0
Car2 13 | 4 7166 0 0.195 2.931 54.22 0 0.391 2.931 73.89 0 0 0 0
Car3 12 | 5 7312 0 0.476 1.190 44.12 0 0.635 1.190 44.93 0 0.397 1.190 42.45
Car4 14 | 4 8003 0 0 0 0 0 0 0 0 0 0 0 0
Car5 10 | 6 7720 0 0.246 1.308 35.70 0 0.664 1.360 45.95 0 0.352 1.308 40.88
Car6 8 | 9 8505 0 0 0 0 0 0 0 0 0 0 0 0
Car7 7 | 7 6590 0 0 0 0 0 0 0 0 0 0 0 0
Car8 8 | 8 8366 0 0 0 0 0 0 0 0 0 0 0 0
Rec1 20 | 5 1247 0.160 0.209 0.722 1.84 0.160 0.241 1.043 2.85 0.160 0.545 1.925 7.92
Rec3 20 | 5 1109 0.090 0.481 2.164 7.09 0 0.499 1.803 6.09 0.180 0.385 1.713 4.51
Rec5 20 | 5 1242 0.242 0.623 2.174 9.49 0.242 0.768 2.496 10.72 0.242 1.100 2.496 10.69
Rec7 20 | 10 1566 1.149 1.443 3.831 11.41 1.149 2.048 3.831 18.33 1.149 1.537 3.831 13.54
Rec9 20 | 20 1537 0 2.420 3.709 13.44 0 2.065 3.318 15.98 1.041 2.728 4.815 13.13
Rec11 20 | 10 1431 0.559 1.975 3.564 13.56 0 2.241 7.617 29.69 0 1.859 4.403 16.64
Rec13 20 | 15 1930 0.415 2.394 3.938 19.84 0.933 2.525 4.819 19.30 1.762 2.694 4.352 16.29
Rec15 20 | 15 1950 0.154 2.178 4.615 23.43 0.821 2.410 4.615 24.23 1.231 2.903 4.256 19.21
Rec17 20 | 15 1902 0.946 2.685 4.206 19.27 0.894 3.582 5.941 25.20 1.577 5.065 6.730 25.65
Rec19 30 | 10 2093 0.573 2.621 4.252 21.38 1.386 2.599 4.730 19.58 2.484 3.883 5.542 20.28
Rec21 30 | 10 2017 1.438 2.310 4.412 19.89 1.636 2.568 5.702 24.05 1.785 3.543 5.255 19.50
Rec23 30 | 10 2011 0.945 3.216 5.868 23.88 1.591 3.090 4.923 19.22 3.282 4.422 6.266 18.48
Rec25 30 | 15 2513 2.348 3.520 5.213 20.71 1.870 3.489 5.133 23.77 3.780 5.428 6.805 19.57
Rec27 30 | 15 2373 2.402 3.638 5.057 19.03 1.728 3.217 5.900 23.66 2.023 4.374 5.942 23.93
Rec29 30 | 15 2287 1.530 4.323 7.084 33.64 2.186 3.615 5.597 24.60 4.766 6.046 7.521 19.20
Rec31 50 | 10 3045 3.284 4.917 6.502 30.44 3.153 4.926 6.765 38.21 5.353 6.192 7.783 21.95
Rec33 50 | 10 3114 0.835 1.916 4.143 29.20 1.317 2.338 4.528 26.65 1.927 2.899 4.689 25.99
Rec35 50 | 10 3277 0.092 0.484 2.014 18.73 0.092 1.082 3.021 36.89 0.244 1.107 2.563 20.99
Rec37 75 | 20 4951 5.615 7.172 8.140 39.66 5.918 7.387 8.826 37.75 8.503 9.156 10.261 21.68
Rec39 75 | 20 5087 3.696 5.578 6.408 41.52 4.914 6.083 7.529 35.22 6.979 7.629 8.374 23.50
Rec41 75 | 20 4960 6.129 7.435 8.952 33.55 6.573 7.589 8.952 29.22 8.105 9.319 10.726 37.80

Average 1.124 2.154 3.531 20.17 1.261 2.278 3.882 22.62 1.951 2.881 4.095 16.68

12 The Scientific World Journal

Table 2: Statistical performances of DBA, PSOMA, PSOVNS, and OSA.

Problem DBA PSOVNS PSOMA OSA
𝐶
𝑚𝑎𝑥

BRE ARE WRE Std BRE ARE WRE BRE ARE WRE BRE ARE Std
Car1 7038 0 0 0 0 0 0 0 0 0 0 0 0 0
Car2 7166 0 0 0 0 0 0 0 0 0 0 0 0 0
Car3 7312 0 0.397 1.190 42.45 0 0.420 1.189 0 0 0 0 0.625 47.19
Car4 8003 0 0 0 0 0 0 0 0 0 0 0 0 0
Car5 7720 0 0 0 0 0 0.039 0.389 0 0.018 0.375 0 0.801 50.73
Car6 8505 0 0 0 0 0 0.076 0.764 0 0.114 0.764 0 2.093 274.71
Car7 6590 0 0 0 0 0 0 0 0 0 0 0 1.483 114.21
Car8 8366 0 0 0 0 0 0 0 0 0 0 0 2.297 254.63
Rec1 1247 0 0.080 0.160 0.85 0.160 0.168 0.321 0 0.144 0.160 0.160 0.160 0
Rec3 1109 0 0.081 0.180 0.88 0 0.158 0.180 0 0.189 0.721 0 0.189 1.85
Rec5 1245 0.242 0.242 0.242 0 0.242 0.249 0.420 0.242 0.249 0.402 0.242 0.588 4.62
Rec7 1566 0 0.575 1.149 9.40 0.702 1.095 1.405 0 0.986 1.149 0 0.434 11.59
Rec9 1537 0 0.638 2.407 15.00 0 0.651 1.366 0 0.621 1.691 0 0.690 12.39
Rec11 1431 0 1.167 2.655 11.17 0.071 1.153 2.656 0 0.129 0.978 0 2.215 37.60
Rec13 1938 0.415 1.461 3.782 19.01 1.036 1.790 2.643 0.259 0.893 1.502 0.311 1.793 14.69
Rec15 1953 0.154 1.226 2.103 7.97 0.769 1.487 2.256 0.051 0.628 1.076 0.718 1.569 16.07
Rec17 1909 0.368 1.277 2.154 41.65 0.999 2.453 3.365 0 1.330 2.155 1.840 3.796 36.72
Rec19 2105 0.573 0.929 2.023 33.06 1.529 2.099 2.532 0.430 1.313 2.102 0.287 0.803 9.48
Rec21 2046 1.438 1.671 2.231 4.04 1.487 1.671 2.033 1.437 1.596 1.636 1.438 1.477 1.69
Rec23 2027 0.796 1.173 2.381 39.27 1.343 2.106 2.884 0.596 1.310 2.038 0.497 0.854 10.82
Rec25 2554 1.632 2.921 3.940 18.96 2.388 3.166 3.780 0.835 2.085 3.233 1.194 1.938 15.06
Rec27 2397 1.011 1.419 2.298 21.35 1.728 2.463 3.203 1.348 1.605 2.402 0.843 1.845 21.06
Rec29 2311 1.049 2.580 3.935 22.84 1.968 3.109 4.067 1.442 1.888 2.492 0.612 2.882 38.83
Rec31 3115 2.299 3.392 4.532 23.66 2.594 3.232 4.237 1.510 2.254 2.692 0.296 1.333 30.39
Rec33 3133 0.610 0.728 1.734 39.40 0.835 1.007 1.477 0 0.645 0.834 0.128 0.732 7.32
Rec35 3277 0 0.037 0.092 1.52 0 0.038 0.092 0 0 0 0 0 0
Rec37 5118 3.373 4.872 5.979 40.31 4.383 4.949 5.736 2.101 3.537 4.039 2.000 2.751 25.43
Rec39 5203 2.280 3.851 5.347 45.97 2.850 3.371 5.585 1.553 2.426 2.830 0.767 1.240 12.31
Rec41 5149 3.810 5.095 6.532 42.89 4.173 4.867 5.585 2.641 3.684 4.052 1.734 2.726 39.38

Table 3: Optimal job permutations of DBA.

Problem 𝑛 | 𝑚 𝐶
∗

𝜋
∗

Car1 11 | 5 7038 8, 1, 3, 11, 5, 9, 4, 10, 7, 2, 6
Car2 13 | 4 7166 7, 3, 4, 11, 9, 1, 8, 12, 5, 2, 13, 10, 6
Car3 12 | 5 7312 11, 6, 5, 10, 12, 9, 3, 2, 4, 7, 8, 1
Car4 14 | 4 8003 4, 12, 13, 14, 5, 7, 6, 1, 9, 10, 11, 8, 2, 3
Car5 10 | 6 7720 5, 4, 2, 1, 3, 8, 6, 10, 9, 7
Car6 8 | 9 8505 7, 1, 5, 6, 8, 3, 4, 2
Car7 7 | 7 6590 5, 4, 2, 6, 7, 3, 1
Car8 8 | 8 8366 7, 3, 8, 5, 2, 1, 6, 4
Rec1 20 | 5 1247 6, 9, 2, 20, 12, 14, 17, 15, 13, 7, 1, 18, 3, 4, 11, 5, 8, 10, 19, 16
Rec3 20 | 5 1109 6, 14, 7, 1, 2, 3, 11, 8, 9, 17, 15, 5, 19, 4, 16, 10, 12, 13, 18, 20
Rec7 20 | 10 1566 17, 13, 18, 12, 9, 1, 6, 3, 8, 4, 5, 2, 7, 15, 10, 19, 11, 16, 14, 20
Rec9 20 | 20 1537 4, 19, 17, 12, 18, 14, 7, 16, 5, 13, 2, 10, 9, 11, 8, 20, 1, 15, 3, 6
Rec11 20 | 10 1431 16, 2, 14, 9, 12, 4, 20, 13, 10, 19, 8, 11, 3, 5, 15, 17, 1, 18, 7, 6

Rec35 50 | 10 3277 13, 14, 40, 39, 50, 36, 46, 35, 37, 26, 2, 18, 19, 8, 41, 10, 25, 20, 38, 29, 33, 15, 27, 9, 21, 17,
42, 22, 32, 3, 1, 23, 4, 12, 5, 49, 11, 45, 43, 16, 34, 6, 44, 30, 7, 48, 47, 28, 24, 31

The Scientific World Journal 13

Table 4: The statistical results of score.

Benchmark DBA PSOVNS PSOMA SGA + NEH OSA
BRE ARE WRE Std BRE ARE WRE BRE ARE WRE BRE ARE BRE ARE Std

Car1–Car8 32 31 30 32 32 27 28 32 29 30 30 16 32 19 27
Rec1–Rec41 60 58 62 70 40 37 56 73 66 78 20 4 73 57 77
Car1–Rec29 78 78 78 83 63 54 67 85 75 84 47 19 82 54 81
Car1–Rec41 92 89 92 102 72 64 84 105 95 108 50 20 105 76 104

0 100 200 300 400 500 600 700 800 900
7600

7800

8000

8200

8400

8600

8800

9000

9200

9400

Computation time (ms)

M
ak

es
pa

n

DBA
PSOMA
OSA

PSOVNS
SGA + NEH

Figure 10: The convergence curves of Car5.

0 100 200 300 400 500 600 700 800 900
8400

8600

8800

9000

9200

9400

9600

9800

Computation time (ms)

M
ak

es
pa

n

DBA
PSOMA
OSA

PSOVNS
SGA + NEH

Figure 11: The convergence curves of Car6.

0 500 1000 1500 2000 2500 3000
1550

1600

1650

1700

1750

1800

1850

1900

Computation time (ms)

M
ak

es
pa

n

DBA
PSOMA
OSA

PSOVNS
SGA + NEH

Figure 12: The convergence curves of Rec7.

0 500 1000 1500 2000 2500 3000
1400

1450

1500

1550

1600

1650

1700

1750

1800

1850

1900

Computation time (ms)

M
ak

es
pa

n

DBA
PSOMA
OSA

PSOVNS
SGA + NEH

Figure 13: The convergence curves of Rec11.

14 The Scientific World Journal

In addition, in order to demonstrate the effect of each
strategy in the specific scheduling problem, the frequency of
finding a new best solution by applying these moves in DBA
is recorded; it can show the contribution of each strategy.The
Car1 to Car8 and Rec1 to Rec15 16 benchmarks are chosen
to tested. Each problem was run 10 times; each time a new
best solution was found by the algorithm; the move resulting
in this improvement was recorded. Figure 5 demonstrates the
percentage of contribution.

4.3. Comparisons of DBA, PSOMA, PSOVNS, OSA. In order
to show the effectiveness of DBA, we carry out a simulation
to compare our DBA with other state-of-art algorithms, that
is, PSOMA proposed by Liu et al. [11], PSOVNS proposed
by Tasgetiren et al., and experimental results reference [5],
and SA is a simulated annealing, the experimental results
reference [16]. The population size is 50 and the termination
criterion is set as (𝑛 × 𝑚/2) × 30ms maximum computation
time. The experimental results are listed in Table 2.

From Table 2, for the Car problems, the DBA, PSOVNS,
PSOMA, and OSA all can find the exact solution, and DBA
is better than the other algorithm on ARE. For the Rec
problems, DBA also can find better solutions. Comparedwith
DBA, PSOVNS, PSOMA, and OSA, the DBA achieved 14
exact solutions; several optimal job permutations are shown
in Table 3. PSOVNS achieved 11 exact solutions, PSOMA
achieved 16 exact solutions, and OSA achieved 13 exact
solutions. For all test problems, obtained solutions ofDBA are
not better than the PSOMA and OSA, but the performance is
similar to PSOMA and OSA.

In order to compare each norm (BRE, ARE, WRE, and
Std) of corresponding algorithms, for all benchmarks, each
norm is scored among corresponding algorithms. The first
is score 4, the second is score 3, the third is score 2, the
fourth is score 1, and the last is score 0, if several results are
same, they have same score. The statistical results are listed
in Table 4. From Table 4, for Car problems, the DBA is best
on ARE, the DBA and PSOMA are identical on WRE, DBA
has better Std compared with OSA. For Rec problems, the
OSA and PSOMA have better BRE, the DBA is better than
PSOVNS, the DBA is better than PSOVNS, OSA, the DBA
is also better than PSOVNS onWRE among DBA, PSOVNS,
and PSOMA, but the Std is not better than OSA. The DBA
is best on ARE for Car1 to Rec29 among DBA, PSOVNS,
PSOMA, and OSA, and the Std is better than OSA. On the
whole, the achieved solutions of DBA have better quality. For
large-scale scheduling problems, the DBA still have the room
for improvement; it also is our further work.

The DBA achieved 14 exact solutions, due to the fact that
Rec35 have 10 machines and 50 jobs, the margin of paper is
restricted, the Gantt chart of an optimal schedule for Rec35
cannot display on this paper, and the Gantt chart of Car5,
Car6, Rec7, and Rec11 is selected as instance. These Gantt
charts of an optimal schedule are shown in Figures 6, 7, 8,
and 9.

Figures 10, 11, 12, and 13 show the convergence curves
of Car5, Car6 Rec7, and Rec11. From Figures 10 to 13, the
convergence rate of DBA is fast, and the precision of solution

is prominent.The performance of DBA is similar to PSOMA;
however, the convergence rate of DBA is faster than PSOMA
in the early phase of iteration.The precision of solution is not
as good as PSOMA while the scale of scheduling problems is
increasing.TheDBA is better than SGA+NEH [5], PSOBNS,
and OSA in some aspects.

5. Conclusions

In this paper, we construct a direct relationship between the
job sequence and the vector of individuals in DBA; a DBA is
proposed to solve PFSP. In order to evaluate the performance
of the proposed DBA, we compare DBA with several PFSP
algorithms with benchmark problems of PFSP. Experimental
results have shown that our algorithm is pretty effective, the
performance of each strategy is evaluated, and sensitivity
of parameters is analyzed. Moreover, our further work is to
study the theoretical aspects as well as the performance of the
technique.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by National Science Foundation of
China under Grant no. 61165015, Key Project of Guangxi
Science Foundation under Grant no. 2012GXNSFDA053028,
and Key Project of Guangxi High School Science Foundation
under Grant nos. 20121ZD008, 201203YB072.

References

[1] H. Stadtler, “Supply chain management and advanced plan-
ning—basics, overview and challenges,” European Journal of
Operational Research, vol. 163, no. 3, pp. 575–588, 2005.

[2] K. A. Rinnooy, Machine Scheduling Problems: Classification,
Complexity, andComputations, Nijhoff,TheHague,TheNether-
lands, 1976.

[3] F.Della Croce,M.Ghirardi, andR. Tadei, “An improved branch-
and-bound algorithm for the two machine total completion
time flow shop problem,” European Journal of Operational
Research, vol. 139, no. 2, pp. 293–301, 2002.

[4] E. F. Stafford, “On the development of a mixed integer linear
programming model for the flowshop sequencing problem,”
Journal of the Operational Research Society, vol. 39, pp. 1163–
1174, 1988.

[5] L. Wand and B. Liu, Particle Swarm Optimization and Schedul-
ing Algorithms, TsinghuaUniversity Press, Beijing, China, 2008.

[6] L. Wang and D. Z. Zheng, “An effective hybrid heuristic
for flow shop scheduling,” International Journal of Advanced
Manufacturing Technology, vol. 21, no. 1, pp. 38–44, 2003.

[7] J. J. Liang, Q. Pan, C. Tiejun, and L.Wang, “Solving the blocking
flow shop scheduling problem by a dynamic multi-swarm
particle swarm optimizer,” International Journal of Advanced
Manufacturing Technology, vol. 55, no. 5–8, pp. 755–762, 2011.

[8] M. F. Tasgetiren, P. N. Suganthan, and Q. K. Pan, “An ensemble
of discrete differential evolution algorithms for solving the

The Scientific World Journal 15

generalized traveling salesman problem,” Applied Mathematics
and Computation, vol. 215, no. 9, pp. 3356–3368, 2010.

[9] X. S. Yang, “A newmetaheuristic bat-inspired algorithm.Nature
Inspired Cooperative Strategies for Optimization (NICSO),”
Studies in Computational Intelligence, vol. 284, pp. B65–B74,
2010.

[10] M. F. Tasgetiren, Y. C. Liang, M. Sevkli, and G. A. Gencyil-
maz, “A particle swarm optimization algorithm for makespan
and total flowtime minimization in the permutation flow-
shop sequencing problem,” European Journal of Operational
Research, vol. 177, no. 3, pp. 1930–1947, 2007.

[11] B. Liu, L. Wang, and Y. Jin, “An effective PSO-based memetic
algorithm for flow shop scheduling,” IEEE Transactions on
Systems, Man, and Cybernetics B: Cybernetics, vol. 37, no. 1, pp.
18–27, 2007.

[12] L. Tseng and Y. Lin, “A hybrid genetic local search algorithm
for the permutation flowshop scheduling problem,” European
Journal of Operational Research, vol. 198, no. 1, pp. 84–92, 2009.

[13] B. Yagmahan and M. M. Yenisey, “A multi-objective ant colony
system algorithm for flow shop scheduling problem,” Expert
Systems with Applications, vol. 37, no. 2, pp. 1361–1368, 2010.

[14] M. F. Tasgetiren, Q. Pan, P. N. Suganthan, and A. H.-L. Chen,
“A discrete artificial bee colony algorithm for the total flowtime
minimization in permutation flow shops,” Information Sciences,
vol. 181, no. 16, pp. 3459–3475, 2011.

[15] F. Ahmadizar, “A new ant colony algorithm for makespan min-
imization in permutation flow shops,” Computers & Industrial
Engineering, vol. 63, no. 2, pp. 355–361, 2012.

[16] X. Li and M. Yin, “An opposition-based differential evolution
algorithm for permutation flow shop scheduling based on
diversity measure,” Advances in Engineering Software, vol. 55,
pp. 10–31, 2013.

[17] R. Liu, C. Ma, W. Ma, and Y. Li, “A multipopulation PSO based
memetic algorithm for permutation flow shop scheduling,”The
Scientific World Journal, vol. 2013, Article ID 387194, 11 pages,
2013.

[18] M. Mirabi, “A novel hybrid genetic algorithm to solve the
sequence-dependent permutation flow-shop scheduling prob-
lem,” International Journal of AdvancedManufacturing Technol-
ogy, vol. 71, pp. 429–437, 2014.

[19] F.-V.Victor and J.M. Framinan, “On insertion tie-breaking rules
in heuristics for the permutation flowshop scheduling problem,”
Computers & Operations Research, vol. 45, pp. 60–67, 2014.

[20] A. H. Gandomi, X. S. Yang, A. H. Alavi, and S. Talatahari, “Bat
algorithm for constrained optimization tasks,” Neural Comput-
ing and Applications, vol. 22, no. 6, pp. 1239–1255, 2013.

[21] X. Yang and A. H. Gandomi, “Bat algorithm: a novel approach
for global engineering optimization,” Engineering Computa-
tions, vol. 29, no. 5, pp. 464–483, 2012.

[22] S. Mishra, K. Shaw, and D. Mishra, “A new meta-heuristic bat
inspired classification approach for microarray data,” Procedia
Technology, vol. 4, pp. 802–806, 2012.

[23] J. Xie, Y. Zhou, and H. Chen, “A novel bat algorithm based on
differential operator and Lévy flights trajectory,”Computational
Intelligence and Neuroscience, vol. 2013, Article ID 453812, 13
pages, 2013.

[24] G. Wang, L. Guo, H. Duan, L. Liu, and H. Wang, “A bat algo-
rithm with mutation for UCAV path planning,” The Scientific
World Journal, vol. 2012, Article ID 418946, 15 pages, 2012.

[25] M. Nawaz, E. E. Enscore Jr., and I. Ham, “A heuristic algorithm
for the m-machine, n-job flow-shop sequencing problem,”
Omega, vol. 11, no. 1, pp. 91–95, 1983.

[26] J. Carlier, “Ordonnancements à contraintes disjonctives,” RAI-
RO Recherche Opérationnelle, vol. 12, pp. 333–351, 1978.

[27] C. R. Reeves and T. Yamada, “Genetic algorithms, path relink-
ing, and the flowshop sequencing problem,” Evolutionary Com-
putation, vol. 6, no. 1, pp. 45–60, 1998.

[28] B. Jarboui, M. Eddaly, and P. Siarry, “An estimation of distribu-
tion algorithm for minimizing the total flowtime in permuta-
tion flowshop scheduling problems,”Computers and Operations
Research, vol. 36, no. 9, pp. 2638–2646, 2009.

[29] R. Ruiz and T. Stützle, “An Iterated Greedy heuristic for
the sequence dependent setup times flowshop problem with
makespan and weighted tardiness objectives,” European Journal
of Operational Research, vol. 187, no. 3, pp. 1143–1159, 2008.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

