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Fisher’s informationmeasure 𝐼 plays a very important role in diverse areas of theoretical physics.The associatedmeasures 𝐼
𝑥
and 𝐼
𝑝
,

as functionals of quantum probability distributions defined in, respectively, coordinate andmomentum spaces, are the protagonists
of our present considerations. The product 𝐼

𝑥
𝐼
𝑝
has been conjectured to exhibit a nontrivial lower bound in Hall (2000). More

explicitly, this conjecture says that for any pure state of a particle in one dimension 𝐼
𝑥
𝐼
𝑝
≥ 4. We show here that such is not the case.

This is illustrated, in particular, for pure states that are solutions to the free-particle Schrödinger equation. In fact, we construct a
family of counterexamples to the conjecture, corresponding to time-dependent solutions of the free-particle Schrödinger equation.
We also conjecture that any normalizable time-dependent solution of this equation verifies 𝐼

𝑥
𝐼
𝑝
→ 0 for 𝑡 → ∞.

1. Introduction

A very important informationmeasure, withmanifold physi-
cal applications, was conceived by R. A. Fisher in the 1920s—
for detailed discussions see [1–4]. Recent developments show
that Fisher’s information has a fundamental role in quantum
mechanics [5–19]. In particular, it allows for the formulation
of new quantum uncertainty principles [20–24]. It is usually
abbreviated as 𝐼 and can be thought of as a measure of the
expected error in a measurement [1].

A particular instance of great relevance is that of trans-
lational families [1]. These are distribution functions whose
form remains invariant under displacements of a shift param-
eter 𝜃. Thus, they are shift invariant distributions (in a Mach
sense, there is no absolute origin for 𝜃). The measure exhibits
Galilean invariance [1]. Given a probability density 𝑓(x, 𝜃),
with x ∈ R𝐷 and 𝜃 = (𝜃

𝑖
)
1≤𝑖≤𝑛

a family of parameters, the
concomitant Fisher matrix is [25]

𝐼
𝑗𝑘
:= ∫

1

𝑓 (x, 𝜃)
(
𝜕𝑓

𝜕𝜃
𝑗

)(
𝜕𝑓

𝜕𝜃
𝑘

) dx, (1)

where dx = ∏
𝐷

𝑘=1
d𝑥
𝑘
is the volume element in R𝐷. In

particular, for 𝜃 ∈ R𝐷, one defines translational fami-
lies 𝑓(x − 𝜃), with elements 𝐼

𝑗𝑘
= ∫(1/𝑓)(𝜕

𝑗
𝑓)(𝜕
𝑘
𝑓)dx,

where 𝜕
𝑖
represents the partial derivative with respect to

the coordinate 𝑥
𝑖
. The trace of this matrix, given by 𝐼 =

∫(1/𝑓)[∑
𝐷

𝑘=1
(𝜕
𝑘
𝑓)
2

]dx, is a good uncertainty indicator for
probability distributions associatedwith quantumwave func-
tions [26]. If𝜓(x) is a normalizedwave function in coordinate
space (𝐷-dimensions) and 𝜓̃(p) = (2𝜋)

−𝐷/2

∫ 𝑒
−ix⋅p

𝜓(x)dx
is its momentum-counterpart, the corresponding probability
densities are, respectively, 𝜌(x) = |𝜓(x)|2 and 𝜌(p) = |𝜓̃(p)|2,
with associated Fisher measures

𝐼x = ∫
1

𝜌
[∇x𝜌]

2 dx, (2)

𝐼p = ∫
1

𝜌
[∇p𝜌]

2

dp, (3)

which allowone to study uncertainty relations via the product
𝐼x𝐼p [26].
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For instance, one can demonstrate that if𝜓(x) (or 𝜓̃(p)) is
real, then 𝐼x𝐼p ≥ 4𝐷

2 [5], with equality for coherent states of
the harmonic oscillator (HO) [26]. For general, mixed states
it is clear that the product 𝐼x𝐼p does not possess a nontrivial
lower bound (e.g., one can use thermalHO states, represented
by Gaussian distributions in both coordinates and momenta,
in the high temperature limit). In the case of pure states,
though, the existence of such a lower bound for 𝐼x𝐼p was an
open question. Hall conjectured that the relation 𝐼

𝑥
𝐼
𝑝
≥ 4

might hold in general for pure states in one dimension [26,
page 3].Wewill next present a couple of counterexamples that
show this conjecture to be incorrect. Our examples give rise
to a new conjecture: for a bounded wave function one has
𝐼x𝐼p → 0 when 𝑡 → ∞.

2. Counterexamples

Our first example is taken from the considerations (in a dif-
ferent context) of [5]. A free-particle’s one-dimensional wave
packet 𝜓(𝑥, 𝑡) (unit mass) evolves according to Schrödinger’s
equation

i𝜕𝜓
𝜕𝑡

= −
1

2

𝜕
2

𝜓

𝜕𝑥2
. (4)

Setting the initial conditions

𝜓 (𝑥, 0) = 𝐴
0
exp[− 𝑥

2

2Δ2
] ,

𝜓̃ (𝑝, 0) = 𝐴
0
exp[−

Δ
2

𝑝
2

2
] ,

(5)

with 𝐴
0
= Δ
−1/2

𝜋
−1/4, 𝐴

0
= Δ
1/2

𝜋
−1/4, and Δ > 0, that

correspond to a Gaussian packet, one finds the solution

𝜓 (𝑥, 𝑡) = 𝐴 (𝑡) exp[− 𝑥
2

2Δ2 (1 + i𝑡/Δ2)
] , (6)

where 𝐴(𝑡) = 𝐴
0
(1 + i𝑡/Δ2)−1/2. The associated probability

densities are

𝜌 (𝑥, 𝑡) =
Δ

√𝜋 (Δ4 + 𝑡2)

exp[− Δ
2

𝑥
2

Δ4 + 𝑡2
] ,

𝜌 (𝑝, 𝑡) =
Δ

√𝜋
exp [−Δ2𝑝2] .

(7)

The product 𝐼
𝑥
𝐼
𝑝
= 4Δ
4

(Δ
4

+𝑡
2

)
−1 obeys the relation 𝐼

𝑥
𝐼
𝑝
< 4

for 𝑡 > 0. Also, one has 𝐼
𝑥
𝐼
𝑝
→ 0 for 𝑡 → ∞.

We pass now to another free-particle solution, given
by the first partial derivative of 𝜓(𝑥, 𝑡) with respect to 𝑥:
𝜓
(1)

(𝑥, 𝑡) ∝ 𝜕
𝑥
𝜓(𝑥, 𝑡) (see (4)), correctly normalized. It

is easy to see that 𝜓(1)(𝑥, 𝑡) is a solution by deriving both
members of (4); that is,

i 𝜕
𝜕𝑡

𝜕𝜓

𝜕𝑥
= −

1

2

𝜕
2

𝜕𝑥2

𝜕𝜓

𝜕𝑥
. (8)

The new solution is

𝜓
(1)

(𝑥, 𝑡) = 𝐴
(1)

(𝑡) exp[− 𝑥
2

2Δ2 (1 + i𝑡/Δ2)
] , (9)

with𝐴(1)(𝑡) = −2
1/2

𝜋
1/4

Δ
3/2

(Δ
2

+i𝑡)−3/2.The two correspond-
ing densities are

𝜌
(1)

(𝑥, 𝑡) =
2Δ
3

√𝜋 (Δ4 + 𝑡2)
3

𝑥
2 exp[− Δ

2

𝑥
2

Δ4 + 𝑡2
] ,

𝜌
(1)

(𝑝, 𝑡) =
2Δ
3

√𝜋
𝑝
2 exp [−Δ2𝑝2] .

(10)

The product is 𝐼(1)
𝑥
𝐼
(1)

𝑝
= 36Δ

4

(Δ
4

+𝑡
2

)
−1, verifying 𝐼(1)

𝑥
𝐼
(1)

𝑝
< 4

for 𝑡 > 2√2Δ
2, and 𝐼(1)

𝑥
𝐼
(1)

𝑝
→ 0 when 𝑡 → ∞.

In general, one can show that the whole family of solu-
tions of (4) given by successive derivatives of 𝜓(𝑥, 𝑡), that is,
the set {𝜓(𝑛)(𝑥, 𝑡) | 𝜓(𝑛)(𝑥, 𝑡) = 𝑁

𝑛
𝜕
𝑛

𝑥
𝜓(𝑥, 𝑡), 𝑛 = 0, 1, 2, . . .},

verifies that 𝐼
𝑥
𝐼
𝑝
→ 0 when 𝑡 → ∞, with𝑁

𝑛
the pertinent

normalization constants. Thus, the family {𝜓
(𝑛)

(𝑥, 𝑡)}
𝑛∈N0

yields infinite counterexamples to Hall’s conjecture. To see
this, one needs first to rewrite the Fisher measure in wave
function’s terms, so that (2) becomes equivalent to

𝐼x = 4∫ (∇x
󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨)
2 dx, (11)

or, in one dimension, 𝐼
𝑥
= ∫(𝜕

𝑥
|𝜓|)
2d𝑥. Further, |𝜓| = 𝜓

∗

𝜓.
Thus, 𝐼

𝑥
can be expressed in terms of 𝜓 and 𝜓

(1). In one
dimension one has

𝐼
𝑥
= 4∫ (𝜓

(1)∗

𝜓 + 𝜓
∗

𝜓
(1)

)
2

d𝑥. (12)

In general, for 𝜓(𝑘), the Fisher’s measure associated with the
distribution |𝜓(𝑘)|2 becomes

𝐼
(𝑘)

𝑥
= 4∫ (𝜓

(𝑘+1)∗

𝜓
(𝑘)

+ 𝜓
(𝑘)∗

𝜓
(𝑘+1)

)
2

d𝑥. (13)

We shownow that the integrand tends to zero for 𝑡 → ∞.
Thus, 𝐼(𝑘)

𝑥
→ 0 in such a limit. Actually, we will show that

𝜓
(𝑘)

(𝑥, 𝑡) → 0 for 𝑡 → ∞. The 𝑘th derivative of 𝜓(𝑥, 𝑡) ≡
𝜓
(0)

(𝑥, 𝑡) is proportional to the 𝑘th derivative of a Gaussian
distribution, given by

𝜓
(𝑘)

(𝑥, 𝑡) = 𝑁
𝑘
(𝑡)

𝜕
𝑘

𝜕𝑥𝑘
𝜓
(0)

(𝑥, 𝑡)

= 𝑁
𝑘
(𝑡)

𝜕
𝑘

𝜕𝑥𝑘
(𝐴 (𝑡) 𝑒

−𝑐(𝑡)
2
𝑥
2

)

= 𝑁
𝑘
(𝑡) 𝐴 (𝑡) (−1)

𝑘

𝑐 (𝑡)
2

𝐻
𝑘
(𝑐 (𝑡) 𝑥) 𝑒

−𝑐(𝑡)
2
𝑥
2

= 𝑁
𝑘
(𝑡) (−1)

𝑘

𝑐 (𝑡)
2

𝐻
𝑘
(𝑐 (𝑡) 𝑥) 𝜓

(0)

(𝑥, 𝑡) ,

(14)

where 𝑐(𝑡)
2

= (2(Δ
2

+ i𝑡))−1 and 𝐻
𝑘
(𝑦) is the Hermite

polynomial of degree 𝑘 in the variable 𝑦.The time-dependent
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parameters 𝑐(𝑡), 𝜓(0)(𝑥, 𝑡), and𝐴(𝑡) vanish for 𝑡 → ∞. What
is the behavior of𝑁

𝑘
? Let us see what happens with 𝜓̃(𝑘)(𝑝, 𝑡),

the 𝑘th solution in momentum space, corresponding to the
Fourier transform of 𝜓(𝑘)(𝑥, 𝑡). We have

𝜓̃
(𝑘)

(𝑝, 𝑡) =
1

√2𝜋
∫ 𝑒
−i𝑥𝑝

𝜓
(𝑘)

(𝑥, 𝑡) d𝑥

= 𝑁
𝑘
(𝑡) 𝐴 (𝑡) ∫ 𝑒

−i𝑥𝑝 𝜕
𝑘

𝜕𝑥𝑘
𝑒
−𝑐(𝑡)
2
𝑥
2

d𝑥

= 𝑁
𝑘
(𝑡) 𝐴 (𝑡) (i𝑝)𝑘 1

√2𝑐 (𝑡)

exp[−
𝑝
2

4𝑐 (𝑡)
2
]

= 𝑁
𝑘
(𝑡) √𝑐 (𝑡) (i𝑝)𝑘 𝜓̃(0) (𝑝, 𝑡) .

(15)

Demanding normalization leads to

1 = ∫ 𝜓̃
(𝑘)

(𝑝, 𝑡) 𝜓̃
(𝑘)∗

(𝑝, 𝑡) d𝑝

=
󵄨󵄨󵄨󵄨𝑁𝑘 (𝑡)

󵄨󵄨󵄨󵄨

2

|𝑐 (𝑡)| ∫ 𝑝
2𝑘
󵄨󵄨󵄨󵄨󵄨
𝜓̃
(0)
󵄨󵄨󵄨󵄨󵄨

2

d𝑝

=
󵄨󵄨󵄨󵄨𝑁𝑘 (𝑡)

󵄨󵄨󵄨󵄨

2

|𝑐 (𝑡)|
Δ

√𝜋
∫𝑝
2𝑘

𝑒
−Δ
2
𝑝
2

d𝑝

=
󵄨󵄨󵄨󵄨𝑁𝑘 (𝑡)

󵄨󵄨󵄨󵄨

2

|𝑐 (𝑡)|
Δ

√𝜋
Γ(𝑘 +

1

2
)Δ
−2𝑘−1

.

(16)

Thus,

󵄨󵄨󵄨󵄨𝑁𝑘 (𝑡)
󵄨󵄨󵄨󵄨

2

=
√𝜋Δ
2𝑘

Γ (𝑘 + 1/2)
2√Δ4 + 𝑡2. (17)

Remember that

𝜓
(0)

(𝑥, 𝑡) = 𝐴 (𝑡) 𝑒
−𝑐(𝑡)
2
𝑥
2

, (18)

with 𝐴(𝑡) = 𝜋
−1/4√2Δ𝑐(𝑡), and

𝜓̃
(0)

(𝑝, 𝑡) =
√Δ

𝜋1/4
exp[−

𝑝
2

4𝑐 (𝑡)
2
] . (19)

One finds the following limits for the absolute values of the
wave functions:

󵄨󵄨󵄨󵄨󵄨
𝜓
(𝑘)

(𝑥, 𝑡)
󵄨󵄨󵄨󵄨󵄨

2

=
󵄨󵄨󵄨󵄨󵄨
𝑁
𝑘
(𝑡) 𝑐 (𝑡)

2

𝐻
𝑘
(𝑐 (𝑡) 𝑥) 𝜓

(0)

(𝑥, 𝑡)
󵄨󵄨󵄨󵄨󵄨

2

∼ |𝑐 (𝑡)|
−1

|𝑐 (𝑡)|
4

|𝑐 (𝑡)|
2𝑘

|𝑐 (𝑡)|
2

𝑒
−2R(𝑐(𝑡)2)𝑥2

∼ |𝑐 (𝑡)|
2𝑘+5 exp[− Δ

2

𝑥
2

Δ4 + 𝑡2
] 󳨀→
𝑡→∞

0,

(20)

󵄨󵄨󵄨󵄨󵄨
𝜓̃
(𝑘)

(𝑝, 𝑡)
󵄨󵄨󵄨󵄨󵄨

2

=
󵄨󵄨󵄨󵄨󵄨󵄨
𝑁
𝑘
(𝑡) √𝑐 (𝑡) (i𝑝)𝑘 𝜓̃(0) (𝑝, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨

2

∼ |𝑐 (𝑡)|
−1

|𝑐 (𝑡)|

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

exp[−
𝑝
2

4𝑐 (𝑡)
2
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

= 𝑒
−Δ
2
𝑝
2

.

(21)

Equation (20) indicates that all functions 𝜓(𝑘)(𝑥, 𝑡) vanish for
𝑡 → ∞. Accordingly, from (13) we find 𝐼(𝑘)

𝑥
→ 0 for 𝑡 → ∞

for all 𝑘 = 0, 1, 2, . . .. Further, (21) shows that 𝜓̃(𝑘)(𝑝, 𝑡) does
not vanish in this limit. In fact, |𝜓̃(𝑘)(𝑝, 𝑡)| does not depend
on 𝑡.

So as to understand what happens with 𝐼(𝑘)
𝑝

let us see an
expression analogous to (13) in momentum space:

𝐼
(𝑘)

𝑝
= 4∫ (𝜓̃

(𝑘+1)∗

𝜓̃
(𝑘)

+ 𝜓̃
(𝑘)∗

𝜓̃
(𝑘+1)

)
2

d𝑥. (22)

Expanding the integrand using (15) we have

𝜓̃
(𝑘+1)∗

𝜓̃
(𝑘)

+ 𝜓̃
(𝑘)∗

𝜓̃
(𝑘+1)

= 2I (𝑁
𝑘
𝑁
∗

𝑘+1
) |𝑐 (𝑡)| 𝑝

2𝑘+1
󵄨󵄨󵄨󵄨󵄨
𝜓̃
(0)

(𝑝, 𝑡)
󵄨󵄨󵄨󵄨󵄨

2

.

(23)

Introducing this into (22), and remembering that both 𝑁
𝑘

and 𝑐(𝑡) are independent of 𝑝, we find

𝐼
(𝑘)

𝑝
= 16I (𝑁

𝑘
𝑁
∗

𝑘+1
)
2

|𝑐 (𝑡)|
2
Δ
2

𝜋
∫𝑝
4𝑘+2

𝑒
−2Δ
2
𝑝
2

= 16I (𝑁
𝑘
𝑁
∗

𝑘+1
)
2

|𝑐 (𝑡)|
2
Δ
2

𝜋

Γ (2𝑘 + 3/2)

(2Δ2)
2𝑘+3/2

.

(24)

Since |𝑁
𝑘
(𝑡)|
2

∼ |𝑐(𝑡)|
−1 (see (16)), one has

|𝑁
𝑘
(𝑡)𝑁
𝑘+1

|
2

|𝑐(𝑡)|
2

∼ 1 and thus 𝐼(𝑘)
𝑝

becomes bounded.
Thus, there exists 𝐼(𝑘)

𝑝,max ∈ R
>0

such that 𝐼(𝑘)
𝑝

≤ 𝐼
(𝑘)

𝑝,max for all
𝑘 = 0, 1, 2, . . .. We conclude that 𝐼(𝑘)

𝑥
𝐼
(𝑘)

𝑝
→ 0 for 𝑡 → ∞ for

the whole family of solutions {𝜓(𝑘)(𝑥, 𝑡)}
𝑘∈N0

.

3. Conclusions

We conclude by reiterating that we have found an infinite
number of counterexamples to the conjecture 𝐼

𝑥
𝐼
𝑝
≥ 4, for

pure states, put forward in [26]. On the basis of these results,
we conjecture that, for any normalizable wave function
𝜓(𝑥, 0), the corresponding time-dependent solution 𝜓(𝑥, 𝑡)

of the free-particle Schrödinger equation satisfies 𝐼
𝑥
𝐼
𝑝
→ 0

for 𝑡 → ∞.
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