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We present the nondifferentiable approximate solution for local fractional Tricomi equation arising in fractal transonic flow by
local fractional variational iteration method. Some illustrative examples are shown and graphs are also given.

1. Introduction
In this paper, we study the local fractional Tricomi equation
given as follows:

𝑦
𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝑢 (𝑥, 𝑦)

𝜕𝑥2𝛼
+
𝜕
2𝛼

𝑢 (𝑥, 𝑦)

𝜕𝑦2𝛼
= 0, (1)

where the quantity 𝑢(𝑥, 𝑦) is the nondifferentiable function
and the operator is local fractional operator suggested as
follows [1–3]:

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
=
Δ
𝛼

(𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡
0
))

(𝑡 − 𝑡
0
)
𝛼

, (2)

where
Δ
𝛼

(𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡
0
))

≅ Γ (1 + 𝛼) [𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡
0
)] .

(3)

Local fractional derivative was applied to deal with nondif-
ferentiable phenomena arising in mathematical physics [4–
9]. When the fractal dimension 𝛼 is equal to 1, we obtain the
following differential equation:

𝑦
𝜕
2

𝑢 (𝑥, 𝑦)

𝜕𝑥2
+
𝜕
2

𝑢 (𝑥, 𝑦)

𝜕𝑦2
= 0, (4)

which is structured by Tricomi [10]. The Tricomi equation
was used to describe the transonic flow [10–22].

Local fractional variational iteration method first struc-
tured in [4] was an efficient tool to solve the local fractional
differential equations, such as the fractal heat equation [4],
the damped and dissipative wave equation in fractal strings
[5], the wave equation on Cantor sets [6], the local fractional
Poisson equation [7], the local fractional Laplace equation
[8], and the local fractional Helmholtz equation [9]. The aim
of this paper is to use the local fractional variational iteration
method to deal with the local fractional Tricomi equation
which arises in fractal transonic flow. The paper is organized
as follows. In Section 2, the local fractional calculus theory is
introduced. In Section 3, the local fractional variational iter-
ation method is presented. In Section 4, the local fractional
Tricomi equation is discussed. Finally, the conclusions are
presented in Section 5.

2. Local Fractional Calculus Theory
In this section, we present the local fractional calculus theory,
which is used in the present paper.

Definition 1 (see [1, 2]). One has the function𝑓(𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏),

if
𝑓 (𝑥) − 𝑓 (𝑥0)

 < 𝜀
𝛼

, 0 < 𝛼 ≤ 1, (5)

is valid, where |𝑥 − 𝑥
0
| < 𝛿, for 𝜀, 𝛿 > 0 and 𝜀 ∈ 𝑅.
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Definition 2 (see [1, 4–9]). Let 𝑓(𝑥) satisfy condition (5). The
local fractional integral of𝑓(𝑥) of order𝛼 in the interval [𝑎, 𝑏]
is defined through

𝑎
𝐼
𝑏

(𝛼)

𝑓 (𝑥) =
1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

,

(6)

where the partitions of the interval [𝑎, 𝑏] are (𝑡
𝑗
, 𝑡
𝑗+1
), 𝑗 =

0, . . . , 𝑁 − 1, 𝑡
0
= 𝑎, and 𝑡

𝑁
= 𝑏 with Δ𝑡

𝑗
= 𝑡
𝑗+1
− 𝑡
𝑗
and

Δ𝑡 = max{Δ𝑡
0
, Δ𝑡
1
, Δ𝑡
𝑗
, . . .}.

Definition 3 (see [1, 4–9]). Let 𝑓(𝑥) satisfy condition (5). The
inverse formula of (6) is given as follows:

𝑑
𝛼

𝑓 (𝑥
0
)

𝑑𝑥𝛼
= 𝐷
𝑥

(𝛼)

𝑓 (𝑥
0
) =
Δ
𝛼

(𝑓 (𝑥) − 𝑓 (𝑥
0
))

(𝑥 − 𝑥
0
)
𝛼

, (7)

where

Δ
𝛼

(𝑓 (𝑥) − 𝑓 (𝑥
0
)) ≅ Γ (1 + 𝛼) [𝑓 (𝑥) − 𝑓 (𝑥

0
)] . (8)

The formulas of local fractional derivative and integral used
in the paper are presented as follows [1, 6, 7]:

𝑑
𝛼

𝑑𝑥𝛼

𝑥
𝑛𝛼

Γ (1 + 𝑛𝛼)
=

𝑥
(𝑛−1)𝛼

Γ (1 + (𝑛 − 1) 𝛼)
, 𝑛 ∈ 𝑁,

𝐷
𝑥

(𝛼)

𝑎 = 0,

𝐷
𝑥

(𝛼)

𝑎𝑔 (𝑥) = 𝑎𝐷
𝑥

(𝛼)

𝑔 (𝑥) ,

𝐷
𝑥

(𝛼)

[𝐷
𝑥

(𝛼)

𝑓 (𝑥)] = 𝐷
𝑥

(2𝛼)

𝑓 (𝑥) ,

0
𝐼
𝑥

(𝛼)

𝑎𝑔 (𝑥) = 𝑎
0
𝐼
𝑥

(𝛼)

𝑔 (𝑥) ,

0
𝐼
𝑡

(𝛼)

(
(𝑡 − 𝑠)

𝛼

𝑡
𝑛𝛼

Γ (1 + 𝛼) Γ (1 + 𝑛𝛼)
) =

𝑡
(𝑛+2)𝛼

Γ (1 + (𝑛 + 2) 𝛼)
,

0
𝐼
𝑥

(𝛼)
𝑥
(𝑛−1)𝛼

Γ (1 + (𝑛 − 1) 𝛼)
=

𝑥
𝑛𝛼

Γ (1 + 𝑛𝛼)
, 𝑛 ∈ 𝑁,

(9)

where 𝑔(𝑥) is a local fractional continuous function, 𝑎 is a
constant, and𝑁 is a set of positive integers.

3. Local Fractional Variational
Iteration Method

In this section, we introduce the local fractional variational
iteration method. In order to show it, we consider the
following local fractional operator equation:

𝐿
(2)

𝛼
𝑢 + 𝑅
𝛼
𝑢 = 0, (10)

where 𝐿(2)
𝛼

denotes the linear local fractional differential
operator and𝑅

𝛼
denotes the linear local fractional differential

operators of order less than 𝐿(2)
𝛼
.

According to the local fractional variational iteration
method [4–9], we have a local fractional correction func-
tional. Consider

𝑢
𝑛+1
(𝑥) = 𝑢

𝑛
(𝑥) +

1

Γ (1 + 𝛼)

× ∫

𝑥

0

𝜆
𝛼

Γ (1 + 𝛼)
{𝐿
(2)

𝛼
𝑢
𝑛
(𝑠) + 𝑅

𝛼
�̃�
𝑛
(𝑠)} (𝑑𝑠)

𝛼

(11)

so that the local fractional variational iteration algorithm can
be written as follows:

𝑢
𝑛+1
(𝑥) = 𝑢

𝑛
(𝑥) +

1

Γ (1 + 𝛼)

× ∫

𝑥

0

𝜆
𝛼

Γ (1 + 𝛼)
{𝐿
(2)

𝛼
𝑢
𝑛
(𝑠) + 𝑅

𝛼
𝑢
𝑛
(𝑠)} (𝑑𝑠)

𝛼

,

(12)

where �̃�
𝑛
is as a restricted local fractional variation [1]; that is,

𝛿
𝛼

�̃�
𝑛
= 0.

Therefore, for 𝑛 ∈ 𝑁, we give

𝛿
𝛼

𝑢
𝑛+1
= [1 − (

𝜆
𝛼

Γ (1 + 𝛼)
)

(𝛼)
𝑠=𝑥

]𝛿
𝛼

𝑢
𝑛

+
𝜆
𝛼

Γ (1 + 𝛼)

𝑠=𝑥

𝛿
𝛼
𝜕
𝛼

𝑢
𝑛

𝜕𝑥𝛼

+
0
𝐼
𝑥

(𝛼)

{(
𝜆
𝛼

Γ (1 + 𝛼)
)

(2𝛼)
𝑠=𝑥

𝛿
𝛼

𝑢
𝑛
} .

(13)

From (13), we obtain the stationary condition as follows:

1 − (
𝜆
𝛼

Γ (1 + 𝛼)
)

(𝛼)
𝑠=𝑥

= 0,
𝜆
𝛼

Γ (1 + 𝛼)

𝑠=𝑥

= 0,

(
𝜆
𝛼

Γ (1 + 𝛼)
)

(2𝛼)
𝑠=𝑥

= 0.

(14)

Then, the fractal Lagrange multiplier is

𝜆
𝛼

Γ (1 + 𝛼)
=
(𝑠 − 𝑥)

𝛼

Γ (1 + 𝛼)
. (15)

Making use of (12) and (15), we have the local fractional
interaction formula as follows:

𝑢
𝑛+1
(𝑥) = 𝑢

𝑛
(𝑥) +

1

Γ (1 + 𝛼)

× ∫

𝑥

0

(𝑠 − 𝑥)
𝛼

Γ (1 + 𝛼)
{𝐿
(2)

𝛼
𝑢
𝑛
(𝑠) + 𝑅

𝛼
𝑢
𝑛
(𝑠)} (𝑑𝑠)

𝛼

.

(16)

Therefore, from (16), we get the solution given by

𝑢 (𝑥) = lim
𝑛→∞

𝑢
𝑛
(𝑥) . (17)
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4. The Initial-Boundary Value Problems for
Local Fractional Tricomi Equation

In this section, we discuss the initial-boundary value prob-
lems for local fractional Tricomi equation.

Example 1. Let us consider the initial-boundary value condi-
tions for the local fractional Tricomi equation as follows:

𝑢 (0, 𝑦) = 0, (18)

𝑢 (𝑙, 𝑦) = 0, (19)

𝑢 (𝑥, 0) =
𝑥
2𝛼

Γ (1 + 2𝛼)
, (20)

𝜕
𝛼

𝑢 (𝑥, 0)

𝜕𝑥𝛼
= 0. (21)

From (18), (20), and (21), we have

𝑢
𝑛+1
(𝑥, 𝑦)

= 𝑢
𝑛
(𝑥, 𝑦) +

0
𝐼
𝑦

(𝛼)

× {
(𝑠 − 𝑦)

𝛼

Γ (1 + 𝛼)

× (
𝑠
𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝑢
𝑛
(𝑥, 𝑠)

𝜕𝑥2𝛼
+
𝜕
2𝛼

𝑢
𝑛
(𝑥, 𝑠)

𝜕𝑦2𝛼
)} ,

(22)

where the initial value is given by

𝑢
0
(𝑥, 𝑦) =

𝑥
2𝛼

Γ (1 + 2𝛼)
. (23)

From (22), we present the first approximate formula as
follows:

𝑢
1
(𝑥, 𝑦)

= 𝑢
0
(𝑥, 𝑦) +

0
𝐼
𝑦

(𝛼)

× {
(𝑠 − 𝑦)

𝛼

Γ (1 + 𝛼)

× (
𝑠
𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝑢
0
(𝑥, 𝑠)

𝜕𝑥2𝛼
+
𝜕
2𝛼

𝑢
0
(𝑥, 𝑠)

𝜕𝑦2𝛼
)}

=
𝑥
2𝛼

Γ (1 + 2𝛼)
+

𝑦
3𝛼

Γ (1 + 3𝛼)

(24)

and its graph is shown in Figure 1.
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Figure 1: The plot of 𝑢
1
(𝑥, 𝑦) with the parameter 𝛼 = ln 2/ ln 3.
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Figure 2: The plot of 𝑢
2
(𝑥, 𝑦) with the parameter 𝛼 = ln 2/ ln 3.

The second approximate term is

𝑢
2
(𝑥, 𝑦)

= 𝑢
1
(𝑥, 𝑦) +

0
𝐼
𝑦

(𝛼)

× {
(𝑠 − 𝑦)

𝛼

Γ (1 + 𝛼)

× (
𝑠
𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝑢
1
(𝑥, 𝑠)

𝜕𝑥2𝛼
+
𝜕
2𝛼

𝑢
1
(𝑥, 𝑠)

𝜕𝑦2𝛼
)}

=
𝑥
2𝛼

Γ (1 + 2𝛼)
+

𝑦
3𝛼

Γ (1 + 3𝛼)

+
0
𝐼
𝑦

(𝛼)

{
(𝑠 − 𝑦)

𝛼

Γ (1 + 𝛼)
(

𝑠
𝛼

Γ (1 + 𝛼)
+

𝑠
𝛼

Γ (1 + 𝛼)
)}

=
𝑥
2𝛼

Γ (1 + 2𝛼)
+

3𝑦
3𝛼

Γ (1 + 3𝛼)

(25)

and its graph is given in Figure 2.
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Figure 3: The plot of 𝑢
3
(𝑥, 𝑦) with the parameter 𝛼 = ln 2/ ln 3.

The third approximation is presented as follows:

𝑢
3
(𝑥, 𝑦)

= 𝑢
2
(𝑥, 𝑦) +

0
𝐼
𝑦

(𝛼)

× {
(𝑠 − 𝑦)

𝛼

Γ (1 + 𝛼)

× (
𝑠
𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝑢
2
(𝑥, 𝑠)

𝜕𝑥2𝛼
+
𝜕
2𝛼

𝑢
2
(𝑥, 𝑠)

𝜕𝑦2𝛼
)}

=
𝑥
2𝛼

Γ (1 + 2𝛼)
+

3𝑦
3𝛼

Γ (1 + 3𝛼)

+
0
𝐼
𝑦

(𝛼)

{
(𝑠 − 𝑦)

𝛼

Γ (1 + 𝛼)
(

𝑠
𝛼

Γ (1 + 𝛼)
+

3𝑠
𝛼

Γ (1 + 𝛼)
)}

=
𝑥
2𝛼

Γ (1 + 2𝛼)
+

7𝑦
3𝛼

Γ (1 + 3𝛼)

(26)

and its graph is illustrated in Figure 3.
The fourth approximation reads as follows:

𝑢
4
(𝑥, 𝑦)

= 𝑢
3
(𝑥, 𝑦) +

0
𝐼
𝑦

(𝛼)

× {
(𝑠 − 𝑦)

𝛼

Γ (1 + 𝛼)

× (𝑠
𝛼
𝜕
2𝛼

𝑢
3
(𝑥, 𝑠)

𝜕𝑥2𝛼
+
𝜕
2𝛼

𝑢
3
(𝑥, 𝑠)

𝜕𝑦2𝛼
)}
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Figure 4: The plot of 𝑢
4
(𝑥, 𝑦) with the parameter 𝛼 = ln 2/ ln 3.

=
𝑥
2𝛼

Γ (1 + 2𝛼)
+

7𝑦
3𝛼

Γ (1 + 3𝛼)

+
0
𝐼
𝑦

(𝛼)

{
(𝑠 − 𝑦)

𝛼

Γ (1 + 𝛼)
(

𝑠
𝛼

Γ (1 + 𝛼)
+

7𝑠
𝛼

Γ (1 + 𝛼)
)}

=
𝑥
2𝛼

Γ (1 + 2𝛼)
+

15𝑦
3𝛼

Γ (1 + 3𝛼)

(27)

and its graph is presented in Figure 4.
The fifth approximation is as follows:

𝑢
5
(𝑥, 𝑦)

= 𝑢
4
(𝑥, 𝑦) +

0
𝐼
𝑦

(𝛼)

× {
(𝑠 − 𝑦)

𝛼

Γ (1 + 𝛼)

× (
𝑠
𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝑢
4
(𝑥, 𝑠)

𝜕𝑥2𝛼
+
𝜕
2𝛼

𝑢
4
(𝑥, 𝑠)

𝜕𝑦2𝛼
)}

=
𝑥
2𝛼

Γ (1 + 2𝛼)
+

15𝑦
3𝛼

Γ (1 + 3𝛼)

+
0
𝐼
𝑦

(𝛼)

{
(𝑠 − 𝑦)

𝛼

Γ (1 + 𝛼)
(

𝑠
𝛼

Γ (1 + 𝛼)
+

15𝑠
𝛼

Γ (1 + 𝛼)
)}

=
𝑥
2𝛼

Γ (1 + 2𝛼)
+

31𝑦
3𝛼

Γ (1 + 3𝛼)

(28)

and its graph is shown in Figure 5.
After successive iterative processes, we obtain the nondif-

ferentiable series solution as follows:

𝑢 (𝑥, 𝑦) = lim
𝑖→∞

𝑢
𝑛
(𝑥, 𝑦)

= lim
𝑛→∞

{
𝑥
2𝛼

Γ (1 + 2𝛼)
+ (2
𝑛

− 1)
𝑦
3𝛼

Γ (1 + 3𝛼)
} ,

(29)
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Figure 5: The plot of 𝑢
5
(𝑥, 𝑦) with the parameter 𝛼 = ln 2/ ln 3.

which is the local fractional divergent series. Therefore, we
can obtain the approximate solution.

Example 2. The initial-boundary value conditions for the
local fractional Tricomi equation are presented as follows:

𝑢 (0, 𝑦) = 0, (30)

𝑢 (𝑙, 𝑦) = 0, (31)

𝑢 (𝑥, 0) =
𝑥
𝛼

Γ (1 + 𝛼)
, (32)

𝜕
𝛼

𝑢 (𝑥, 0)

𝜕𝑥𝛼
=

𝑥
𝛼

Γ (1 + 𝛼)
. (33)

In view of (16), (32), and (33), we obtain the local fractional
iterative formula as follows:

𝑢
𝑛+1
(𝑥, 𝑦)

= 𝑢
𝑛
(𝑥, 𝑦) +

0
𝐼
𝑦

(𝛼)

× {
(𝑠 − 𝑦)

𝛼

Γ (1 + 𝛼)

× (
𝑠
𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝑢
𝑛
(𝑥, 𝑠)

𝜕𝑥2𝛼
+
𝜕
2𝛼

𝑢
𝑛
(𝑥, 𝑠)

𝜕𝑦2𝛼
)} ,

(34)

with the initial value suggested as follows:

𝑢
0
(𝑥, 𝑦) =

𝑥
𝛼

Γ (1 + 𝛼)
+

𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)
. (35)
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Figure 6: The plot of 𝑢(𝑥, 𝑦) with the parameter 𝛼 = ln 2/ ln 3.

From (34) and (35), we give the first approximation as follows:

𝑢
1
(𝑥, 𝑦)

= 𝑢
0
(𝑥, 𝑦) +

0
𝐼
𝑦

(𝛼)

× {
(𝑠 − 𝑦)

𝛼

Γ (1 + 𝛼)

× (
𝑠
𝛼

Γ (1 + 𝛼)

𝜕
2𝛼

𝑢
0
(𝑥, 𝑠)

𝜕𝑥2𝛼
+
𝜕
2𝛼

𝑢
0
(𝑥, 𝑠)

𝜕𝑦2𝛼
)}

=
𝑥
𝛼

Γ (1 + 𝛼)
+

𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)
.

(36)

Hence, from (36), we arrive at the following results:

𝑢
0
(𝑥, 𝑦) = 𝑢

1
(𝑥, 𝑦) = 𝑢

2
(𝑥, 𝑦) = ⋅ ⋅ ⋅ = 𝑢

𝑛
(𝑥, 𝑦) . (37)

Therefore, we get the exact solution with nondifferential term
as follows:

𝑢 (𝑥, 𝑦) = lim
𝑖→∞

𝑢
𝑛
(𝑥, 𝑦)

= lim
𝑛→∞

{
𝑥
𝛼

Γ (1 + 𝛼)
+

𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)
}

=
𝑥
𝛼

Γ (1 + 𝛼)
+

𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)

(38)

and its graph is shown in Figure 6.

5. Conclusions

The initial-boundary value problems for local fractional
Tricomi equation arising in fractal transonic flow based upon
the local fractional derivatives are discussed. The solutions
with nondifferentiable terms are obtained by using the local
fractional variational iteration method and their graphs are
also given to show the implement of the present method.
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