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Recovering a large matrix from limited measurements is a challenging task arising in many real applications, such as image
inpainting, compressive sensing, and medical imaging, and these kinds of problems are mostly formulated as low-rank matrix
approximation problems. Due to the rank operator being nonconvex and discontinuous, most of the recent theoretical studies
use the nuclear norm as a convex relaxation and the low-rank matrix recovery problem is solved through minimization of the
nuclear norm regularized problem. However, a major limitation of nuclear norm minimization is that all the singular values are
simultaneously minimized and the rankmay not be well approximated (Hu et al., 2013). Correspondingly, in this paper, we propose
a newmultistage algorithm, whichmakes use of the concept of TruncatedNuclear NormRegularization (TNNR) proposed byHu et
al., 2013, and iterative support detection (ISD) proposed by Wang and Yin, 2010, to overcome the above limitation. Besides matrix
completion problems considered by Hu et al., 2013, the proposed method can be also extended to the general low-rank matrix
recovery problems. Extensive experiments well validate the superiority of our new algorithms over other state-of-the-art methods.

1. Introduction

In many real applications such as machine learning [1–3],
computer vision [4], and control [5], we seek to recover
an unknown (approximately) low-rank matrix from limited
information.This problem can be naturally formulated as the
following model:

min
𝑋

rank (𝑋)

s.t. A𝑋 = 𝑏,

(1)

where 𝑋 ∈ R𝑚×𝑛 is the decision variable and the linear
map A: R𝑚×𝑛 → R𝑝 (𝑝 < 𝑚𝑛) and vector 𝑏 ∈

R𝑝 are given. However, this is usually NP-hard due to the
nonconvexity and discontinuous nature of the rank function.
In [6], Fazel et al. firstly solved rank minimization problem
by approximating the rank function using the nuclear norm
(i.e., the sum of singular values of a matrix). Moreover,
theoretical studies show that the nuclear norm is the tightest
convex lower bound of the rank function of matrices [7].

Thus, an unknown (approximately) low-rank matrix 𝑋 can
be perfectly recovered by solving the optimization problem

min
𝑋

‖𝑋‖∗

s.t. A𝑋 = 𝑏 ≐ A𝑋,

(2)

where ‖𝑋‖
∗
= ∑

min(𝑚,𝑛)
𝑖=1

𝜎
𝑖
(𝑋) is the nuclear norm and 𝜎

𝑖
(𝑋)

is the 𝑖th largest singular value of 𝑋, under some conditions
on the linear transformationA.

As a special case, the problem (2) is reduced to the well-
known matrix completion problem (3) [8, 9], when A is a
sampling (or projection/restriction) operator. Consider

min
𝑋

‖𝑋‖∗

s.t. 𝑋
𝑖,𝑗

= 𝑀
𝑖,𝑗
, (𝑖, 𝑖) ∈ Ω,

(3)

where 𝑀 ∈ R𝑚×𝑛 is the incomplete data matrix and Ω is
the set of locations corresponding to the observed entries.
To solve this kind of problems, we can refer to [8–13] for
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some breakthrough results. Nevertheless, they may obtain
suboptimal performance in real applications because the
nuclear norm may not be a good approximation to rank
operator, because all the nonzero singular values in rank
operator have the equal contribution, while the singular
values in nuclear norm are treated differently by adding
them together. Thus, to overcome the weakness of nuclear
norm, Truncated Nuclear Norm Regularization (TNNR) was
proposed for matrix completion, which only minimizes the
smallest min(𝑚, 𝑛) − 𝑟 singular values [14]. The similar
truncation idea was also proposed in our previous work [15].
Correspondingly, the problem can be formulated as

min
𝑋

‖𝑋‖𝑟

s.t. 𝑋
𝑖,𝑗

= 𝑀
𝑖,𝑗
, (𝑖, 𝑖) ∈ Ω,

(4)

where ‖𝑋‖
𝑟
is defined as the sum of min(𝑚, 𝑛) − 𝑟minimum

singular values. In this way, one can get a more accurate and
robust approximation to the rank operator on both synthetic
and real visual data sets.

In this paper, we aim to extend the idea of TNNR from the
specialmatrix completion problem to the general problem (2)
and give the corresponding fast algorithm.More importantly,
we will consider how to fast estimate 𝑟, which is usually
unavailable in practice.

Throughout this paper, we use the following notation.We
let ⟨⋅, ⋅⟩ be the standard inner product between two matrices
in a finite dimensional Euclidean space, ‖ ⋅ ‖ the 2-norm, and
‖ ⋅ ‖
𝐹
the Frobenius norm for matrix variables.The projection

operator under the Euclidean distance measure is denoted by
P and the transpose of a real matrix by ⊺. Let 𝑋 = 𝑈Σ𝑉

⊺

be the singular value decomposition (SVD) for𝑋, where Σ =

diag(𝜎
𝑖
), 1 ≤ 𝑖 ≤ min{𝑚, 𝑛}, and 𝜎

1
≥ ⋅ ⋅ ⋅ ≥ 𝜎min{𝑚,𝑛}.

1.1. Related Work. The low-rank optimization problem (2)
has attracted more and more interest in developing cus-
tomized algorithms, particularly for larger-scale cases. We
now briefly review some influential approaches to these
problems.

The convex problem (2) can be easily reformulated into
the semidefinite programming (SDP) problems [16, 17] to
make use of the generic SDP solvers such as SDPT3 [18] and
SeDuMi [19] which are based on the interior-point method.
However, the interior-point approaches suffer from the lim-
itation that they ineffectively handle large-scale problems
which was mentioned in [7, 20, 21]. The problem (2) can
also be solved through a projected subgradient approach in
[7], whose major computation is concentrated on singular
values decomposition.Themethod can be used to solve large-
scale cases of (2). However, the convergence may be slow,
especially when high accuracy is required. In [7, 22], 𝑈𝑉-
parameterization (𝑋 = 𝑈𝑉

⊺) based onmatrix factorization is
applied in general low-rank matrix reconstruction problems.
Specifically, the low-rank matrix 𝑋 is decomposed into the
form 𝑈𝑉

⊺, where 𝑈 ∈ R𝑚×𝑟 and 𝑉 ∈ R𝑛×𝑟 are tall
and thin matrices. The method reduces the dimensionality
from 𝑚𝑛 to (𝑚 + 𝑛)𝑟. However, if the rank and the size are
large, the computation cost may also be very high. Moreover,

the rank 𝑟 is not known as prior information for most of
the applications, and it has to be estimated or dynamically
adjusted, which might be difficult to realize. More recently,
the augmented Lagrangian method (ALM) [23, 24] and the
alternating directionmethod ofmultipliers (ADMM) [25] are
very efficient for some convex programming problems arising
from various applications. In [26], ADMM is applied to solve
(2) withAA∗ = I.

As an important special case of problem (2), the matrix
completion problem (3) has been widely studied. Cai et al.
[12, 13] used the shrinkage operator to solve the nuclear norm
effectively.The shrinkage operator applies a soft-thresholding
rule to singular values, as the sparse operator of a matrix,
though it can be applied widely in many other approaches.
However, due to the abovementioned limitation of nuclear
norm, TNNR (4) is proposed to replace the nuclear norm.
Since ‖𝑋‖

𝑟
in (4) is nonconvex, it can not be solved simply

and effectively. So, how to change (4) into a convex function
is critical. Obviously, it is noted that ‖𝑋‖

𝑟
= ‖𝑋‖

∗
−∑
𝑟

𝑖=1
𝜎
𝑖
(𝑋),

𝑇𝑟(𝐿
𝑟
𝑋𝑅⊺
𝑟
) = ∑

𝑟

𝑖=1
𝜎
𝑖
(𝑋), where 𝑈Σ𝑉⊺ is the SVD of 𝑋,

𝑈 = (𝑢
1
, . . . , 𝑢

𝑚
) ∈ R𝑚×𝑚, Σ ∈ R𝑚×𝑛, and 𝑉 = (V

1
, . . . , V

𝑛
) ∈

R𝑛×𝑛. Then 𝐿
𝑟
= (𝑢
1
, . . . , 𝑢

𝑟
)
𝑇, 𝑅
𝑟
= (V
1
, . . . , V

𝑟
)
𝑇, and the

optimization problem (4) can be rewritten as

min
𝑋

‖𝑋‖∗ − 𝑇𝑟 (𝐿
𝑟
𝑋𝑅
⊺

𝑟
)

s.t. 𝑋
𝑖,𝑗

= 𝑀
𝑖,𝑗
, (𝑖, 𝑗) ∈ Ω.

(5)

While the problem (5) is still nonconvex, they can get a local
minima by an iterative procedure proposed in [14] andwewill
review the procedure in more detail later.

A similar idea of truncation, in the context of the
sparse vectors, is also implemented on the sparse signals
by our previous work in [15], which tries to adaptively
learn the information of the nonzeros of the unknown true
signal. Specifically, we present a sparse signal reconstruction
method, iterative support detection (ISD, for short), aiming
to achieve fast reconstruction and a reduced requirement on
the number of measurements compared to the classical 𝑙

1

minimization approach. ISD alternatively calls its two com-
ponents: support detection and signal reconstruction. From
an incorrect reconstruction, support detection identifies an
index set 𝐼 containing some elements of supp(𝑥) = {𝑖 : 𝑥

𝑖
̸=

0}, and signal reconstruction solves

min
𝑥

𝑥𝑇
1

s.t. A𝑥 = 𝑏 ≐ A𝑥,

(6)

where 𝑇 = 𝐼𝐶 and ‖𝑥
𝑇
‖
1

= ∑
𝑖∉𝑇

|𝑥
𝑖
|. To obtain the

reliable support detection from inexact reconstructions, ISD
must take advantage of the features and prior information
about the true signal 𝑥. In [15], the sparse or compressible
signals, with components having a fast decaying distribution
of nonzeros, are considered.

1.2. Contributions and Paper Organization. Our first con-
tribution is the estimation of 𝑟, on which TNNR heavily
depends (in ‖𝑋‖

𝑟
). Hu et al. [14] seek the best 𝑟 by trying all
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the possible values and this leads to high computational cost.
In this paper, motivated by Wang and Yin [15], we propose
singular value estimation (SVE) method to obtain the best
𝑟, which can be considered as a special implementation of
iterative support detection of [15] in case of matrices.

Our second contribution is to extend TNNR frommatrix
completion to the general low-rank cases. In [14], they have
only considered the matrix completion problem.

The third contribution is based on the above two. In
particular, a new efficient algorithmic framework is proposed
for the low-rankmatrix recovery problem.Wename it LRISD,
which iteratively calls its two components: SVE and solving
the low-rank matrix reconstruction model based on TNNR.

The rest of this paper is organized as follows. In Section 2,
computing framework of LRISD and theories of SVE are
introduced. In Section 3, Section 4, and Section 5, we intro-
duce three algorithms to solve the problems mentioned in
Section 2.1. Experimental results are presented in Section 6.
Finally, some conclusions are made in Section 7.

2. Iterative Support Detection for
Low-Rank Problems

In this section, we first give the outline of the proposed
algorithm LRISD and then elaborate the proposed SVE
method which is a main component of LRISD.

2.1. AlgorithmOutline. Themain purpose of LRISD is to pro-
vide a better approximation to model (1) than the common
convex relaxation model (2). The key idea is to make use of
theTruncatedNuclearNormRegularization (TNNR) defined
in (4) and its variant (5) [14]. While ones can passively try all
the possible values of 𝑟which is the number of the largest few
singular values, we proposed to actively estimate the value of
𝑟.

In addition, we will consider the general low-rank
recovery problems beyond the matrix completion problem.
Specifically, we will solve three models, equality model (7),
unconstrained model (8), and inequality model (9):

min
𝑋

‖𝑋‖∗ − 𝑇𝑟 (𝐿
𝑟
𝑋𝑅
⊺

𝑟
)

s.t. A𝑋 = 𝑏,

(7)

min
𝑋

‖𝑋‖∗ − 𝑇𝑟 (𝐿
𝑟
𝑋𝑅
⊺

𝑟
) +

𝜇

2
‖A𝑋 − 𝑏‖

2
, (8)

min
𝑋

‖𝑋‖∗ − 𝑇𝑟 (𝐿
𝑟
𝑋𝑅
⊺

𝑟
)

s.t. ‖A𝑋 − 𝑏‖ ≤ 𝛿,

(9)

where 𝜇 > 0 and 𝛿 > 0 are parameters reflecting the
level of noise. Models (8) and (9) consider the case with
noisy data. Here A is a linear mapping such as partial
discrete cosine transformation (DCT), partial discreteWalsh-
Hadamard transformation (DWHT), and discrete Fourier
transform (DFT).

The general framework of LRISD, as an iterative proce-
dure, starts from the initial 𝑟 = 0, that is, solving a plain

nuclear norm minimization problem, and then estimates 𝑟

based on the recovered result. Based on the estimated 𝑟, we
solve a resulting TNNRmodel (7) or (8) or (9). Using the new
recovered result, we can update the 𝑟 value and solve a new
TNNRmodel (7) or (8) or (9). Our algorithm iteratively calls
the 𝑟 estimation and the solver of the TNNR model.

As for solving (7), (8), and (9), we are following the idea of
[14]. Specifically, a simple but efficient iterative procedure is
adopted to decouple the 𝐿

𝑟
,𝑋 and 𝑅

𝑟
. We set the initial guess

𝑋
1
. In the 𝑙th iteration, we first fix 𝑋

𝑙
and compute 𝐿𝑙

𝑟
and

𝑅𝑙
𝑟
as described in (5), based on the SVD of 𝑋

𝑙
. Then we fix

𝐿𝑙
𝑟
and 𝑅𝑙

𝑟
to update 𝑋

𝑙+1
by solving the following problems,

respectively:

min
𝑋

‖𝑋‖∗ − 𝑇𝑟 (𝐿
𝑙

𝑟
𝑋𝑅
𝑙

𝑟

⊺

)

s.t. A𝑋 = 𝑏,

(10)

min
𝑋

‖𝑋‖∗ − 𝑇𝑟 (𝐿
𝑙

𝑟
𝑋𝑅
𝑙

𝑟

⊺

) +
𝜇

2
‖A𝑋 − 𝑏‖

2
, (11)

min
𝑋

‖𝑋‖∗ − 𝑇𝑟 (𝐿
𝑙

𝑟
𝑋𝑅
𝑙

𝑟

⊺

)

s.t. ‖A𝑋 − 𝑏‖ ≤ 𝛿.

(12)

In [14], the authors have studied solving the special case
of matrix completion problems. For the general problems
(10), (11), and (12), we will extend the current state-of-the-
art algorithms to solve them in Section 3, Section 4, and
Section 5, respectively.

In summary, the procedure of LRISD, as a newmultistage
algorithm, is summarized in Algorithm 1. By alternately
running the SVE and solving the corresponding TNNR
models, the iterative scheme will converge to a solution of a
TNNR model, whose solution is expected to be better than
that of the plain nuclear norm minimization model (2).

Algorithm 1 (LRISD based on (10), (11), and (12)).

(1) Initialization: set 𝑋re = 𝑋
0
, which is the solution

of pure nuclear norm regularized model (2).
(2) Repeat until 𝑟 reaches a stable value.
Step 1. Estimate 𝑟 via SVE on𝑋re.
Step 2. Initialization: 𝑋

1
= Data (the matrix form of

𝑏).

In the 𝑙th iteration:
(a) compute 𝐿

𝑙

𝑟
and 𝑅

𝑙

𝑟
of (10) ((11) or (12))

according to the current 𝑋
𝑙
in the same way as

(5) mentioned;
(b) solve the model (10) ((11) or (12)) and obtain
𝑋
𝑙+1

. Go to (a) until ‖𝑋
𝑙+1

−𝑋
𝑙
‖2
𝐹
/‖Data‖2

𝐹
≤ 𝜀
1
;

(c) 𝑙 ← 𝑙 + 1.

Step 3. Set𝑋re = 𝑋
𝑙+1

.
(3) Return the recovered matrix𝑋re.
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In the following content, we will explain the implementa-
tion of SVE of Step 1 in more detail, and extend the existing
algorithms for nuclear norm regularized models to TNNR
based models (10)–(12) in procedure (b) of Step 2.

2.2. Singular Value Estimate. In this subsection, we mainly
focus on Step 1 of LRISD, that is, describing the process of
SVE to estimate 𝑟, which is the number of the largest few
singular values. While it is feasible to find the best 𝑟 via
trying all possible 𝑟 as done in [14], this procedure is not
computationally efficient. Thus, we aim to quickly give an
estimate of the best 𝑟.

As we have known, for (approximately) low-rank matri-
ces or images, these singular values often have a feature
that they all have a fast decaying distribution (as showed
in Figure 1). To take advantage of this feature, we can
extend our previous work ISD [15] from detecting the large
components of sparse vectors to the large singular values of
low-rankmatrices. In particular, SVE is nothing but a specific
implementation of support detection in cases of low-rank
matrices, with the aim of acquiring the estimation of the true
𝑟.

Now we present the process of SVE and the effectiveness
of SVE. It is noted that, as showed in Algorithm 1, SVE is
repeated several times until a stable estimate 𝑟 is obtained.
For each time, given the reference image 𝑋re, we can obtain
the singular value vector 𝑆 of 𝑋re by SVD. A natural way to
find the positions of the true large singular values based on 𝑆,
which is considered as an estimate of the singular value vector
of the true matrix𝑋, is based on thresholding

𝐼 := {𝑖 : 𝑆
𝑖
> 𝜖} (13)

due to the fast decaying property of the singular values.
The choice of 𝜖 should be case-dependent. In the spirit of
ISD, one can use the so-called “last significant jump” rule
to set the threshold value 𝜖 to detect the large singular
values and minimize the false detections, if we assume that
the components of 𝑆 are sorted from large to small. The
straightforward way to apply the “last significant jump” rule
is to look for the largest 𝑖 such that

𝑆𝑡
(𝑖)

≐
𝑆𝑖 − 𝑆

𝑖+1

 > 𝜏, (14)

where 𝜏 is a prescribed value and 𝑆𝑡 is defined as absolute
values of the first order difference of 𝑆. This amounts to
sweeping the decreasing sequence {𝑆

𝑖
} and look for the last

jump larger than 𝜏. For example, the selected 𝑖 = 4; then we
set 𝜖 = 𝑆

4
.

However, in this paper, unlike the original ISD paper
[15], we propose to apply the “last significant jump” rule on
absolute values of the first order difference of 𝑆, that is, 𝑆𝑡,
instead of 𝑆. Specifically, we look for the largest 𝑖 such that

𝑆𝑡𝑡
(𝑖)

≐
𝑆𝑡𝑖+1 − 𝑆𝑡

𝑖

 > 𝜅, (15)

where 𝜅 will be selected below and 𝑆𝑡𝑡 is defined as absolute
values of the second order difference of 𝑆. This amounts to
sweeping the decreasing sequence {𝑆𝑡

𝑖
} and look for the last

jump larger than 𝜅. For example, the selected 𝑖 = 4; then we

set 𝜖 = 𝑆
4
. We set the estimation rank 𝑟 to be the cardinality

of 𝐼, or a close number to it.
Specifically, 𝑆𝑡 is computed to obtain jump sizes which

count on the change of two neighboring components of 𝑆.
Then, to reflect the stability of these jumps, the difference
of 𝑆𝑡 needs to be considered as we just do, because the few
largest singular values jump actively, while the small singular
values would not change much. The cut-off threshold 𝜅 is
determined via certain heuristicmethods in our experiments:
synthetic and real visual data sets. Note that, in Section 6.6,
we will present a reliable rule for determining threshold value
𝜅.

3. TNNR-ADMM for (10) and (12)

In this section, we extend the existing ADMMmethod in [25]
originally for the nuclear norm regularized model to solve
(10) and (12) under common linear mapping A (AA∗ =

I) and give closed-form solutions. The extended version
of ADMM is named as TNNR-ADMM, and the original
ADMM for the corresponding nuclear norm regularized low-
rank matrix recovery model is denoted by LR-ADMM. In
addition, we can deduce that the resulting subproblems are
simple enough to have closed-form solutions and can be
easily achieved to high precision. We start this section with
some preliminaries which are convenient for the presentation
of algorithms later.

When AA∗ = I, we present the following conclusions
[26]:

(I + 𝛼A
∗
A)
−1

= I −
𝛼

1 + 𝛼
A
∗
A, (16)

where (I + 𝛼A∗A)
−1 denotes the inverse operator of (I +

𝛼A∗A) and 𝛼 > 0.

Definition 2 (see [26]). WhenA satisfiesAA∗ = I, for 𝛿 ≥ 0

and 𝑌 ∈ R𝑚×𝑛, the projection of 𝑌 onto 𝐵
𝛿
is defined as

P
𝐵𝛿

(𝑌) = 𝑌 +
𝜂

𝜂 + 1
A
∗
(𝑏 −A𝑌) , (17)

where

𝜂 = max{‖A𝑌 − 𝑏‖

𝛿
− 1, 0} ,

𝐵
𝛿
= {𝑈 ∈ R

𝑚×𝑛
: ‖A𝑈 − 𝑏‖ ≤ 𝛿} .

(18)

In particular, when 𝛿 = 0,

P
𝐵0

= 𝑌 +A
∗
(𝑏 −A𝑌) , (19)

where

𝐵
0
= {𝑈 ∈ R

𝑚×𝑛
: A𝑈 = 𝑏} . (20)

Then, we have the following conclusion:

P
𝐵𝛿

(𝑌) = arg min
𝑋∈𝑅
𝑚×𝑛

{‖𝑋 − 𝑌‖
2

𝐹
: ‖A𝑋 − 𝑏‖ ≤ 𝛿} . (21)
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(a) An image example
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Figure 1: (a) A 350 × 210 image example. (b) The singular values of red channel. (c) The singular values of green channel. (d) The singular
values of blue channel. In order to illustrate the distribution clearly, images (b) (c) (d) are used for showing the magnitude of singular values
from the 4th to the 100th in each channel.

Definition 3. For the matrix 𝑋 ∈ R𝑚×𝑛, 𝑋 have the singular
value decomposition as follows: 𝑋 = 𝑈Σ𝑉⊺, Σ = diag(𝜎

𝑖
).

The shrinkage operatorD
𝜏
(𝜏 > 0) is defined:

D
𝜏 (𝑋) = 𝑈D

𝜏 (Σ)𝑉
⊺
,

D
𝜏 (Σ) = diag ({𝜎

𝑖
− 𝜏}
+
) ,

(22)

where (𝑠)
+
= max{0, 𝑠}.

Theorem 4 (see [13]). For each 𝜏 ≥ 0 and 𝑌 ∈ R𝑚×𝑛, one has
the following conclusion:

D
𝜏 (𝑌) = argmin

𝑋

1

2
‖𝑋 − 𝑌‖

2

𝐹
+ 𝜏 ‖𝑋‖∗ . (23)

Definition 5. Let A∗ be the adjoint operator of A satisfying
the following condition:

⟨A (𝑋) , 𝑌⟩ = ⟨𝑋,A
∗
(𝑌)⟩ . (24)

3.1. Algorithmic Framework. The problems (10) and (12) can
be easily reformulated into the following linear constrained
convex problem:

min
𝑋

‖𝑋‖∗ − 𝑇𝑟 (𝐿
𝑙

𝑟
𝑌𝑅
𝑙

𝑟

⊺

)

s.t. 𝑋 = 𝑌, 𝑌 ∈ 𝐵
𝛿
,

(25)
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where 𝛿 ≥ 0. In particular, the above formulation is
equivalent to (10) when 𝛿 = 0. The augmented Lagrangian
function of (25) is

𝐿 (𝑋, 𝑌, 𝑍, 𝛽) = ‖𝑋‖∗ − 𝑇𝑟 (𝐿
𝑙

𝑟
𝑌𝑅
𝑙

𝑟

⊺

) +
𝛽

2
‖𝑋 − 𝑌‖

2

𝐹

− ⟨𝑍,𝑋 − 𝑌⟩ ,

(26)

where 𝑍 ∈ R𝑚×𝑛 is the Lagrange multiplier of the linear
constraint and𝛽 > 0 is the penalty parameter for the violation
of the linear constraint.

The idea of ADMM is to decompose the minimization
task in (26) into three easier and smaller subproblems such
that the involved variables 𝑋 and 𝑌 can be minimized
separately and alternatively. In particular, we apply ADMM
to solve (26) and obtain the following iterative scheme:

𝑋
𝑘+1

= arg min
𝑋∈R𝑚×𝑛

{𝐿 (𝑋, 𝑌
𝑘
, 𝑍
𝑘
, 𝛽)} ,

𝑌
𝑘+1

= argmin
𝑌∈𝐵𝛿

{𝐿 (𝑋
𝑘+1

, 𝑌, 𝑍
𝑘
, 𝛽)} ,

𝑍
𝑘+1

= 𝑍
𝑘
− 𝛽 (𝑋

𝑘+1
− 𝑌
𝑘+1

) .

(27)

Ignoring constant terms and deriving the optimal condi-
tions for the involved subproblems in (27), we can easily ver-
ify that the iterative scheme of the TNNR-ADMM approach
for (10) and (12) is as follows.

Algorithm 6 (TNNR-ADMM for (10) and (12)).

(1) Initialization: set 𝑋
1
= Data (the matrix form of 𝑏),

𝑌
1
= 𝑋
1
, 𝑍
1
= 𝑋
1
, and input 𝛽.

(2) For 𝑘 = 0, 1, . . . , 𝑁 (maximum number of iterations),
do the following.

(i) Update𝑋
𝑘+1

by

𝑋
𝑘+1

= argmin
𝑋

‖𝑋‖∗ +
𝛽

2


𝑋 − (𝑌

𝑘
+

1

𝛽
𝑍
𝑘
)


2

𝐹

. (28)

(ii) Update 𝑌
𝑘+1

by

𝑌
𝑘+1

= argmin
𝑌∈𝐵𝛿

𝛽

2


𝑌 − (𝑋

𝑘+1
+

1

𝛽
(𝐿
𝑙

𝑟

⊺

𝑅
𝑙

𝑟
− 𝑍
𝑘
))



2

𝐹

.
(29)

(iii) Update 𝑍
𝑘+1

by

𝑍
𝑘+1

= 𝑍
𝑘
− 𝛽 (𝑋

𝑘+1
− 𝑌
𝑘+1

) . (30)

(3) End the iteration till ‖𝑋
𝑘+1

− 𝑋
𝑘
‖2
𝐹
/‖Data‖2

𝐹
≤ 𝜀
2
.

3.2. The Analysis of Subproblems. According to the analysis
above, the computation of each iteration of TNNR-ADMM
approach for (10) and (12) is dominated by solving the sub-
problems (28) and (29). We now elaborate on the strategies
for solving these subproblems based on abovementioned
preliminaries.

First, the solution of (28) can be obtained explicitly via
Theorem 4:

𝑋
𝑘+1

= D
1/𝛽

(𝑌
𝑘
+

1

𝛽
𝑍
𝑘
) , (31)

which is the closed-form solution.
Second, it is easy to obtain

𝑌
𝑘+1

= 𝑋
𝑘+1

+
1

𝛽
(𝐿
𝑙

𝑟

⊺

𝑅
𝑙

𝑟
− 𝑍
𝑘
) , 𝑌

𝑘+1
∈ 𝐵
𝛿
. (32)

Combining (32) and equipped with Definition 2, we give the
final closed-form solution of the subproblem (29):

𝑌
𝑘+1

= 𝑌
𝑘+1

+
𝜂

𝜂 + 1
A
∗
(𝑏 −A𝑌

𝑘+1
) , (33)

where

𝜂 = max{
A𝑌
𝑘+1

− 𝑏


𝛿
− 1, 0} . (34)

When 𝛿 = 0, it is the particular case of (10) and can be
expressed as

𝑌
𝑘+1

= 𝑌
𝑘+1

+A
∗
(𝑏 −A𝑌

𝑘+1
) . (35)

Therefor, when the TNNR-ADMM is applied to solve (10)
and (12), the generated subproblems all have closed-form
solutions. Besides, some remarks are in order.

(i) 𝑍
𝑘+1

can be obtained via the following form:

𝑍
𝑘+1

= 𝑍
𝑘
− 𝛾𝛽 (𝑋

𝑘+1
− 𝑌
𝑘+1

) , (36)

where 0 < 𝛾 < (√5 + 1)/2 in [27–29]. We make 𝛾 = 1

to calculate 𝑍
𝑘+1

in our algorithms.

(ii) The convergence of the iterative scheme is well stud-
ied in [30]. Here, we omit the convergence analysis.

4. TNNR-APGL for (11)

In this section, we consider model (11), which has attracted
a lot of attention in certain multitask learning problems
[21, 31–33]. While TNNR-ADMM can be applied to solve
this model, it is preferred for the noiseless problems. For
the simple version of model (11), that is, the one based on
the common nuclear norm regularization, many accelerated
gradient techniques [34, 35] based on [36] are proposed.
Among them, an accelerated proximal gradient line search
(APGL) method proposed by Beck and Teboulle [35] has
been extended to solve TNNR based matrix completion
model in [14]. In this paper, we can extend APGL to solve the
more general TNNR based low-rank recovery problem (11).
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4.1. TNNR-APGLwithNoisy Data. For completeness, we give
a short overview of the APGL method. The original model
aims to solve the following problem:

min {𝑇 (𝑋) = 𝐹 (𝑋) + 𝐺 (𝑋) : 𝑋 ∈ 𝑅
𝑚×𝑛

} , (37)

where 𝐺(𝑋), 𝑇(𝑋)meet these conditions:

(i) 𝐺 : R𝑚×𝑛 → R is a continuous convex function,
possibly nondifferentiable function;

(ii) 𝐹 : R𝑚×𝑛 → R is a convex and differentiable func-
tion. In other words, it is continuously differentiable
with Lipschitz continuous gradient 𝐿(𝐹) (𝐿(𝐹) > 0 is
the Lipschitz constant of ∇𝐹).

By linearizing 𝐹(𝑋) at 𝑌 and adding a proximal term,
APGL constructs an approximation of 𝑇(𝑋). We have, more
specially,

𝑄 (𝑋, 𝑌) = 𝐹 (𝑌) + ⟨𝑋 − 𝑌, 𝑔⟩ +
1

2𝜏
‖𝑋 − 𝑌‖

2

𝐹

+ 𝐺 (𝑋) ,

(38)

where 𝜏 > 0 is a proximal parameter and 𝑔 = ∇𝐹(𝑌) is the
gradient of 𝐹(𝑋) at 𝑌.

4.1.1. Algorithmic Framework. For convenience, we present
model (11) again and define 𝐹(𝑋) and 𝐺(𝑋) as follows:

min
𝑋

‖𝑋‖∗ − 𝑇𝑟 (𝐿
𝑙

𝑟
𝑋𝑅
𝑙

𝑟

⊺

) +
𝜇

2
‖A𝑋 − 𝑏‖

2
,

𝐹 (𝑋) = −𝑇𝑟 (𝐿
𝑙

𝑟
𝑋𝑅
𝑙

𝑟

⊺

) +
𝜇

2
‖A𝑋 − 𝑏‖

2
,

𝐺 (𝑋) = ‖𝑋‖∗ .

(39)

Then, we can conclude that each iteration of the TNNR-
APGL for solving model (11) requires solving the following
subproblems:

𝑋
𝑘+1

= arg min
𝑋∈R𝑚×𝑛

{𝑄 (𝑋, 𝑌
𝑘
)} ,

𝜏
𝑘+1

=
1 + √1 + 4𝜏2

𝑘

2
,

𝑌
𝑘+1

= 𝑋
𝑘+1

+
𝜏
𝑘
− 1

𝜏
𝑘+1

(𝑋
𝑘+1

− 𝑋
𝑘
)
.

(40)

During the above iterate scheme, we update 𝜏
𝑘+1

and
𝑌
𝑘+1

via the approaches mentioned in [20, 35]. Then, based
on (40), we can easily drive the TNNR-APGL algorithmic
framework as follows.

Algorithm 7 (TNNR-APGL for (11)).

(1) Initialization: set 𝑋
1
= Data (the matrix form of 𝑏),

𝑌
1
= 𝑋
1
, 𝜋
1
= 1.

(2) For 𝑘 = 0, 1, . . . , 𝑁, (maximumnumber of iterations),
do the following.

(i) Update𝑋
𝑘+1

by

𝑋
𝑘+1

= argmin
𝑋

‖𝑋‖∗

+
1

2𝜏
𝑘

𝑋 − (𝑌
𝑘
− 𝜏
𝑘
∇𝐹 (𝑌

𝑘
))

2

𝐹
.

(41)

(ii) Update 𝜏
𝑘+1

by

𝜏
𝑘+1

=
1 + √1 + 4𝜏2

𝑘

2
.

(42)

(iii) Update 𝑌
𝑘+1

by

𝑌
𝑘+1

= 𝑋
𝑘+1

+
𝜏
𝑘
− 1

𝜏
𝑘+1

(𝑋
𝑘+1

− 𝑋
𝑘
)
. (43)

(3) End the iteration till ‖𝑋
𝑘+1

− 𝑋
𝑘
‖2
𝐹
/‖Data‖2

𝐹
≤ 𝜀
2
.

4.1.2. The Analysis of Subproblems. Obviously, the computa-
tion of each iteration of the TNNR-APGL approach for (11) is
dominated by subproblem (41). According to Theorem 4, we
get

𝑋
𝑘+1

= D
𝜏𝑘
(𝑌
𝑘
− 𝜏
𝑘
∇𝐹 (𝑌

𝑘
)) , (44)

where

∇𝐹 (𝑌
𝑘
) = −𝐿

𝑙

𝑟

⊺

𝑅
𝑙

𝑟
+ 𝜇A
∗
(A𝑌
𝑘
− 𝑏) . (45)

Then, the closed-form solution of (41) is given by

𝑋
𝑘+1

= D
𝜏𝑘
(𝑌
𝑘
− 𝜏
𝑘
(𝜇A
∗
(A𝑌
𝑘
− 𝑏)) − 𝐿

𝑙

𝑟

⊺

𝑅
𝑙

𝑟
) . (46)

By now, we have applied TNNR-APGL to solve the
problem (11) and obtain closed-form solutions. In addition,
the convergence of APGL is well studied in [35] and it has a
convergence rate of 𝑂(1/𝑘2). In our paper, we also omit the
convergence analysis.

5. TNNR-ADMMAP for (10) and (12)

While the TNNR-ADMM is usually very efficient for solving
the TNNR based models (10) and (12), its convergence could
become slowerwithmore constraints in [37]. Inspired by [14],
the alternating direction method of multipliers with adaptive
penalty (ADMMAP) is applied to reduce the constrained
conditions, and adaptive penalty [38] is used to speed up the
convergence. The resulting algorithm is named as “TNNR-
ADMMAP,” whose subproblems can also get closed-form
solutions.

5.1. AlgorithmFramework. Twokinds of constrains have been
mentioned as before:𝑋 = 𝑌,A𝑌 = 𝑏 and𝑋 = 𝑌, ‖A𝑌−𝑏‖ ≤

𝛿. Our goal is to transform (10) and (12) into the following
form:

min
𝑥,𝑦

𝐹 (𝑥) + 𝐺 (𝑦) ,

s.t 𝑃 (𝑥) + 𝑄 (𝑦) = 𝑐,

(47)
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where 𝑃 and𝑄 are linear mapping, 𝑥, 𝑦, and 𝑐 could be either
vectors or matrices, and 𝐹 and 𝐺 are convex functions.

In order to solve problems easily, 𝑏 was asked to be
a vector formed by stacking the columns of matrices. On
the contrary, if A is a linear mapping containing sampling
process, we can put A𝑌 = 𝑏 into a matrix form sample set.
Correspondingly, we should flexibly change the formbetween
matrices and vectors in the calculation process. Here, we just
provide the idea and process of TNNR-ADMMAP. Now, we
match the relevant function to get the following results:

𝐹 (𝑋) = ‖𝑋‖∗ ,

𝐺 (𝑌) = −𝑇𝑟 (𝐿
𝑙

𝑟
𝑌𝑅
⊺

𝑟
) ,

𝑃 (𝑋) = (
𝑋 0

0 0
) ,

𝑄 (𝑌) = (
−𝑌 0

0 A𝑌
) ,

𝐶1 = (
0 0

0 Data) ,

𝐶2 = (
0 0

0 𝜉
) ,

(48)

where 𝑃 and𝑄 : R𝑚×𝑛 → R2𝑚×2𝑛 and𝐶 = 𝐶1+𝐶2. Denote
𝐵
𝛿,2

= {𝜁 ∈ R𝑝 : ‖𝜁‖ ≤ 𝛿} and 𝜉 ∈ R𝑚×𝑛, that is, the matrix
form of 𝜁 = A𝑋−𝑏. When 𝛿 = 0, it reflects the problem (10).

Then, the problems (10) and (12) can be equivalently
transformed to

min
𝑋

‖𝑋‖∗ − 𝑇𝑟 (𝐿
𝑙

𝑟
𝑌𝑅
𝑙

𝑟

⊺

) ,

s.t 𝑃 (𝑋) + 𝑄 (𝑌) = 𝐶.

(49)

So the augmented Lagrangian function of (49) is

L (𝑋, 𝑌, 𝑍, 𝜉, 𝛽) = ‖𝑋‖∗ − ⟨𝑍, 𝑃 (𝑋) + 𝑄 (𝑌) − 𝐶⟩

− 𝑇𝑟 (𝐿
𝑙

𝑟
𝑌𝑅
𝑙

𝑟

⊺

)

+
𝛽

2
‖𝑃 (𝑋) + 𝑄 (𝑌) − 𝐶‖

2

𝐹
,

(50)

where

𝑍 = (
𝑍
11

𝑍
12

𝑍
21

𝑍
22

) ∈ R
2𝑚×2𝑛

. (51)

The Lagrangian form can be solved via linearized ADMM
and a dynamic penalty parameter 𝛽 is preferred in [38]. In
particular, due to the special property ofA (AA∗ = I), here,
we use ADMMAP in order to handle the problem (50) easily.
Similarly, we use the following adaptive updating rule on 𝛽

[38]:

𝛽
𝑘+1

= min (𝛽max, 𝜌𝛽𝑘) , (52)

where𝛽max is an upper boundof {𝛽𝑘}.The value of𝜌 is defined
as

𝜌

=

{{

{{

{

𝜌
0
, if

𝛽
𝑘
max {𝑋𝑘+1 − 𝑋

𝑘

𝐹 ,
𝑌𝑘+1 − 𝑌

𝑘

𝐹}

‖𝐶‖𝐹
< 𝜀,

1, otherwise,
(53)

where 𝜌
0
≥ 1 is a constant and 𝜀 is a proximal parameter.

In summary, the iterative scheme of the TNNR-
ADMMAP is as follows.

Algorithm 8 (TNNR-ADMMAP for (10) and (12)).

(1) Initialization: set 𝑋
1
= Data (the matrix form of 𝑏),

𝑌
1
= 𝑋
1
, 𝑍
1
= zeros(2𝑚, 2𝑛), and input 𝛽

0
, 𝜀, 𝜌
0
.

(2) For 𝑘 = 0, 1, . . . , 𝑁 (maximum number of iterations),
do the following.

(i) Update𝑋
𝑘+1

by

𝑋
𝑘+1

= argmin
𝑋

‖𝑋‖∗

+
𝛽

2


𝑃 (𝑋) + 𝑄 (𝑌

𝑘
) − 𝐶 −

1

𝛽
𝑍
𝑘



2

𝐹

.

(54)

(ii) Update 𝑌
𝑘+1

by

𝑌
𝑘+1

= argmin
𝑌

− 𝑇𝑟 (𝐿
𝑙

𝑟
𝑌𝑅
𝑙

𝑟

⊺

)

+
𝛽

2


𝑃 (𝑋
𝑘+1

) + 𝑄 (𝑌) − 𝐶 −
1

𝛽
𝑍
𝑘



2

𝐹

.

(55)

(iii) Update 𝑍
𝑘+1

by

𝑍
𝑘+1

= 𝑍
𝑘
− 𝛽 (𝑃 (𝑋

𝑘+1
) + 𝑄 (𝑌

𝑘+1
) − 𝐶) . (56)

(iv) The step is calculated with 𝛿 > 0. Update 𝜉 by

𝐶2
𝑘+1

= 𝑃 (𝑋
𝑘+1

) + 𝑄 (𝑌
𝑘+1

) − 𝐶1 −
1

𝛽
𝑍
𝑘+1

,

𝜉
𝑘+1

= P
𝐵𝛿,2

(𝐶2
𝑘+1

)
22

.

(57)

(3) End the iteration till ‖𝑋
𝑘+1

− 𝑋
𝑘
‖2
𝐹
/‖Data‖2

𝐹
≤ 𝜀
2
.

5.2. The Analysis of Subproblems. Since the computation of
each iteration of the TNNR-ADMMAPmethod is dominated
by solving subproblems (54) and (55), we now elaborate on
the strategies for solving these subproblems.

First, we compute𝑋
𝑘+1

. Due to the special form of 𝑃 and
𝑄, we can give the following solution by ignoring the constant
term:

𝑋
𝑘+1

= argmin
𝑋

‖𝑋‖∗ +
𝛽

2


𝑋 − 𝑌

𝑘
−

1

𝛽
(𝑍
𝑘
)
11



2

𝐹

,

𝑋
𝑘+1

= D
1/𝛽

(𝑌
𝑘
+

1

𝛽
(𝑍
𝑘
)
11
) .

(58)
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Second, we concentrate on computing 𝑌
𝑘+1

. Obviously,
𝑌
𝑘+1

obeys the following rule:

0 ∈ 𝜕 [−𝑇𝑟 (𝐿
𝑙

𝑟
𝑌
𝑘+1

𝑅
𝑙

𝑟

⊺

)

+
𝛽

2


𝑃 (𝑋
𝑘+1

) + 𝑄 (𝑌
𝑘+1

) − 𝐶 −
1

𝛽
𝑍
𝑘



2

𝐹

] .

(59)

It can be solved as

𝑄
∗
𝑄 (𝑌) =

1

𝛽
𝐿
𝑙

𝑟

⊺

𝑅
𝑙

𝑟
− 𝑄
∗
[𝑃 (𝑋

𝑘+1
) − 𝐶 −

1

𝛽
𝑍
𝑘
] , (60)

where 𝑄∗ is the adjoint operator of 𝑄 which is mentioned in
(24).

Let

𝑊 = (
𝑊
11

𝑊
12

𝑊
21

𝑊
22

) ∈ R
2𝑚×2𝑛

, (61)

where 𝑊
𝑖𝑗

∈ R𝑚×𝑛; according to (24), we have ⟨𝑄(𝑌),𝑊⟩ =

⟨𝑌,𝑄∗(𝑊)⟩. More specifically,

⟨𝑄 (𝑌) ,𝑊⟩ = 𝑇𝑟(
−𝑌 0

0 A𝑌
)(

𝑊
11

𝑊
12

𝑊
21

𝑊
22

)

⊺

= 𝑇𝑟(
−𝑌𝑊
⊺

11
−𝑌𝑊
⊺

21

A𝑌𝑊
⊺

12
A𝑌𝑊

⊺

22

)

= 𝑇𝑟 (−𝑌𝑊
⊺

11
) + 𝑇𝑟 (A𝑌𝑊

⊺

22
)

= ⟨𝑌, −𝑊
11
⟩ + ⟨A𝑌,𝑊

22
⟩

= ⟨𝑌, −𝑊
11
⟩ + ⟨𝑌,A

∗
𝑊
22
⟩

= ⟨𝑌, −𝑊
11

+A
∗
𝑊
22
⟩ = ⟨𝑌,𝑄

∗
(𝑊)⟩ .

(62)

Thus, the adjoint operator 𝑄∗ is denoted by

𝑄
∗
(𝑊) = −𝑊

11
+A
∗
𝑊
22
. (63)

The left side in (60) can be shown as

𝑄
∗
𝑄 (𝑌) = 𝑄

∗
(
−𝑌 0

0 A𝑌
) = 𝑌 +A

∗
A𝑌. (64)

Then, we apply the linear mapping A (AA∗ = I) on both
sides of (64), and we obtain

A (𝑄
∗
𝑄 (𝑌)) = A𝑌 +AA

∗
A𝑌 = 2A𝑌, (65)

A𝑌 =
1

2
A (𝑄
∗
𝑄 (𝑌)) . (66)

Combining (64) and (66), we get

𝑌
𝑘+1

= 𝑄
∗
𝑄 (𝑌) −A

∗
A𝑌

= 𝑄
∗
𝑄 (𝑌) −

1

2
A
∗
A (𝑄
∗
𝑄 (𝑌)) .

(67)

Similarly, according to the property of 𝑄∗ in (64), we can get
the transformation for the right side in (60). Consider

𝑄
∗
𝑄 (𝑌) = 𝑋

𝑘+1
−

1

𝛽
(𝑍
𝑘
)
11

+
1

𝛽
𝐿
𝑙

𝑟

⊺

𝑅
𝑙

𝑟

+A
∗
(Data + 𝜉 +

1

𝛽
(𝑍
𝑘
)
22
) .

(68)

Based on the above, from (64) and (68), we achieve

𝑌
𝑘+1

= 𝑄
∗
𝑄 (𝑌) −A

∗
A𝑌

= 𝑄
∗
𝑄 (𝑌) −

1

2
A
∗
A (𝑄
∗
𝑄 (𝑌))

= 𝑋
𝑘+1

−
1

2𝛽
A
∗
A (𝐿
𝑙

𝑟

⊺

𝑅
𝑙

𝑟
− (𝑍
𝑘
)
11

+ 𝛽𝑋
𝑘+1

)

+
1

𝛽
(𝐿
𝑙

𝑟

⊺

𝑅
𝑙

𝑟
− (𝑍
𝑘
)
11
)

+
1

2𝛽
A
∗
(𝛽Data + 𝛽𝜉 + (𝑍

𝑘
)
22
) .

(69)

Some remarks are in order.

(i) The compute of 𝜉
𝑘+1

begins with 𝜉
1

> 0. In other
words, the problem matches (12) when 𝜉

1
> 0.

(ii) The convergence of the iterative schemes of
ADMMAP is well studied in [38, 39]. In our
paper, we omit the convergence analysis.

Overall, when TNNR-ADMM and TNNR-APGL are
applied to solve (10)–(12), the generated subproblems all
have closed-form solutions. As mentioned before, TNNR-
ADMMAP is used to speed up the convergence of (10) and
(12) when there are toomany constraints.When one problem
can be solved simultaneously with the three algorithms,
TNNR-ADMMAP is in general more efficient, in the case of
matrix completion [14] and in our test problems.

6. Experiments and Results

In this section, we present numerical results to validate
the effectiveness of SVE and LRISD. In summary, there are
two parts certified by the following experiments. On one
hand, we illustrate the effectiveness of SVE on both real
visual and synthetic data sets. On the other hand, we also
illustrate the effectiveness of LRISD which solves TNNR
based low-rank matrix recovery problems on both synthetic
and real visual data sets. Since the space is limited, we only
discuss model (10) using LRISD-ADMM in our experiments.
If necessary, you can refer to [14] for extensive numerical
results to understand that ADMMAP is much faster than
APGL andADMMwithout sacrificing the recovery accuracy,
in cases of matrix completion. Similarly, for the low-rank
matrix recovery, we have the same conclusion according to
our experiments. Since themain aim of the paper is to present
the effectiveness of SVE andLRISD, here, we omit the detailed
explanation.
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Table 1: We compare the PSNR and time between LR-ADMM, TNNR-ADMM-TRY, LRISD-ADMM, and LRISD-ADMM-ADJUST. In
TNNR-ADMM-TRY, they search the best 𝑟 via testing all possible values of 𝑟. We use the estimated rank 𝑟 as the best 𝑟 in LRISD-ADMM. In
LRISD-ADMM-ADJUST, we use the estimated rank 𝑟 as a reference to search the best 𝑟.

Image LR-ADMM TNNR-ADMM-TRY LRISD-ADMM LRISD-ADMM-ADJUST
𝑟 Time PSNR 𝑟 Time PSNR 𝑟 = 𝑟 Time PSNR 𝑟 Time PSNR

(1) 0 73.8 s 21.498 6 5030 s 21.645 7 221 s 21.618 6 683 s 21.645
(2) 0 98.3 s 24.319 6 5916 s 24.366 5 150 s 24.357 6 799 s 24.366
(3) 0 106.3 s 29.740 15 3408 s 30.446 11 148 s 30.342 15 1433 s 30.446

All experiments were performed under Windows 7 and
Matlab v7.10 (R2010a), running on a HP laptop with an Intel
Core 2 Duo CPU at 2.4GHz and 2GB of memory.

6.1. Experiments and Implementation Details. We conduct
the numerical experiments under the following four classes,
where two representative linear mappings A: matrix com-
pletion and partial DCT, are used. The first two cases are
to illustrate the effectiveness of SVE. Here we compared our
algorithm LRISD-ADMM with that proposed in [14], which
we name as “TNNR-ADMM-TRY,” on the matrix completion
problem. The main difference between LRISD-ADMM and
TNNR-ADMM-TRY is the way of determining the best 𝑟.The
former is to estimate the best 𝑟 via SVE while the latter one
is to try all the possible 𝑟 values and pick the one of the best
performance.

The last two are to show the better recovery quality of
LRISD-ADMM compared with the solution of the common
nuclear norm regularized low-rank recovery models, for
example, (2), whose corresponding algorithm is denoted by
LR-ADMM as above.

(1) Compare LRISD-ADMM with TNNR-ADMM-TRY
on matrix completion problems. These experiments
are conducted on real visual data sets.

(2) Compare the real rank 𝑟 with 𝑟 which is estimated
by SVE under different situations, where A is a two-
dimensional partial DCT operator (AA∗ = I).
These experiments are conducted on synthetic data
sets.

(3) Compare LRISD-ADMM with LR-ADMM on the
generic low-rank situations, where A is also a two-
dimensional partial DCT operator. These experi-
ments are conducted on synthetic data sets under
different problem settings.

(4) Compare LRISD-ADMM with LR-ADMM on the
generic low-rank situations, where A is also a two-
dimensional partial DCT operator. These experi-
ments are conducted on real visual data sets.

In all synthetic data experiments, we generate the sample
data as follows: 𝑏 = A𝑋

∗+𝜔, where𝜔 is Gaussian white noise
of mean zeros and standard deviation std. The Matlab script
for generating𝑋

∗ is as follows:

𝑋
∗
= rand 𝑛 (𝑚, 𝑟) ∗ rand 𝑛 (𝑟, 𝑛) , (70)

where 𝑟 is a prefixed integer. Moreover, we generate the index
set Ω in (5) randomly in matrix completion experiments.
And, the partial DCT is also generated randomly.

In the implementation of all the experiments, we use the
criterion ‖𝑋

𝑙+1
− 𝑋
𝑙
‖2
𝐹
/‖Data‖2

𝐹
≤ 10−2 to terminate the

iteration of Step 2 (inAlgorithm 1) in LR-ADMMand LRISD-
ADMM. In addition, we terminate the iteration of (b) in Step
2 by the criterion ‖𝑋

𝑘+1
− 𝑋
𝑘
‖
2

𝐹
/‖Data‖2

𝐹
≤ 10
−4. In our

experiments, we set 𝛽 = 0.001 empirically, which works quit
well for the tested problems.The other parameters in TNNR-
ADMMare set to their default values (we use theMatlab code
provided online by the author of [14]). Besides, we use the
PSNR (Peak Signal to Noise Ratio) to evaluate the quality of
an image. As color images have three channels (red, green,
and blue), PSNR is defined as 10 × log

10
(2552/MSE), where

MSE = SE/3𝑇, SE = error2red + error2green + error2blue, and 𝑇

is the total number of missing pixels. For grayscale images,
PSNR has a similar definition.

6.2. The Comparison between LRISD-ADMM and TNNR-
ADMM-TRY on Matrix Completion. In this subsection, to
evaluate the effectiveness of SVE, we compare the proposed
LRISD-ADMM with TNNR-ADMM-TRY as well as LD-
ADMMonmatrix completion problems. As the better recov-
ery quality of TNNR-ADMM-TRY than LR-ADMM on the
matrix completion problem has been demonstrated in [14],
we will show that the final estimated 𝑟 of LRISD-ADMM via
SVE is very close to the one of TNNR-ADMM-TRY.

We test three real clear images and present the input
images, the masked images, and the results calculated via
three different algorithms: LR-ADMM, TNNR-ADMM-TRY,
and LRISD-ADMM. The recovery images are showed in
Figure 2 and the numerical value comparisons of time and
PSNR are shown in Table 1. We can see that, compared to
LR-ADMM, both TNNR-ADMM-TRY and LRISD-ADMM
achieve better recovery quality as expected.While the TNNR-
ADMM-TRY achieves the best recovery quality as expected
due to trying every possible 𝑟 value, its running time is
extremely longer than LR-ADMM. Our proposed LRISD-
ADMM can achieve almost the same recovery quality as
TNNR-ADMM-TRY, but with a significant reduction of
computation cost. In fact, if the best precision is expected,
we use the estimated 𝑟 by LRISD-ADMM as a reference to
search the best 𝑟 around it, with the reasonably extra cost of
computation. Here, for convenience in notation, we name the
process LRISD-ADMM-ADJUST in Table 1 and Figure 2.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 2: Comparisons results of LR-ADMM, TNNR-ADMM-TRY, LRISD-ADMM, and LRISD-ADMM-ADJUST; we use three images here.
The first column is original images. The second column is masked images. The masked images are obtained by covering 50% pixels of the
original image in our test.The third column depicts images recovered by LR-ADMM.The fourth column depicts images recovered by TNNR-
ADMM-TRY and LRISD-ADMM-ADJUST. The fifth column depicts images recovered by LRISD-ADMM where we just use the estimated 𝑟

directly. Noticing the fourth column, we get the same image by applying two different methods, TNNR-ADMM-TRY and LRISD-ADMM-
ADJUST.The reason is that the values of 𝑟 calculated in the two methods are the same. But the procedure by which they find 𝑟 is different. In
TNNR-ADMM-TRY, they search the best 𝑟 via testing all possible values (1–20). In LRISD-ADMM-ADJUST, we use the estimated rank 𝑟 as
a reference to search around for the best 𝑟.

6.3. The Effectiveness Analysis of SVE in Two-Dimensional
Partial DCT: Synthetic Data. In Section 6.2, we showed
that the estimated 𝑟 by LRISD-ADMM is very close to
the best 𝑟 by TNNR-ADMM-TRY, on matrix comple-
tion problems. Here we further confirm the effective-
ness of the proposed SVE of LRISD-ADMM, by con-
ducting experiments for the generic low-rank operator A
on synthetic data, where A is a two-dimensional partial
DCT (discrete cosine transform) operator. We compare the
best 𝑟 (true rank) with the estimated 𝑟 under different
settings.

In the results below, 𝑟, 𝑟, and sr denote the rank of
the matrix 𝑋

∗, estimated rank, and sample ratio taken,
respectively. We set the noise level std = 0.9 and the sample
ratios sr = 0.5 and choose 𝜅 = 10 in all of the tests. The
reason of setting std = 0.9 is that we want to well illustrate
the robustness of SVE to noise. Next, we compare 𝑟 with 𝑟

under different settings. For each scenario, we generated the
model by 3 times and reported the results.

(i) We fix the matrix size to be 𝑚 = 𝑛 = 300,
𝑟 = 20 and run LRISD-ADMM to indicate the rela-
tionship between 𝑆𝑡𝑡 and 𝑟. The results are showed in
Figure 3(a).

(ii) We fix the matrix size to be 𝑚 = 𝑛 = 300 and
run LRISD-ADMM under different 𝑟. The results are
showed in Figure 3(b).

(iii) We fix 𝑟 = 20 and run LRISD-ADMMunder different
matrix sizes. The results are showed in Figure 3(c).

As shown in Figure 3, the proposed SVE performs the
rationality and effectiveness to estimate 𝑟 in Step 1 in
Algorithm 1. Even if there is much noise, this method is
still valid; namely, 𝑟 is (approximately) equivalent to the real
rank. That is to say, the proposed SVE is pretty robust to
the corruption of noise on sample data. In practice, we can
achieve the ideal results in other different settings. To save
space, we only illustrate the effectiveness of SVE using the
abovementioned situations.
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Figure 3:We give the relationship between 𝑆𝑡𝑡 and 𝑟 (tested three times) in (a). Comparisons between the true rank 𝑟 and the estimated rank
𝑟 under different ranks are shown in chart (b) and different matrix sizes in chart (c).

6.4.TheComparison between LRISD-ADMMandLR-ADMM:
Synthetic Data. In this subsection, we compare the proposed
LRISD-ADMMwith LR-ADMMon partial DCT data in gen-
eral low-rank matrix recovery cases. We will illustrate some
numerical results to show the advantages of the proposed
LRISD-ADMM in terms of better recovery quality.

We evaluate the recovery performance by the Relative
Error as Reer = ‖𝑋re − 𝑋

∗
‖
𝐹
/‖𝑋
∗
‖
𝐹
. We compare the

reconstruction error under different conditions: different
noise levels (std) and different sample ratios (sr) taken which
are shown, respectively, in Figures 4(a) and 4(b). In addition,
we compare the recovery ranks which are obtained via the
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Figure 4: Comparison results of LRISD-ADMM and LR-ADMM on synthetic data. Different noise levels (std) are shown in (a). (b) gives the
results under different sample ratios (sr). (c) shows the recovery ranks under different ranks (𝑟).

above two algorithms in Figure 4(c). For each scenario, we
generated the model by 10 times and reported the average
results.

(i) We fix the matrix size to be 𝑚 = 𝑛 = 300, 𝑟 = 15,
sr = 0.5, and run LRISD-ADMM and LR-ADMM
under different noise levels std. The results are shown
in Figure 4(a).

(ii) We fix the matrix size to be 𝑚 = 𝑛 = 300, std =

0.5, and run LRISD-ADMM and LR-ADMM under
different sr. The results are shown in Figure 4(b).

(iii) We set the matrix size to be 𝑚 = 𝑛 = 300, sr = 0.5,
std = 0.5, and run LRISD-ADMM and LR-ADMM
under different 𝑟.The results are shown in Figure 4(c).
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(b) Door: the second outer iteration of LRISD
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(c) Door: the third outer iteration of LRISD
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(d) Window: the first outer iteration of LRISD
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(e) Window: the second outer iteration of LRISD
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(f) Window: the third outer iteration of LRISD
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(g) Sea: the first outer iteration of LRISD
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(h) Sea: the second outer iteration of LRISD
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(i) Sea: the third outer iteration of LRISD

Figure 5: We present the process of SVE in LRISD-ADMM about three images in Figure 6. At the same time, we note that the first and the
second singular values aremuch larger than others, as well as the values of 𝑆𝑡𝑡. Tomake the results more clear, we omit the first and the second
singular values and 𝑆𝑡𝑡 in each figure. We can find the observed estimated 𝑟 are 7, 9, 8. Compared to the best 𝑟, which are 8, 10, 7, estimated 𝑟

is approximately equivalent to the best 𝑟.

It is easy to see from Figure 4(a), as the noise level std
increases, the total Reer becomes larger. Even so, LRISD-
ADMM can achieve much better recovery performance than
LR-ADMM. This is because the LRISD model can better
approximate the rank function than the nuclear norm. Thus,
we illustrate that LRISD-ADMM is more robust to noise
when it deals with low-rank matrices. With the increasing of
sample ratio sr, the total Reer reduces in Figure 4(b). Gen-
erally, LRISD-ADMM does better than LR-ADMM, because
LRISD-ADMM can approximately recover the rank of the
matrix as showed in Figure 4(c).

6.5.TheComparison between LRISD-ADMMandLR-ADMM:
Real Visual Data. In this subsection, we test three images,
door, window, and sea, and compare the recovery images by

general LR-ADMM and LRISD-ADMM on the partial DCT
operator. Besides, we use the best 𝑟 in LRISD-ADMM. In all
tests, we fix sr = 0.6, std = 0.The SVEprocess during different
stages to obtain 𝑟 is depicted in Figure 5. For three images,
we set 𝜅 = 100, 125, 20 and generate 𝑟 = 7, 9, 8 in LRISD-
ADMM. Moreover, the best 𝑟 = 7, 10, 7 can be obtained.
Figure 6 shows the recovery results of the two algorithms.

As illustrated in Figure 5, it is easy to see SVE returns a
stable 𝑟 in merely three iterations. And, the estimated 𝑟 is
a good estimate to the number of the largest few singular
values. From Figure 6, it can be seen that LRISD-ADMM
outperforms the general LR-ADMM in terms of smaller
PSNR. More important, using eyeballs, we can see the better
fidelity of the recoveries of LRISD-ADMM to the true signals,
in terms of better recovering sharp edges.
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(a) Original image (b) Masked image (c) PSNR = 18.779 (d) PSNR = 19.669

(e) Original image (f) Masked image (g) PSNR = 17.140 (h) PSNR = 18.576

(i) Original image (j) Masked image (k) PSNR = 16.829 (l) PSNR = 16.991

Figure 6: Comparison results of LR-ADMM and LRISD-ADMM; we use three images here. The masked images are obtained by making
partial DCT on the original images. Besides, images recovered by LR-ADMM and LRISD-ADMM are displayed in the third column and the
fourth column, respectively.

6.6. A Note on 𝜅. We note that the thresholding 𝜅 plays a
critical rule for the efficiency of the proposed SVE. For real
visual data, we can use 𝜅 = √𝑚 ∗ 𝑛/(3∗𝑠), 𝑠 = 0.5, 0.8, 1, 3, 5.
For synthetic data, 𝜅 is denoted by 𝜅 = 𝑠 ∗ √𝑚 ∗ 𝑛/30,
𝑠 = 1, 2, 3. The above heuristic, which works well in our
experiments, is certainly not necessarily optimal; on the other
hand, it has been observed that LRISD is not very sensitive to
𝜅. Of course, the “last significant jump” based thresholding is
only one way for estimating the number of the true nonzero
(or large) singular values, and one can try other available
effective jump detection methods [15, 40, 41].

7. Conclusion

This paper introduces the singular values estimation (SVE) to
estimate an appropriate 𝑟 (in ‖𝑋‖

𝑟
) that the estimated rank is

(approximately) equivalent to the best rank. In addition, we

extend TNNR from matrix completion to the general low-
rank cases (we call it LRISD). Both synthetic and real visual
data sets are discussed. Notice that SVE is not limited to
thresholding. Effective support detection guarantees the good
performance of LRISD. Therefore future research includes
studying specific signal classes and developing more effective
support detection methods.
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