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An active backstepping technique is proposed for the realization of multiswitching synchronization of periodically forced
hyperchaotic Van der Pol-Duffing oscillators. The active backstepping technique is a systematic design approach with recursive
procedures that skillfully optimizes the choice of Lyapunov functions and active control technique. Using the active backstepping
technique, the usual master-slave synchronization scheme is extended to study the synchronization of systems with different
combinations of the slave states variableswithmaster state variables.Our numerical results confirm the effectiveness of the proposed
analytical technique.

1. Introduction

Nonlinear deterministic dynamical systems exhibiting sensi-
tive dependence to initial conditions (chaos) have been found
to exist and not unusual. Different methods used to describe
their existence are found in the fields of sciences (physical and
natural), medicine, and engineering [1–3]. Various attributes
of nonlinear dynamical systems such as chaos, bifurcation,
multistability, pattern formation, control, and synchroniza-
tion have been found useful or having potential applications
in many disciplines. One of the most important attributes
of nonlinear dynamical systems is that of synchronization
of chaotic systems which has become more fascinating and
has generated interest from researchers in recent time due
to its applications in information processing, secure com-
munication, chemical reactions, and modelling brain activity
[4–7]. Increasing interest in the study of synchronization of
chaotic systems has led to the discovery of various types
of synchronization which include complete synchronization
[8], lag synchronization [9], phase synchronization [10],

generalized synchronization [11–13], measure synchroniza-
tion [14–17], projective synchronization [18–20], anticipated
synchronization [21, 22], and reduced-order synchronization
[23–31]. Recently multiswitching synchronization of chaotic
systems was proposed by Uçar et al. [32]. The method was
successfully implemented with Lorenz system using active
control technique.

Several synchronizationmethods have evolved to achieve
stable synchronization between two or more chaotic systems.
These methods include adaptive control [33], active control
[34], sliding mode control [35], impulsive control [36], linear
feedback control [37], backstepping control [38], open plus
close loop control [39], adaptive fuzzy feedback [40], and pas-
sive control [41]. Notable among this method is the backstep-
ping control technique which has outstanding performance
in the synchronization of identical and nonidentical chaotic
systems [42, 43]. It has also been identified as a reliable design
technique for stabilization and tracking [44]. In recent time,
backstepping technique has been applied for controlling and
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Figure 1: Unified and periodically forced Van der Pol-Duffing
oscillator circuit.

tracking hyperchaotic systems [45]. In spite of the excellent
performance of backstepping control technique, it has not
been applied to multiswitching synchronization of chaotic
system to the best of our knowledge. Motivated by the above
discussion, we are reporting multiswitching synchronization
of unified and periodically forced hyperchaotic Van der Pol-
Duffing oscillator using active backstepping technique.

Van der Pol-Duffing oscillator is a popularly known and
very significant classical model circuit that has been studied
and even modified in some studies as reported by King et
al. [46, 47], Fotsin et al. [48], and Fodjouong et al. [49].
The Van der Pol-Duffing oscillator in most reported cases
is autonomous (unforced) whereas the periodically driven
nonautonomous Van der Pol-Duffing oscillator considered
in this paper displays more complex and richer dynamics
as the amplitude and the frequency of the forcing signal
are varied, thereby exhibiting chaos-hyperchaos transitions,
and coexisting attractors as well as Hopf bifurcations in
which quasiperiodic orbits are born [50]. Recently, there has
been a renewed interest and several attempts to understand
the dynamics of nonautonomous (forced) oscillators excited
from equilibrium by different external forcing techniques.
This is because deterministic influences often arise in practice
as in cellular dynamics, blood circulation, and brain dynam-
ics [51, 52].

In the present paper, we introduced the periodically
forced Van der Pol-Duffing oscillator and study its synchro-
nization. Specifically, we consider a more general form of
synchronization, namely, multiswitching synchronization, in
which a variable of a dynamical system synchronizes with
another variable of the systems or another system.This type of
synchronization was proposed by Uçar et al. [32]. Despite its
relevance, it has received less attention. Here, we propose an
active backstepping technique to realize the multiswitching
synchronization.The rest of the paper is organized as follows:
the basic dynamical properties of our model system are
described in Section 2. In Section 3, the multiswitching syn-
chronization ofUVDPusing active backstepping is discussed.
Numerical simulations are provided in Section 4, while the
paper is concluded in Section 5.

2. Model Description

2.1. Unified and Periodically Driven Van der Pol-Duffing Oscil-
lator Circuit. The periodically driven Van der Pol-Duffing

oscillator considered here can be modeled by the circuit
shown in Figure 1, in which a dc series resistance is added to
the 𝐶

2
branch of the circuit, while another dc resistance is

placed parallel to it. In addition, a periodic signal generator,
acting as periodic driving, is connected to the left end of the
circuit as shown. By applying Kirchhoff ’s laws to the various
branches of the circuit of Figure 1, and noting that the 𝑖(V)
characteristics of the nonlinear resistor (𝑁) are approximated
by the cubic polynomial 𝑖(V) = V+𝑎V+𝑏V3, (𝑎 < 0, 𝑏 > 0), we
obtain the following set of equations:
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Making appropriate rescaling of (1) by setting𝑥 = 𝑉
1
√𝑏𝑅,
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2
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,

and 𝜇 = (𝑅 + 𝑅
𝐿
)/𝑅
𝐿
, we obtain the following dimensionless

equation:

𝑥̇ = −𝑚 (𝑥
3
− 𝛼𝑥 − 𝑦) ,

̇𝑦 = 𝑥 − 𝜇𝑦 − 𝑧 + 𝑎
0
sin𝜔𝜏,

𝑧̇ = 𝛽𝑦 − 𝛾𝑧.

(2)

System (2) is a three-dimensional nonautonomous system. By
letting 𝑤 = 𝑎

0
sinΩ𝜏, the system of (2) can be rewritten as

a system of four-dimensional autonomous dynamical system
(including 𝜏 as a dynamical variable) as follows:

𝑥̇ = −𝑚 (𝑥
3
− 𝛼𝑥 − 𝑦) ,

̇𝑦 = 𝑥 − 𝜇𝑦 − 𝑧 + 𝑤,

𝑧̇ = 𝛽𝑦 − 𝛾𝑧,

𝑤̇ = ±𝜔√𝑎
2

0
− 𝑤2,

(3)

where the new parameters 𝜔 and 𝑎
0
are the frequency

and amplitude of the periodic driving force, respectively.
Thus, our model system (2) or its equivalent system (3)
has four Lyapunov exponents, allowing for hyperchaotic
behaviour, that is, with the possibility of having two positive
Lyapunov exponents along with one zero and one negative.
Furthermore, under periodic driving, the unified Van der
Pol-Duffingoscillator exhibits richer dynamical complexities,
including the existence of hyperchaos-chaos transient and
regime of periodic behaviour could be observed with the aid
of bifurcations and Lyapunov exponents [50]. In Figure 2, we
present an illustration of a typical dynamics of our model
from [50]. The numerical results were performed using the
standard fourth-order Runge-Kutta routine with step-size
ℎ = 2𝜋/(𝑁𝜔), where 𝑁 is the number of iterations. The
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Figure 2:The first two Lyapunov exponents ((a) 𝜆
1
and (b) 𝜆

2
) as functions of the driving amplitude, 𝑎

0
. 𝛼 = 0.35, 𝛽 = 300,𝑚 = 100, 𝛾 = 0.2,

𝜇 = 1.0, and 𝜔 = 10. (c) and (d) are phase portraits of the corresponding hyperchaotic attractors for the parameters 𝑎
0
= 1.51 and 𝜔 = 10 for

𝑦 versus 𝑥 and 𝑧 versus 𝑥.

complete Lyapunov exponent spectrum was computed using
the Wolf et al.’s algorithm [53]. For clarity and brevity, we
will present only the first two exponents, namely, 𝜆

1
and 𝜆

2
,

which determine exclusively the system’s behaviours. Unless
otherwise stated, the following parameters were fixed: 𝛼 =

0.35, 𝛽 = 300, and 𝑚 = 100, while the other parameters,
namely, 𝜇, 𝛾, 𝑎

0
, and 𝜔, were varied for the different cases

considered. In the absence of the forcing, we obtain the Fotsin
and Woafo model when 𝜇 = 1.0, and 𝛾 = 0.2 [48], whereas,
when 𝜇 > 1.0 and 𝛾 = 0, we have the Matouk and Agiza
model [54]. In Figures 2(a) and 2(b), we see clearly that 𝜆

1

and 𝜆
2
are positive with increasing amplitude, 𝑎

0
, confirming

the existence of hyperchaos in this driving amplitude regime.

2.2. Stability and Equilibria. The changes discussed above
maybe understood by examining the stability of system (3).
First, we obtain the fixed points by solving the general
equation 𝐹(𝑢̇) = 0, where 𝑢 is the vector space containing
𝑥, 𝑦, and 𝑧 at 𝑎

0
= 0. The equilibrium points are found by

equating the right-hand sides of (2) to zero such that

𝑥̇ = −𝑚 (𝑥
3
− 𝛼𝑥 − 𝑦) = 0,

̇𝑦 = 𝑥 − 𝜇𝑦 − 𝑧 = 0,

𝑧̇ = 𝛽𝑦 − 𝛾𝑧 = 0,

(4)

from which the following fixed points were obtained:

𝐸
+
= +((𝛼 +

𝛾

𝜇𝛾 + 𝛽
)

1/2

, +𝛾𝜒, +𝛽𝜒) , 𝛼 > 0,

𝐸
−
= −((𝛼 +

𝛾

𝜇𝛾 + 𝛽
)

1/2

, −𝛾𝜒, −𝛽𝜒) , 𝛼 < 0,

𝐸
0
= (0, 0, 0) ,

(5)

where

𝜒 =
(𝛾 (𝛼𝜇 + 1) + 𝛼𝛽)

1/2

(𝜇𝛾 + 𝛽)
3/2

. (6)

The characteristic equation of the Jacobian matrix of
system (5) about the equilibrium points 𝐸 = (𝑥, 𝑦, 𝑧) is given
as

𝜆
3
+ 𝑎
1
𝜆
2
+ 𝑎
2
𝜆 + 𝑎
3
= 0, (7)

where

𝑎
1
= 𝜇 + 𝛾 + 𝑚(3𝑥

2
− 𝛼) ,

𝑎
2
= 𝑚(3𝑥

2
− 𝛼) (𝜇 + 𝛾) + 𝜇𝛾 + 𝛽 − 𝑚,

𝑎
3
= 𝑚(3𝑥

2
− 𝛼) (𝜇𝛾 + 𝛽) − 𝑚𝛾.

(8)



4 Journal of Nonlinear Dynamics

0 50 100 150 200
−3

−2

−1

0

1

2

3

t

e 1
1

(a)

0 50 100 150 200
−0.2

−0.1

0

0.1

0.2

t

e 1
2

(b)

0 50 100 150 200
−2

−1

0

1

2

t

e 1
3

(c)

Figure 3: Error dynamics for the unified and periodically forced Van der Pol-Duffing oscillator of the system state for𝑁 = 1 with controller
defined in (24) when the control was activated at 𝑡 = 50 for (a) 𝑒

11
, (b) 𝑒

12
, and (c) 𝑒

13
.

Before analyzing the stability properties of each points,
it is important to consider the practical process of modeling
system (4). It is clear that only 𝛼 can take on negative or
positive values. The other parameters are always positive.
In order to study the stability conditions of the equilibrium
point, 𝐸, we apply Routh-Hurwitz criterion [55], which states
that all real eigenvalues and all real parts of complex conjugate
eigenvalues are negative if and only if the following equation
holds:

𝑎
1
> 0, 𝑎

3
> 0, 𝑎

1
𝑎
2
− 𝑎
3
> 0. (9)

At values of𝑚 = 100, 𝛼 = 0.35, 𝛽 = 300, 𝛾 = 0.2, and 𝜇 = 1.0.
For 𝐸
0
= (0, 0, 0); 𝑥 = 0, 𝑦 = 0, 𝑧 = 0. Values of 𝑎

1
, 𝑎
2
, and 𝑎

3

obtained are −33.8, 158.2, and −10527, respectively.

Remark 1. The equilibrium point 𝐸
0
of the system (5) has an

unstable solution when 𝛼, 𝑚, 𝛽, 𝜇, and 𝛾 are all positive real
numbers because 𝑎

1
< 0, 𝑎

2
> 0, and 𝑎

3
< 0.

Stability Conditions of 𝐸
±
. When 𝛼 > 0, the two equilibrium

points𝐸
+
and𝐸

−
appear.The two equilibriumpoints are sym-

metric. That is, 𝑥 = ±0.592170771, 𝑦 = ±0.000394518, 𝑧 =

±0.5917764. 𝐸
±

= (±0.5921707, ±0.0003945, ±0.5917764).
Values of 𝑎

1
, 𝑎
2
, and 𝑎

3
obtained are 71.3998666, 284.4398399,

and 21053.99995, respectively.

Remark 2 (𝑎
1
> 0, 𝑎
2
> 0, 𝑎
3
> 0, and 𝑎

1
𝑎
2
> 0). According to

Routh-Hurwitz criteria, the equilibria 𝐸
+
and 𝐸

−
are stable.

3. Multiswitching Synchronization
via Backstepping

Here, we developmulti-switching synchronization procedure
based on active-backstepping and applied to the periodically
forcedVan der Pol-Duffing oscillator due to its richer dynam-
ical complexities and relevance in the area of chaotic systems
that can be physically built and analyzed. It is convenient to
transform the driven Van der Pol-Duffing oscillator system
(2) by redefining the variables as follows: 𝑥 = 𝑧, 𝑦 = 𝑦, and
𝑧 = 𝑥 such that we have the following master system:

𝑥̇
1
= 𝛽𝑦
1
− 𝛾𝑥
1
,

̇𝑦
1
= 𝑧
1
− 𝜇𝑦
1
− 𝑥
1
+ 𝑎
0
sin𝜔𝜏,

𝑧̇
1
= − 𝑚(𝑧

3

1
− 𝛼𝑧
1
− 𝑦
1
)

(10)

and the corresponding slave system

𝑥̇
2
= 𝛽𝑦
2
− 𝛾𝑥
2
+ 𝑈
11
(𝑡) ,

̇𝑦
2
= 𝑧
2
− 𝜇𝑦
2
− 𝑥
2
+ 𝑎
0
sin𝜔𝜏 + 𝑈

12
(𝑡) ,

𝑧̇
2
= −𝑚(𝑧

3

2
− 𝛼𝑧
2
− 𝑦
2
) + 𝑈
13
(𝑡) ,

(11)
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Figure 4: Error dynamics for the unified and periodically forced Van der Pol-Duffing oscillator of the system state for𝑁 = 2 with controller
defined in (30) when the control was activated at 𝑡 = 50 for (a) 𝑒

21
, (b) 𝑒

22
, and (c) 𝑒

23
.

where 𝑈
11
(𝑡), 𝑈

12
(𝑡), and 𝑈

13
(𝑡) are the set of nonlinear

controller for the first switch (𝑁 = 1). We define the error
signals for this switch as 𝑒

11
= 𝑥
2
− 𝑥
1
, 𝑒
12

= 𝑦
2
− 𝑦
1
,

and 𝑒
13

= 𝑧
2
− 𝑧
1
. By considering the time derivative of the

error signals together with (10) and (11), we determine the
controller that would cause the three terms of error signals
to asymptotically approach zero as 𝑡 → ∞. The controller
was found from the following closed loop dynamics:

̇𝑒
11
= 𝛽𝑒
12
− 𝛾𝑒
11
+ 𝑈
11
(𝑡) ,

̇𝑒
12
= 𝑒
13
− 𝜇𝑒
12
− 𝑒
11
+ 𝑈
12
(𝑡) ,

̇𝑒
13
= − 𝑚 [𝑧

3

2
− 𝑧
3

1
] + 𝑚𝛼𝑒

13
+ 𝑚𝑒
12
+ 𝑈
13
(𝑡) .

(12)

With error dynamics represented by (12), the synchronization
problem is equivalent to stabilizing the system at one of
its equilibria. Since the equilibria 𝐸

+
and 𝐸

−
are stable and

symmetric, so if appropriate 𝑈
11
(𝑡), 𝑈

12
(𝑡), and 𝑈

13
(𝑡) are

chosen such that the equilibrium 𝐸
+
or 𝐸
−
is stable and

unchanged, then asymptotic stabilization would be realized
leading to globally stable synchronization of systems (10) and
(11). To start with, let 𝑞

1
= 𝑒
11
, which implies that ̇𝑞

1
=

̇𝑒
11
. Then, choose 𝑉

1
to be a Lyapunov function for the ̇𝑞

1

subsystem given as

𝑉
1
=
1

2
𝑞
2

1
, (13)

and then

𝑉̇
1
= 𝑞
1
̇𝑞
1
= −𝛾𝑞

2

1
+ 𝑞
1
(𝛽𝑒
12
+ 𝑈
11
) . (14)

If 𝑒
12

= 𝑘
1
is a virtual control and a function of 𝑒

11
, making

𝑈
11
= 0 and 𝑘

1
= 0, thus we obtain

𝑉̇
1
= −𝛾𝑞

2

1
, (15)

which is negative definite, and this means that the subsystem,
𝑒
11
, is fully stabilized. To stabilize the second subsystem in

(12), let the error state between 𝑒
12
and 𝑘
1
be 𝑞
2

𝑞
2
= 𝑒
12
− 𝑘
1
= 𝑒
12
, (𝑘

1
= 0) . (16)

Introduce the second Lyapunov function 𝑉
2
given as

𝑉
2
= 𝑉
1
+
1

2
𝑞
2

2
. (17)

Taking time derivative of (16), we have

𝑉̇
2
= 𝑉̇
1
+ 𝑞
2
̇𝑞
2
= −𝛾𝑞

2

1
− 𝜇𝑞
2

2

+ 𝑞
2
(𝛽𝑞
1
− 𝑞
1
+ 𝑒
13
+ 𝑈
12
) .

(18)

Again, if 𝑒
13
= 𝑘
2
= 0 is a virtual control and𝑈

12
= 𝑞
1
(1 − 𝛽),

then

𝑉̇
2
= −𝛾𝑞

2

1
− 𝜇𝑞
2

2
. (19)
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Figure 5: Error dynamics for the unified and periodically forced Van der Pol-Duffing oscillator of the system state for𝑁 = 3 with controller
defined in (31) when the control was activated at 𝑡 = 50 for (a) 𝑒

31
, (b) 𝑒

32
, and (c) 𝑒

33
.

Equation (18) is negative definite, meaning that the sub-
system, 𝑒

12
, is also fully stabilized. To stabilize the third

subsystem in (12), let the error state between 𝑒
13

and 𝑘
2
be

𝑞
3

𝑞
3
= 𝑒
13
− 𝑘
2
= 𝑒
13
, (𝑘

2
= 0) . (20)

We choose the third Lyapunov function and its time deriva-
tive expressed as

𝑉
3
= 𝑉
2
+
1

2
𝑞
2

3
,

𝑉̇
3
= 𝑉̇
2
+ 𝑞
3
̇𝑞
3
,

𝑉̇
3
= − 𝛾𝑞

2

1
− 𝜇𝑞
2

2

+ 𝑞
3
(𝑞
2
− 𝑚(𝑧

3

2
− 𝑧
3

1
) + 𝑚𝛼𝑞

3
+ 𝑚𝑞
2
+ 𝑈
13
(𝑡)) .

(21)

If the controller 𝑈
13
(𝑡) is chosen such that

𝑈
13
(𝑡) = 𝑚 (𝑧

3

2
− 𝑧
3

1
) − 𝑞
2
(1 + 𝑚) − 𝑞

3
(1 + 𝑚𝛼) , (22)

then

𝑉̇
3
= −𝛾𝑞

2

1
− 𝜇𝑞
2

2
− 𝑞
2

3
(23)

is negative definite, so that the two systems (10) and (11) are
globally asymptotically synchronized. Summarily, the virtual
controllers for the system state𝑁 = 1 are stated as follows:

𝑈
11
= 0,

𝑈
12
= 𝑞
1
(1 − 𝛽) ,

𝑈
13
(𝑡) = 𝑚 (𝑧

3

2
− 𝑧
3

1
) − 𝑞
2
(1 + 𝑚) − 𝑞

3
(1 + 𝑚𝛼) .

(24)

More switching states that were investigated will be presented
with the parameter symbol 𝑁 = 2, 3, 4, 5, and 6. The error
signals for these various switching states can be defined as
follows:

𝑁 = 2; 𝑒
21
= 𝑥
2
− 𝑥
1
; 𝑒
22
= 𝑦
2
− 𝑧
1
; 𝑒
23
= 𝑧
2
− 𝑦
1
,

(25)

𝑁 = 3; 𝑒
31
= 𝑥
2
− 𝑦
1
; 𝑒
32
= 𝑦
2
− 𝑥
1
; 𝑒
33
= 𝑧
2
− 𝑧
1
,

(26)

𝑁 = 4; 𝑒
41
= 𝑥
2
− 𝑦
1
; 𝑒
42
= 𝑦
2
− 𝑧
1
; 𝑒
43
= 𝑧
2
− 𝑥
1
,

(27)

𝑁 = 5; 𝑒
51
= 𝑥
2
− 𝑧
1
; 𝑒
52
= 𝑦
2
− 𝑥
1
; 𝑒
53
= 𝑧
2
− 𝑦
1
,

(28)

𝑁 = 6; 𝑒
61
= 𝑥
2
− 𝑧
1
; 𝑒
62
= 𝑦
2
− 𝑦
1
; 𝑒
63
= 𝑧
2
− 𝑥
1
.

(29)
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Figure 6: Error dynamics for the unified and periodically forced Van der Pol-Duffing oscillator of the system state for𝑁 = 4 with controller
defined in (32) when the control was activated at 𝑡 = 50 for (a) 𝑒

41
, (b) 𝑒

42
, and (c) 𝑒

43
.

Following the same procedure that is itemized from (13)
to (24), the controller signals 𝑈

𝑁1
(𝑡), 𝑈

𝑁2
(𝑡), and 𝑈

𝑁3
(𝑡)

for 𝑁 = 2, 3, 4, 5, and 6 switching, designed to cause
the respective error dynamics to approach zero as time
approaches infinity, are as follows:

𝑁 = 2 󳨐⇒

{{{{{{{

{{{{{{{

{

𝑈
21
(𝑡) = 𝛽 (𝑦

1
− 𝑧
1
) ,

𝑈
22
(𝑡) = 𝑞

1
(1 − 𝛽) − 𝑦

1
(1 − 𝑚) − 𝑚𝑧

3

1

+ 𝑧
1
(𝑚𝛼 + 𝜇) + 𝑥

1
− 𝑎
0
sin𝜔𝑡,

𝑈
23
(𝑡) = −𝑞

2
(1 + 𝑚) − 𝑞

3
(1 + 𝑚𝛼)

+ 𝑚𝑧
3

2
− 𝑦
1
(𝑚𝛼 + 𝜇) − 𝑧

1
(𝑚 − 1)

− 𝑥
1
+ 𝑎
0
sin𝜔𝑡,

(30)

𝑁 = 3 󳨐⇒

{{{{{{{

{{{{{{{

{

𝑈
31
(𝑡) = −𝑥

1
(𝛽 + 1) − 𝑦

1
(𝜇 − 𝛾) + 𝑧

1

+ 𝑎
0
sin𝜔𝑡,

𝑈
32
(𝑡) = 𝑞

1
(1 − 𝛽) − 𝑥

1
(𝛾 − 𝜇)

+ 𝑦
1
(1 + 𝛽) − 𝑧

1
− 𝑎
0
sin𝜔𝑡,

𝑈
33
(𝑡) = −𝑞

3
(1 + 𝑚𝛼) − 𝑞

2
(1 + 𝑚)

+ 𝑚 (𝑧
3

2
− 𝑧
3

1
) − 𝑚 (𝑥

1
− 𝑦
1
) ,

(31)

𝑁 = 4 󳨐⇒

{{{{{{{

{{{{{{{

{

𝑈
41
(𝑡) = −𝑧

1
(𝛽 − 1) − 𝑦

1
(𝜇 − 𝛾) − 𝑥

1

+ 𝑎
0
sin𝜔𝑡,

𝑈
42
(𝑡) = 𝑞

1
(1 − 𝛽) − 𝑚𝑧

3

1
+ 𝑧
1
(𝑚𝛼 + 𝜇)

+ 𝑦
1
(𝑚 + 1) − 𝑥

1
− 𝑎
0
sin𝜔𝑡,

𝑁
43
(𝑡) = −𝑞

3
(1 + 𝑚𝛼) − 𝑞

2
(1 + 𝑚) + 𝑚𝑧

3

2

− 𝑚𝑧
1
+ 𝛽𝑦
1
− 𝑥
1
(𝑚𝛼 + 𝛾) ,

(32)

𝑁 = 5 󳨐⇒

{{{{{{{

{{{{{{{

{

𝑈
51
(𝑡) = −𝑚𝑧

3

1
+ 𝑧
1
(𝑚𝛼 + 𝛾) + 𝑚𝑦

1
− 𝛽𝑥
1
,

𝑈
52
(𝑡) = 𝑞

1
(1 − 𝛽) + 𝑧

1
− 𝑦
1
(1 − 𝛽)

− 𝑥
1
(𝛾 − 𝜇) − 𝑎

0
sin𝜔𝑡,

𝑈
53
(𝑡) = −𝑞

3
(1 + 𝑚𝛼) − 𝑞

2
(1 + 𝑚) + 𝑚𝑧

3

2

+ 𝑧
1
− 𝑦
1
(𝑚𝛼 − 𝜇) − 𝑥

1
(𝑚 − 1)

− 𝑎
0
sin𝜔𝑡,

(33)

𝑁 = 6 󳨐⇒

{{{

{{{

{

𝑈
61
(𝑡) = −𝑚𝑧

3

1
+ 𝑧
1
(𝑚𝛼 + 𝛾) − 𝑦

1
(𝛽 − 𝑚) ,

𝑈
62
(𝑡) = 𝑞

1
(1 − 𝛽) + 2 (𝑧

1
− 𝑥
1
) ,

𝑈
63
(𝑡) = −𝑞

3
(1 + 𝑚𝛼) − 𝑞

2
(1 + 𝑚)

+ 𝑚𝑧
3

2
− 𝑦
1
(𝑚 − 𝛽) − 𝑥

1
(𝛾 + 𝑚𝛼) .

(34)

4. Numerical Simulations

Numerical solutions are now presented to verify the effective-
ness of controllers (24) and (30)–(34). In all six cases pre-
sented, the periodically driven oscillator parameters selected
remain constant at 𝑚 = 100, 𝛽 = 300, 𝛼 = 0.35, 𝛾 = 0.2,
𝜇 = 1.0, 𝑎

0
= 1.51, and 𝜔 = 10. This step is very important

such that the hyperchaotic state obtained in [50] and shown
in Figure 2 is retained and also to disable the multistability
property of the system. The synchronization of the slave (13)
with the master system (12) for different cases represented by
𝑁 = 1, 2, 3, 4, 5, and 6 is presented in Figures 3, 4, 5, 6, 7, and
8. Here, we find full/complete synchronization taking place
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Figure 7: Error dynamics for the unified and periodically forced
Van der Pol-Duffing oscillator of the system state for 𝑁 = 5 with
controller defined in (33) when the control was activated at 𝑡 = 50

for (a) 𝑒
51
, (b) 𝑒

52
, and (c) 𝑒

53
.

when each of the controllerswas activated at 𝑡 ≥ 50, where the
unified and periodically drivenVander Pol-Duffing oscillator
was found to converge to zero as time tends to infinity which
signifies that the multiswitching synchronization between
systems (12) and (13) has been achieved.We remark, however,
that quasi-synchronized (partial synchronization) state may
also be achieved. Here, the oscillators suffer from achieving
full synchronization but settle for a rather realistic form of
complete synchronization wherein the state in which the

0 50 100 150 200
−6

−4

−2

0

2

4

6

t

e 6
1

(a)

0 50 100 150 200
−1

−0.5

0

0.5

1

t

e 6
2

(b)

0 50 100 150 200
−5

0

5

t

e 6
3

(c)

Figure 8: Error dynamics for the unified and periodically forced
Van der Pol-Duffing oscillator of the system state for 𝑁 = 6 with
controller defined in (34) when the control was activated at 𝑡 = 50

for (a) 𝑒
61
, (b) 𝑒

62
, and (c) 𝑒

63
.

defining limit of synchronization is boundedwithin a definite
small region around zero. That is, lim

𝑡→∞
‖𝑒
𝑖𝑗
‖ = 𝜖 ̸= 0. We

find this phenomenon when for𝑁
1
, the switching is between

𝑦
1
and 𝑦

2
as well as, for 𝑁

3
, when, the switching is between

𝑦
2
and 𝑧

2
, denoted as 𝑒

12
and 𝑒
22

in Figures 3(b) and 4(b),
respectively. This kind of synchronization phenomena are
intriguing in nature as well as in practical situations and have
been previously reported [56–59].
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5. Conclusion

In this paper, we have presented in brief the dynamics of a
unified and periodically driven Van der Pol-Duffing oscil-
lator circuit and have shown that the model admits hyper-
chaotic behaviour when the amplitude of the driving force
is increased with a good choice of forcing frequency. Using
our model circuit, an approach for realizing multiswitching
synchronization was proposed based on active backstepping
technique. The numerical results obtained confirmed the
effectiveness of the proposed analytical method.
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[24] R. Femat and G. Soĺıs-Perales, “Synchronization of chaotic
systems with different order,” Physical Review E, vol. 65, no. 3,
Article ID 036226, 2002.

[25] J. H. Park, “Chaos synchronization between two different
chaotic dynamical systems,”Chaos, Solitons and Fractals, vol. 27,
no. 2, pp. 549–554, 2006.
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