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Based on the first-order shear deformation theory (FSDT) and the moving least-squares approximation, a new meshless model to
study the geometric nonlinear problem of ribbed rectangular plates is presented. Considering the plate and the ribs separately, the
displacement field, the stress, and strain of the plate and the ribs are obtained according to themoving least-squares approximation,
the vonKarman large deflection theory, and the FSDT.The ribs are attached to the plate by considering the displacement compatible
condition along the connections between the ribs and the plate. The virtual strain energy formulation of the plate and the ribs is
derived separately, and the nonlinear equilibrium equation of the entire ribbed plate is given by the virtual work principle. In the
new meshless model for ribbed plates, there is no limitation to the rib position; for example, the ribs need not to be placed along
the mesh lines of the plate as they need to be in FEM, and the change of rib positions will not lead to remeshing of the plate. The
proposed model is compared with the FEM models from pieces of literature and ANSYS in several numerical examples, which
proves the accuracy of the model.

1. Introduction

Ribbed plate has been widely used in engineering, such as
bridges, ship hulls, and aviation, and it is a popular structure
with obvious advantages. The ribs make the structure stiffer
and allow it to achieve larger bearing capacity than flat plate
with roughly the same weight. However, the ribs also bring
difficulties to analysis, and the calculation of ribbed plate
is more complicated than that of flat plates. Based on the
fact that the ribs of many ribbed plates are attached to the
plate with uniform spacing and close to one another, and that
ribbed plates show different elastic characteristics in the two
perpendicular directions, early researchers transformed the
ribs to an addition layer to the plate and used the orthotropic
model to approximate the ribbed plates [1]. Another early
model was the grillage model [2]. The models were simple
and fulfilled the demand of fast and easy computation in
engineering. Therefore, they are still used in some design

environments, where accurate analysis is not the first con-
cern. However, because the models were introduced in the
age of lacking computational tools and some approximations
were adopted, they cannot give satisfying results in solving
generalized ribbed plate problems. Due to the advances of
computers and numerical methods in the past decades, a
ribbed plate model which has more universality was intro-
duced, regarding the ribbed plate as a composite structure
of ribs and plate and analyzing them separately; combining
them by imposing the displacement compatibility conditions
between them, this is also themodel which is acceptedwidely.
Several methods have been developed, such as the Rayleigh-
Ritz method [3–7] and the finite element methods (FEM)
[8, 9].

Not many nonlinear analyses of ribbed plates can be
found in pieces of literature, and most of them were based on
the FEM [10–13], which benefits from the good adaptability
and high accuracy of the method. However, no method is
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perfect, and FEMs also have disadvantages.The FEMs rely on
the meshes that discretize problem domain to construct their
approximated solution, but the large deformation of problem
domain always leads to mesh disorder, and, therefore, time-
consuming and accuracy-suffering remeshing is unavoidable,
which brings difficulties to both programming and analysis.
And for ribbed plate problems, most FEMs require that the
ribs are placed along the mesh lines and any change in their
positions will lead to the remeshing of the plate domain to
accommodate the change. If the layout of ribs needs to be
optimized, there may be hundreds of times of remeshing
before obtaining the ideal result. And if the optimization is
carried out under the consideration of the large deformation
of a ribbed plate, the number of remeshing may become a
dramatic figure combing the iteration from the nonlinear
analysis. Meshless or meshfree method [14–19] is a numerical
method which bases their approximated solution entirely on
a set of nodes distributed in a problem domain. Without a
mesh, the meshless methods overcome the aforementioned
difficulties that FEM encountered with the meshes.Themov-
ing least-squares approximation originated in data fitting.
Nayroles et al. [14] were the first to use a moving least-
squares procedure to develop a meshless approximation. By
introducing moving least-squares interpolants to construct
the trial and test functions for the variation principle (weak
form), Belytschko et al. [15] improved the method proposed
byNayroles et al. [14] and proposed the element-freeGalerkin
method (EFG). Nevertheless, due to the fact that the shape
function of most meshless methods lacks Kronecker delta
properties, and that the unknowns of the governing equation
are nodal parameters other thannodal displacements, the dis-
placement compatible conditions between the components
of a composite structure cannot be implemented directly in
meshless methods as they can in FEMs when the structure is
analyzed, which limits the application of meshless methods
in engineering. Recently, the analysis of plate and composite
structure with meshless methods has made some progress.
Lei et al. [20, 21] analyzed buckling and large deformation
of functionally graded plate using the element-free kp-Ritz
method. Zhang et al. [22] used a local Kriging meshless
method to study the thermal buckling of functionally graded
plates. The author Peng and his coworkers have proposed
meshless methods to solve the linear bending, free vibration,
and elastic buckling problems of ribbed plates with a derived
transformation equation to address the nodal parameter issue
[23, 24]. However, the equation did not consider all necessary
displacement compatible conditions, which leads to failure in
solving the large deformation problem of ribbed plates. The
objective of this paper is to propose ameshlessmodel to study
the geometric nonlinear behaviors of ribbed plates from the
perspective of composite structure. Based on the first-order
shear deformation theory (FSDT), the moving least-squares
approximation (MLS) and von Karman’s large deflection the-
ory, the displacement field, nonlinear strains, and nonlinear
equilibrium equations of the plate and ribs are derived. A
new equation that transforms the nodal parameters of the
ribs to those of the plate is introduced, and the equation
allows the displacement compatible condition between the
plate and the ribs to be implemented directly. Because of

the meshless characteristics of the proposed model, the ribs
need not to be placed along the mesh lines of the plate, and
the change of rib positions will not lead to remeshing of the
plate. Mesh disorder due to the large deformation of problem
domain is avoided, as well. Some numerical examples are
utilized to demonstrate the accuracy of the proposed model.
The calculated results are compared with the results from
ANSYS andpieces of literature.Theproposedmeshlessmodel
of ribbed plate can provide a substantial ground for future
optimization of rib layout under the consideration of large
deformation.

2. Moving Least-Squares Approximation

In MLS [15], a function V(𝑥) defined in a domain Ω can be
approximated by Vℎ(𝑥) in the subdomainΩx. V

ℎ(𝑥) is defined
as

Vℎ (x) =
𝑚

∑
𝑖=1

𝑞𝑖 (x) 𝑏𝑖 (x) = qT (x) b (x) , (1)

where 𝑞𝑖(x) are the monomial basis functions, ℎ is a factor
that measures the domain of influence of the nodes, 𝑚 is the
number of basis function, and 𝑏𝑖(x) are their coefficients. In
this paper, the quadratic basis qT = [1, 𝑥, 𝑥2] (𝑚 = 3, in 1D);
qT = [1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2] (𝑚 = 6, in 2D) are used for the ribs
and plates, respectively. The unknown coefficients 𝑏𝑖(x) can
be determined by minimizing a weighted discrete 𝐿2 norm

Γ =

𝑁

∑
𝐼=1

𝜔 (x − x𝐼) [V
ℎ
(x) − V𝐼]

2

=

𝑁

∑
𝐼=1

𝜔 (x − x𝐼) [q(x𝐼)
Tb (x) − V𝐼]

2

,

(2)

where 𝜔(x − x𝐼) or 𝜔𝐼(x) is the weight function, 𝜔𝐼(x) = 0
outside Ωx, 𝑛 is the number of nodes in Ωx that makes the
weight function 𝜔𝐼(x) > 0, and V𝐼 are the nodal parameters.
Minimizing Γ with respect to b(x),

𝜕Γ

𝜕b (x)
= 0, (3)

we obtain

b (x) = A−1 (x)B (x) V, (4)

where

B (x) =
𝑛

∑
𝐼=1

𝜔 (x − x𝐼) q (x𝐼) q
T
(x𝐼) ,

A (x) = [𝜔 (x − x1) 𝑞 (x1) , 𝜔 (x − x2) q (x2) ,

. . . , 𝜔 (x − x𝑛) q (x𝑛)] .

(5)

Therefore, (1) can be expressed in a standard form as

𝑢
ℎ
(x) =

𝑛

∑
𝐼=1

𝑁𝐼 (x) V𝐼, (6)

where𝑁𝐼(x) = qT(x)B−1(x)A𝐼(x) are the shape functions.
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Figure 1: Meshless model of a ribbed plate.

3. Meshless Model of a Ribbed Plate

The meshless model of a ribbed plate, shown in Figure 1, is
composed of a plate and an 𝑥-rib. The plate and the rib are
discretized by a set of nodes. The degree of freedom (DOF)
of every node of plate is (𝑢0𝑝, V0𝑝, 𝑤𝑝, 𝜑𝑝𝑥, 𝜑𝑝𝑦), where 𝑢0𝑝,
V0𝑝, and𝑤𝑝 are the nodal translations of the plate in 𝑥, 𝑦, and
𝑧 directions, respectively. 𝜑𝑝𝑥 and 𝜑𝑝𝑦 are the rotation about
the𝑦-axis and the𝑥-axis, respectively.TheDOFof every node
of 𝑥-rib is (𝑢0𝑠𝑥, 𝑤𝑠𝑥, 𝜑𝑠𝑥).The rib is assumed to bemade from
the same material as the plate. The Young’s modulus is 𝐸 and
the Poisson’s ratio is 𝜇. If there is a𝑦-rib, we can derive similar
equations for 𝑦-rib as those for the 𝑥-rib.

3.1. Displacement Field Approximation of a Ribbed Plate.
Based on the FSDT [25, 26], the displacement field of a plate
is given as

𝑢𝑝 (𝑥, 𝑦, 𝑧) = 𝑢0𝑝 (𝑥, 𝑦) − 𝑧𝜑𝑝𝑥 (𝑥, 𝑦) ,

V𝑝 (𝑥, 𝑦, 𝑧) = V0𝑝 (𝑥, 𝑦) − 𝑧𝜑𝑝𝑦 (𝑥, 𝑦) ,

𝑤𝑝 (𝑥, 𝑦) = 𝑤𝑝 (𝑥, 𝑦) .

(7)

According to the MLS approximation, the functions
𝑢0𝑝(𝑥, 𝑦), V0𝑝(𝑥, 𝑦), 𝑤𝑝(𝑥, 𝑦), 𝜑𝑝𝑥(𝑥, 𝑦), and 𝜑𝑝𝑦(𝑥, 𝑦) can be
expressed in a discrete form

𝑢𝑝 (𝑥, 𝑦, 𝑧) =

𝑛

∑
𝐼=1

𝑁𝐼 (𝑥, 𝑦) 𝑢0𝑝𝐼 − 𝑧

𝑛

∑
𝐼=1

𝑁𝐼 (𝑥, 𝑦) 𝜑𝑝𝑥𝐼,

V𝑝 (𝑥, 𝑦, 𝑧) =
𝑛

∑
𝐼=1

𝑁𝐼 (𝑥, 𝑦) V0𝑝𝐼 − 𝑧
𝑛

∑
𝐼=1

𝑁𝐼 (𝑥, 𝑦) 𝜑𝑝𝑦𝐼,

𝑤𝑝 (𝑥, 𝑦) =

𝑛

∑
𝐼=1

𝑁𝐼 (𝑥, 𝑦)𝑤𝑝𝐼,

(8)

where {𝑢0𝑝𝐼, V0𝑝𝐼, 𝑤𝑝𝐼, 𝜑𝑝𝑥𝐼, 𝜑𝑝𝑦𝐼}
T

= 𝛿𝑝𝐼 are the nodal
parameters of the 𝐼th node of the plate,𝑛 is the number
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Figure 2: Section of plate and x-rib.

of nodes of the plate, 𝜑𝑝𝑥 and 𝜑𝑝𝑦 are independent of 𝑤𝑝.
Similarly, the displacement field of the 𝑥-rib is

𝑢𝑠𝑥 (𝑥, 𝑧) = 𝑢0𝑠 (𝑥) − 𝑧𝜑𝑠𝑥 (𝑥)

=

𝑁

∑
𝐼=1

Φ𝑥𝐼 (𝑥) 𝑢0𝑠𝐼 − 𝑧

𝑁

∑
𝐼=1

Φ𝑥𝐼 (𝑥) 𝜑𝑠𝑥𝐼,

𝑤𝑠𝑥 (𝑥) =

𝑁

∑
𝐼=1

Φ𝑥𝐼 (𝑥) 𝑤𝑠𝑥𝐼,

(9)

where {𝑢0𝑠𝐼, 𝑤𝑠𝑥𝐼, 𝜑𝑠𝑥𝐼}
T
= 𝛿𝑠𝑥𝐼 are the nodal parameters of

the𝑥-rib and𝑁 is the number of nodes of the𝑥-rib.The shape
functions𝑁𝐼(𝑥, 𝑦) andΦ𝑥𝐼(𝑥) are obtained from (6), and the
cubic spline function is used as the weight function.

3.2. A New Transformation Equation of the Nodal Parameters.
Along the axis of the 𝑥-rib (Figure 1), we take a normal
section parallel to 𝑧-axis, as shown in Figure 2.

For a node 𝑆 of the 𝑥-rib, there will be a corresponding
point 𝑃 on the plate, and they have the same 𝑥 and 𝑦

coordinates. Their displacements follow

[𝑤𝑝]𝑃
= [𝑤𝑠𝑥]𝑆, (10)

[𝜑𝑝𝑥]𝑃
= [𝜑𝑠𝑥]𝑆. (11)

And necessarily, at the corresponding point of Node 𝑆 and
Point 𝑃 in the contact surface between the plate and 𝑥-rib,
Point 𝐶 is

[𝑢𝑝]𝐶
= [𝑢𝑠𝑥]𝐶. (12)

Remark 1. Point 𝑃 can be any point on the plate that
corresponds to Node 𝑆. For every node of the 𝑥-rib, a
corresponding point on the plate can be found. Similar to
the process in [23, 24], the equations that transform the
nodal parameters 𝑤𝑠𝑥𝐼 and 𝜑𝑠𝑥𝐼 of the 𝑥-rib into the nodal
parameters of the plate can be derived as

𝛿𝑠𝑥𝑤 = T𝑠𝑝𝛿𝑝𝑤, 𝛿𝑠𝑥𝜑 = T𝑠𝑝𝛿𝑝𝑥𝜑, (13)
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where

𝛿𝑠𝑥𝑤 = {𝑤𝑠𝑥1, 𝑤𝑠𝑥2, . . . , 𝑤𝑠𝑥𝑁}
T
,

T𝑠𝑝 = T−1
𝑠𝑥
T𝑝,

T𝑝 =
[
[
[
[

[

𝑁1 (𝑥1, 𝑦1) 𝑁2 (𝑥1, 𝑦1) ⋅ ⋅ ⋅ 𝑁𝑛 (𝑥1, 𝑦1)

𝑁1 (𝑥2, 𝑦2) 𝑁2 (𝑥2, 𝑦2) ⋅ ⋅ ⋅ 𝑁𝑛 (𝑥2, 𝑦2)
...

... d
...

𝑁1 (𝑥𝑁, 𝑦𝑁) 𝑁2 (𝑥𝑁, 𝑦𝑁) ⋅ ⋅ ⋅ 𝑁𝑛 (𝑥𝑁, 𝑦𝑁)

]
]
]
]

]

,

𝛿𝑝𝑤 = {𝑤𝑝1, 𝑤𝑝2, . . . , 𝑤𝑝𝑛}
T
,

T𝑠𝑥 =
[
[
[
[

[

Φ𝑥1 (𝑥1) Φ𝑥2 (𝑥1) ⋅ ⋅ ⋅ Φ𝑥𝑁 (𝑥1)

Φ𝑥1 (𝑥2)
...

Φ𝑥2 (𝑥2)
...

⋅ ⋅ ⋅

d
Φ𝑥𝑁 (𝑥2)

...
Φ𝑥1 (𝑥𝑁) Φ𝑥2 (𝑥𝑁) ⋅ ⋅ ⋅ Φ𝑥𝑁 (𝑥𝑁)

]
]
]
]

]

,

𝛿𝑠𝑥𝑤 = {𝑤𝑠𝑥1, 𝑤𝑠𝑥2, . . . , 𝑤𝑠𝑥𝑁}
T
.

(14)

T𝑝 is an 𝑁 × 𝑛 matrix, 𝛿𝑝𝑤 is an 𝑛 × 1 vector, T𝑠𝑥 is an 𝑁 ×

𝑁 square matrix, and 𝛿𝑠𝑥𝑤 is an 𝑁 × 1 vector. Every row of
T𝑝 and T𝑠𝑥 matrices corresponds to a node of the rib, and,
therefore, the matrices have𝑁 rows. Equation (12) also gives
𝑁 equations as

[𝑢𝑝]𝑖
= [𝑢𝑠𝑥]𝑖, (𝑖 = 1, 2, . . . , 𝑁) , (15)

or

𝑢𝑝 (𝑥𝑖, 𝑦𝑖,
−ℎ𝑝

2
) = 𝑢𝑠𝑥 (𝑥𝑖,

ℎ𝑠𝑥

2
) , (𝑖 = 1, 2, . . . , 𝑁) , (16)

where ℎ𝑝 is the thickness of the plate and ℎ𝑠𝑥 is the depth of
the 𝑥-rib. According to the FSDT, (16) can be written as

𝑢0𝑝 (𝑥𝑖, 𝑦𝑖) +
ℎ𝑝

2
𝜑𝑝𝑥 (𝑥𝑖, 𝑦𝑖) = 𝑢0𝑠 (𝑥𝑖) −

ℎ𝑠𝑥

2
𝜑𝑠𝑥 (𝑥𝑖)

(𝑖 = 1, 2, . . . , 𝑁) .

(17)

And because 𝜑𝑝𝑥(𝑥𝑖, 𝑦𝑖) = 𝜑𝑠𝑥(𝑥𝑖) (𝑖 = 1, 2, . . . , 𝑁) (11),

𝑢0𝑝 (𝑥𝑖, 𝑦𝑖) +
(ℎ𝑝 + ℎ𝑠𝑥)

2
𝜑𝑝𝑥 (𝑥𝑖, 𝑦𝑖) = 𝑢0𝑠 (𝑥𝑖) ,

(𝑖 = 1, 2, . . . , 𝑁) .

(18)

The discrete form of (18) is
𝑛

∑
𝐼=1

𝑁𝐼 (𝑥𝑖, 𝑦𝑖) 𝑢0𝑝𝐼 + 𝑒𝑠

𝑛

∑
𝐼=1

𝑁𝐼 (𝑥𝑖, 𝑦𝑖) 𝜑𝑝𝑥𝐼

=

𝑁

∑
𝐽=1

Φ𝑥𝐽 (𝑥𝑖) 𝑢0𝑠𝐽, (𝑖 = 1, 2, . . . , 𝑁)

(19)

or

T𝑝𝛿𝑝𝑢 + 𝑒𝑠T𝑝𝛿𝑝𝑥𝜑 = T𝑠𝑥𝛿𝑠𝑢, (20)

where 𝛿𝑝𝑢 = {𝑢0𝑝1, 𝑢0𝑝2, . . . , 𝑢0𝑝𝑛}
T, 𝛿𝑠𝑢 = {𝑢0𝑠1, 𝑢0𝑠2, . . . ,

𝑢0𝑠𝑛}
T, and 𝑒𝑠 = (ℎ𝑝 + ℎ𝑠𝑥)/2. Equation (20) leads to

𝛿𝑠𝑢 = T−1
𝑠𝑥
T𝑝𝛿𝑝𝑢 + 𝑒𝑠T

−1

𝑠𝑥
T𝑝𝛿𝑝𝑥𝜑. (21)

For concentrically ribbed plates, just take 𝑒𝑠 = 0. The
combination of (13) and (21) gives a new equation that
expresses the nodal parameters of the 𝑥-rib in terms of the
nodal parameters of the plate as follows:

𝛿𝑠𝑥 = T𝑠𝑝𝑥𝛿𝑝, (22)

where 𝛿𝑠𝑥 = {𝑢0𝑠1, 𝑤𝑠𝑥1, 𝜑𝑠𝑥1, 𝑢0𝑠2, 𝑤𝑠𝑥2, 𝜑𝑠𝑥2, . . . , 𝑢0𝑠𝑁, 𝑤𝑠𝑥𝑁,

𝜑𝑠𝑥𝑁}
T, 𝛿𝑝 = {𝑢0𝑝1, V0𝑝1, 𝑤𝑝1, 𝜑𝑝𝑥1,𝜑𝑝𝑦1,𝑢0𝑝2, V0𝑝2, 𝑤𝑝2, 𝜑𝑝𝑥2,

𝜑𝑝𝑦2, . . . , 𝑢0𝑝𝑛, V0𝑝𝑛, 𝑤𝑝𝑛, 𝜑𝑝𝑥𝑛,𝜑𝑝𝑦𝑛}
𝑇, and T𝑠𝑝𝑥 is a 3𝑁 × 5𝑛

matrix.

With this new transformation equation (22), themeshless
model for ribbed plate is more applicable. No matter how
the position of ribs changes, we only need to recalculate
T𝑝. Therefore, compared with a finite element model, this
meshless model for ribbed plate is expected to have more
advantages in future optimization analysis of rib position.

3.3. Strains and Stresses of the Plate and Rib. According to the
FSDT and the von Karman theory, the strains of an isotropic
plate are

𝜀𝑝 =

{{{{{

{{{{{

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧

}}}}}

}}}}}

}

=

{{{{{{{{{

{{{{{{{{{

{

𝜀
0

𝑥

𝜀0
𝑦

𝛾0
𝑥𝑦

0

0

}}}}}}}}}

}}}}}}}}}

}

+

{{{{{{{{{{{{

{{{{{{{{{{{{

{

−𝑧𝜀
1

𝑥

−𝑧𝜀1
𝑦

−𝑧𝛾1
𝑥𝑦

𝛾1
𝑥𝑧

𝛾1
𝑦𝑧

}}}}}}}}}}}}

}}}}}}}}}}}}

}

+

{{{{{{{{{

{{{{{{{{{

{

𝜀
𝐿

𝑥

𝜀𝐿
𝑦

𝛾𝐿
𝑥𝑦

0

0

}}}}}}}}}

}}}}}}}}}

}

. (23)

For convenience, 𝜀𝑝 is rewritten as

𝜀𝑝 =

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝜀
0

𝑥

𝜀0
𝑦

𝛾0
𝑥𝑦

0

0

0

0

0

}}}}}}}}}}}}}}}

}}}}}}}}}}}}}}}

}

+

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

0

0

0

−𝑧𝜀
1

𝑥

−𝑧𝜀1
𝑦

−𝑧𝛾1
𝑥𝑦

𝛾1
𝑥𝑧

𝛾1
𝑦𝑧

}}}}}}}}}}}}}}}}}}

}}}}}}}}}}}}}}}}}}

}

+

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝜀
𝐿

𝑥

𝜀𝐿
𝑦

𝛾𝐿
𝑥𝑦

0

0

0

0

0

}}}}}}}}}}}}}}}

}}}}}}}}}}}}}}}

}

, (24)
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where the linear component of the strain includes

{{{{{

{{{{{

{

𝜀
0

𝑥

𝜀0
𝑦

𝛾0
𝑥𝑦

}}}}}

}}}}}

}

=
{

{

{

𝑢0𝑝,𝑥
V0𝑝,𝑦

𝑢0𝑝,𝑦 + V0𝑝,𝑥

}

}

}

=

𝑛

∑
𝐼=1

B𝑒
𝑏𝐼
𝛿𝑝𝐼,

{{{{{

{{{{{

{

𝜀
1

𝑥

𝜀1
𝑦

𝛾
1

𝑥𝑦

}}}}}

}}}}}

}

=
{

{

{

𝜑𝑝𝑥,𝑥
𝜑𝑝𝑦,𝑦

𝜑𝑝𝑥,𝑦 + 𝜑𝑝𝑦,𝑥

}

}

}

=

𝑛

∑
𝐼=1

B𝑏
𝑏𝐼
𝛿𝑝𝐼,

{
𝛾1
𝑥𝑧

𝛾1
𝑦𝑧

} = {
𝑤𝑝,𝑥 − 𝜑𝑝𝑥
𝑤𝑝,𝑦 − 𝜑𝑝𝑦

} =

𝑛

∑
𝐼=1

B𝑠𝐼𝛿𝑝𝐼,

(25)

where

B𝑒
𝑏𝐼
= [

[

𝑁𝐼,𝑥 0 0 0 0

0 𝑁𝐼,𝑦 0 0 0

𝑁𝐼,𝑦 𝑁𝐼,𝑥 0 0 0

]

]

,

B𝑏
𝑏𝐼
= [

[

0 0 0 𝑁𝐼,𝑥 0

0 0 0 0 𝑁𝐼,𝑦
0 0 0 𝑁𝐼,𝑦 𝑁𝐼,𝑥

]

]

,

B𝑠𝐼 = [
0 0 𝑁𝐼,𝑥 −𝑁𝐼 0

0 0 𝑁𝐼,𝑦 0 −𝑁𝐼
] .

(26)

The nonlinear component of the strain

{{{{{

{{{{{

{

𝜀
𝐿

𝑥

𝜀𝐿
𝑦

𝛾𝐿
𝑥𝑦

}}}}}

}}}}}

}

=

{{{{{

{{{{{

{

1

2
(𝑤𝑝,𝑥)

2

1

2
(𝑤𝑝,𝑦)

2

𝑤𝑝,𝑥 ⋅ 𝑤𝑝,𝑦

}}}}}

}}}}}

}

=
1

2
[

[

𝑤𝑝,𝑥 0

0 𝑤𝑝,𝑦
𝑤𝑝,𝑦 𝑤𝑝,𝑥

]

]

{
𝑤𝑝,𝑥
𝑤𝑝,𝑦

}

=
1

2
C
𝑛

∑
𝐼=1

G𝐼𝛿𝑝𝐼,

(27)

where

C = [𝑤𝑝,𝑥 0 𝑤𝑝,𝑦
0 𝑤𝑝,𝑦 𝑤𝑝,𝑥

]

T

,

G𝐼 = [
0 0 𝑁𝐼,𝑥 0 0

0 0 𝑁𝐼,𝑦 0 0
] .

(28)

The stress is

𝜎𝑝 =

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝜎
0

𝑥

𝜎0
𝑦

𝜏0
𝑥𝑦

0

0

0

0

0

}}}}}}}}}}}}}}}

}}}}}}}}}}}}}}}

}

+

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

0

0

0

𝜎
1

𝑥

𝜎1
𝑦

𝜏1
𝑥𝑦

𝜏1
𝑥𝑧

𝜏1
𝑦𝑧

}}}}}}}}}}}}}}}}}}

}}}}}}}}}}}}}}}}}}

}

+

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝜎
𝐿

𝑥

𝜎𝐿
𝑦

𝜏𝐿
𝑥𝑦

0

0

0

0

0

}}}}}}}}}}}}}}}

}}}}}}}}}}}}}}}

}

= D𝑝𝜀𝑝, (29)

where

D𝑝 = [
D𝑒 0
0 D𝑏] , D𝑒 = 𝐸

1 − 𝜇2
[
[

[

1 𝜇 0

𝜇 1 0

0 0
1 − 𝜇

2

]
]

]

,

D𝑏 = 𝐸

1 − 𝜇2

[
[
[
[
[
[
[
[
[

[

1 𝜇 0 0 0

𝜇 1 0 0 0

0 0
1 − 𝜇

2
0 0

0 0 0
1 − 𝜇

2
0

0 0 0 0
1 − 𝜇

2

]
]
]
]
]
]
]
]
]

]

.

(30)

The strain of an isotropic 𝑥-rib is

𝜀𝑠𝑥 = {
𝜀𝑥
𝑠𝑥

𝛾𝑥𝑧
𝑠𝑥

} = {
𝜀
0

𝑥
𝑠𝑥

0
} + {

−𝑧𝜀1
𝑥
𝑠𝑥

𝛾1
𝑥𝑧
𝑠𝑥

} + {
𝜀𝐿
𝑥
𝑠𝑥

0
} , (31)

which can be rewritten as

𝜀𝑠𝑥 =
{

{

{

𝜀0
𝑥
𝑠𝑥

0

0

}

}

}

+

{{

{{

{

0

−𝑧𝜀
1

𝑥
𝑠𝑥

𝛾1
𝑥𝑧
𝑠𝑥

}}

}}

}

+
{

{

{

𝜀
𝐿

𝑥
𝑠𝑥

0

0

}

}

}

, (32)

where the linear component of the strain is

𝜀
0

𝑥
𝑠𝑥

= 𝑢0𝑠,𝑥 =

𝑁

∑
𝐼=1

B𝑒
𝑠𝑥𝐼
𝛿𝑠𝑥𝐼, (33)

𝜀
1

𝑥
𝑠𝑥

= 𝜑𝑠𝑥,𝑥 =

𝑁

∑
𝐼=1

B𝑏
𝑠𝑥𝐼
𝛿𝑠𝑥𝐼, (34)

𝛾
1

𝑥𝑧
𝑠𝑥

= 𝑤𝑠𝑥,𝑥 − 𝜑𝑠𝑥 =

𝑁

∑
𝐼=1

B𝑠𝑥𝑠𝐼𝛿𝑠𝑥𝐼, (35)

where

B𝑒
𝑠𝑥𝐼
= [Φ𝑥𝐼,𝑥 0 0], B𝑏

𝑠𝑥𝐼
= [0 0 Φ𝑥𝐼,𝑥],

B𝑠𝑥𝑠𝐼 = [0 Φ𝑥𝐼,𝑥 −Φ𝑥𝐼].
(36)

The nonlinear component of the strain is

𝜀
𝐿

𝑥
𝑠𝑥

=
1

2
(𝑤𝑠𝑥,𝑥)

2
=
1

2
(𝑤𝑠𝑥,𝑥) ⋅ (𝑤𝑠𝑥,𝑥) =

1

2
C𝑠𝑥
𝑁

∑
𝐼=1

G𝑠𝑥𝐼𝛿𝑠𝑥𝐼,

(37)

where C𝑠𝑥 = 𝑤𝑠𝑥,𝑥, G𝑠𝑥𝐼 = [0 Φ𝑥𝐼,𝑥 0].
The stress is

𝜎𝑠𝑥 =
{

{

{

𝜎0
𝑥
𝑠𝑥

0

0

}

}

}

+

{{

{{

{

0

𝜎
1

𝑥
𝑠𝑥

𝜏1
𝑥𝑧
𝑠𝑥

}}

}}

}

+
{

{

{

𝜎
𝐿

𝑥
𝑠𝑥

0

0

}

}

}

=
{

{

{

𝐸𝜀
0

𝑥
𝑠𝑥

0

0

}

}

}

+

{{{

{{{

{

0

−𝑧𝐸𝜀
1

𝑥
𝑠𝑥

𝐸

2 (1 + 𝜇)
𝛾1
𝑥
𝑠𝑥

}}}

}}}

}

+
{

{

{

𝐸𝜀
𝐿

𝑥
𝑠𝑥

0

0

}

}

}

= D𝑠𝑥𝜀𝑠𝑥,

(38)
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where

D𝑠𝑥 =
[
[
[

[

𝐸 0 0

0 𝐸 0

0 0
𝐸

2 (1 + 𝜇)

]
]
]

]

. (39)

3.4. Nonlinear Formulations of the Ribbed Plate. The virtual
work equation of the ribbed plate is

𝑑𝛿
T
𝑝
⋅Ψ = ∫𝑑𝜀

T
𝑝
⋅ 𝜎𝑝𝑑V + ∫𝑑𝜀

T
𝑠𝑥
⋅ 𝜎𝑠𝑥𝑑V − 𝑑𝛿

T
𝑝
⋅ F1 = 0,

(40)

whereΨ is the sum of the internal and external force vectors,
F1 is the sum of all of the loading vectors, 𝑑𝛿𝑝 is the virtual
displacement and 𝑑𝜀𝑝 is the virtual strain of the plate, and
𝑑𝜀𝑠𝑥 is the virtual strain of the x-rib.We can write the relation
between the strain and nodal parameters in an increment
form as

𝑑𝜀𝑝 = B𝑑𝛿𝑝, (41)

𝑑𝜀𝑠𝑥 = B𝑠𝑥𝑑𝛿𝑠𝑥. (42)

Substituting (22) into (42), we have

𝑑𝜀𝑠𝑥 = B𝑠𝑥T𝑠𝑝𝑥𝑑𝛿𝑝. (43)

The substitution of (41) and (43) into (40) gives us the
nonlinear equilibrium equation of the entire ribbed plate as
follows:

Ψ (𝛿𝑝) = ∫BT
⋅ 𝜎𝑝𝑑V + ∫TT

𝑠𝑝𝑥
BT
𝑠𝑥
⋅ 𝜎𝑠𝑥𝑑V − F1 = 0, (44)

where

B = B0 + B𝐿 (𝛿𝑝) , B𝑠𝑥 = B
0
𝑠𝑥

+B𝐿
𝑠𝑥

(𝛿𝑠𝑥) ,

B0 = [B01,B02 . . .B0𝑛] , B0𝐼 =
[
[
[

[

B𝑒
𝑏𝐼

−𝑧B𝑏
𝑏𝐼

B𝑠𝐼

]
]
]

]

,

B0
𝑠𝑥

= [B01
𝑠𝑥

,B02
𝑠𝑥

. . .B0𝑁
𝑠𝑥

], B0𝐼
𝑠𝑥

=
[
[
[

[

B𝑒
𝑠𝑥𝐼

−𝑧B𝑏
𝑠𝑥𝐼

B𝑠𝑥𝑠𝐼

]
]
]

]

.

(45)

B𝐿 is the function of 𝛿𝑝, where

B𝐿 = [B𝐿1,B𝐿2 . . .B𝐿𝑛] , B𝐿𝐼 =
{

{

{

C
0
0

}

}

}

G𝐼. (46)

B𝐿
𝑠𝑥

is the function of 𝛿𝑠𝑥, where

B𝐿
𝑠𝑥

= [B𝐿1
𝑠𝑥

,B𝐿2
𝑠𝑥

. . .B𝐿𝑁
𝑠𝑥

], B𝐿𝐼
𝑠𝑥

= C𝑠𝑥G𝑠𝑥𝐼. (47)

From (44), we have

𝑑Ψ = ∫𝑑BT
⋅ 𝜎𝑝𝑑V + ∫BT

⋅ 𝑑𝜎𝑝𝑑V

+ ∫TT
𝑠𝑝𝑥
𝑑BT
𝑠𝑥
⋅ 𝜎𝑠𝑥𝑑V + ∫TT

𝑠𝑝𝑥
BT
𝑠𝑥
⋅ 𝑑𝜎𝑠𝑥𝑑V.

(48)

Employing (29), (35), (41), and (43), we have

𝑑𝜎𝑝 = D𝑝𝑑𝜀𝑝 = D𝑝B𝑑𝛿𝑝, (49)

𝑑𝜎𝑠𝑥 = D𝑠𝑥𝑑𝜀𝑠𝑥 = D𝑠𝑥B𝑠𝑥𝑑𝛿𝑠𝑥 = D𝑠𝑥B𝑠𝑥T𝑠𝑝𝑥𝑑𝛿𝑝. (50)

Equation (45) gives us

𝑑B = 𝑑B𝐿, 𝑑B𝑠𝑥 = 𝑑B𝐿
𝑠𝑥

. (51)

Substituting (49), (50), and (51) into (48), we obtain

𝑑Ψ = ∫𝑑BT
𝐿
⋅ 𝜎𝑝𝑑V + K𝑑𝛿𝑝

+ ∫TT
𝑠𝑝𝑥
𝑑BT
𝐿
𝑠𝑥

⋅ 𝜎𝑠𝑥𝑑V + TT
𝑠𝑝𝑥

K𝑠𝑥T𝑠𝑝𝑥𝑑𝛿𝑝,
(52)

where

K = ∫BTD𝑝B𝑑V = K0 + K𝐿 = ∫BT
0
D𝑝B0𝑑V

+ ∫ (BT
0
D𝑝B𝐿 + BT

𝐿
D𝑝B𝐿 + BT

𝐿
D𝑝B0) 𝑑V,

∫ 𝑑BT
𝐿
⋅ 𝜎𝑝𝑑V = K𝜎𝑑𝛿𝑝 = (∫GTSG 𝑑V)𝑑𝛿𝑝,

(53)

where

G = [G1,G2 . . .G𝑛] ,

S = [𝑄𝑥 𝑄𝑥𝑦
𝑄𝑥𝑦 𝑄𝑦

] ,

{𝑄𝑥 𝑄𝑦 𝑄𝑥𝑦}
T
= ∫
ℎ
𝑝
/2

−ℎ
𝑝
/2

{𝜎𝑥 𝜎𝑦 𝜏𝑥𝑦}
T
𝑑𝑧.

(54)

We can obtainK𝑠𝑥 and ∫TT
𝑠𝑝𝑥
𝑑BT
𝐿
𝑠𝑥

⋅𝜎𝑠𝑥 𝑑V for x-rib similarly.
Therefore, (52) can be written as

𝑑Ψ = (K0 + K𝜎 + K𝐿) 𝑑𝛿𝑝

+ TT
𝑠𝑝𝑥
(K0
𝑠𝑥

+ K𝜎
𝑠𝑥

+ K𝐿
𝑠𝑥

)T𝑠𝑝𝑥𝑑𝛿𝑝 = K𝑇𝑑𝛿𝑝,
(55)

where

K𝑇 = K0 + K𝜎 + K𝐿 + TT
𝑠𝑝𝑥
(K0
𝑠𝑥

+ K𝜎
𝑠𝑥

+ K𝐿
𝑠𝑥

)T𝑠𝑝𝑥. (56)
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From (44), we obtain

Ψ=∫BT
⋅ 𝜎𝑝𝑑V + ∫TT

𝑠𝑝𝑥
BT
𝑠𝑥
⋅ 𝜎𝑠𝑥𝑑V − F1

= ∫ (B0 + B𝐿)D𝑝 (B0 +
1

2
B𝐿)𝑑V𝛿𝑝

+ TT
𝑠𝑝𝑥
∫(B0

𝑠𝑥

+ B𝐿
𝑠𝑥

)D𝑠𝑥 (B0 +
1

2
B𝐿)𝑑VT𝑠𝑝𝑥𝛿𝑝 − F1

= (K𝑠 + TT
𝑠𝑝𝑥

K𝑠
𝑠𝑥

T𝑠𝑝𝑥) 𝛿𝑝 − F1

= K
𝑠𝑒
𝛿𝑝 − F1,

(57)

where

K𝑠𝑒 = K𝑠 + TT
𝑠𝑝𝑥

K𝑠
𝑠𝑥

T𝑠𝑝𝑥,

K𝑠 = ∫BT
0
D𝑝B0𝑑V +

1

2
∫BT
0
D𝑝B𝐿𝑑V

+ ∫BT
𝐿
D𝑝B0𝑑V +

1

2
∫BT
𝐿
D𝑝B𝐿𝑑V,

K𝑠
𝑠𝑥

= ∫BT
0
𝑠𝑥

D𝑠𝑥B0
𝑠𝑥

𝑑V +
1

2
∫BT
0
𝑠𝑥

D𝑠𝑥B𝐿
𝑠𝑥

𝑑V

+ ∫BT
𝐿
𝑠𝑥

D𝑠𝑥B0
𝑠𝑥

𝑑V +
1

2
∫BT
𝐿
𝑠𝑥

D𝑠𝑥B𝐿
𝑠𝑥

𝑑V.

(58)

3.5. Solution to the Nonlinear Equilibrium Equations. This
paper used the Newton-Raphson method to solve nonlinear
equilibrium equation (57). The process is as follows.

(1) Take linear solution {𝛿𝑝}0 as the first approximated
solution {𝛿𝑝}1.

(2) Substituting {𝛿𝑝}1 into (57) to calculateΨ1.

(3) Employ (55) to determine K𝑇.

(4) Obtain the incremental displacements by

Δ{𝛿𝑝}2
= −K−1
𝑇
Ψ1, (59)

and the improved solution

{𝛿𝑝}2
= {𝛿𝑝}1

+ Δ{𝛿𝑝}2
. (60)

(5) Return to step (2) and repeat steps (2) to (5) untilΨ𝑛
is sufficiently small and {𝛿𝑝}𝑛 is the final solution.

3.6. Enforcement of Essential Boundary Conditions. Due to
a lack of Kronecker delta properties in the shape functions
given in (6), it is difficult to impose the essential boundary
conditions. The full transformation method that Chen et
al. [17] introduced is adopted in this paper to enforce the
essential boundary conditions.
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Figure 3: Nonlinear deflection of the flat plate under different 𝑑max
and Nc.

4. Results and Discussion

4.1. Validation Studies. To show the convergence of the
proposed model, and the influences of the support size of the
nodes and the order of the basic functions, a clamped square
plate subjected to a uniformly distributed pressure of 100 Pa
is studied.The width of the plate is 1.8m, and the thickness is
0.018m. The Young’s modulus of the plate is 𝐸 = 3 × 107 Pa
and the Poisson’s ratio is 𝜇 = 0.3.

The nonlinear deflection of the central point of the plate
that is obtained by the proposed model under different
support sizes (which are denoted by scaling factors, 𝑑max)
and different completeness orders of the basic functions𝑁𝑐 is
shown in Figure 3, and is compared with the solution that is
given by the finite element software, ANSYS, using SHELL63
element.

In this paper, rectangular support is employed, and thus
the scaling factors 𝑑𝑥max and 𝑑

𝑦

max are defined by

𝑑
𝑥

max =
𝑙𝑥

ℎ𝑚𝑥
, 𝑑

𝑦

max =
𝑙𝑦

ℎ𝑚𝑦
, (61)

where 𝑙𝑥, 𝑙𝑦 are the lengths of the rectangular support of
nodes in the 𝑥 and 𝑦 directions, respectively, and ℎ𝑚𝑥, ℎ𝑚𝑦
are the distances between the two neighboring nodes in the
𝑥 and 𝑦 directions, respectively. For convenience, we choose
𝑑
𝑥

max = 𝑑
𝑦

max = 𝑑max. From Figure 3, it can be observed that
for a certain meshless scheme (in this case 9 × 9 nodes) and
all of the solutions for different completeness orders (𝑁𝑐) of
the basic functions converge when the support size (𝑑max) is
larger than 5. Higher completeness orders (Nc) need a larger
support size to make the solution converge.

Secondly, we vary the meshless scheme and obtain the
variations of the nonlinear central deflection under certain
completeness order of the basic functions (𝑁𝑐), which are
shown in Figures 4, 5, and 6, respectively. The solution that is
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Figure 4: Variation of nonlinear deflection of the flat plate,𝑁𝑐 = 2.
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Figure 5: Variation of linear deflection of the flat plate,𝑁𝑐 = 3.

given by ANSYS is also in the figures for comparison. Figures
4 to 6 indicate that for certain 𝑑max, the solution converges
when the number of nodes increases. For certain 𝑁𝑐, the
solutions for larger support sizes (𝑑max) converge before those
for smaller support sizes do.

From the studies, we find that when the order of basic
functions 𝑁𝑐 = 2 and the support size 𝑑max = 4 for the
plate, the solutions are precise enough with a relatively lower
computational cost. A similar convergence study for ribs can
be carried out, and the solution given under 𝑁𝑐 = 2 and the
support size 𝑑max = 2 for the rib is found to be satisfying.
Therefore, all of the following examples are calculated with
𝑁𝑐 = 2, 𝑑max = 4 (for the plate), and 𝑑max = 2 (for the ribs).
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Figure 6: Variation of linear deflection of the flat plate,𝑁𝑐 = 4.

Table 1: Central deflection of the rectangular plate with one rib
under different loads.

Load (MPa) Koko and Olson [10]
(mm)

Present
results (mm)

Relative
errors

0.2 5.526 5.31654 3.8%
0.3 7.172 6.9253 3.4%
0.4 8.631 8.47243 1.8%
0.5 9.868 9.82917 0.4%
0.6 11.053 11.0406 0.1%
0.7 11.974 12.1373 −1.4%
0.8 12.961 13.1409 −1.4%

4.2. Rectangular Plate with One Rib. A rectangular plate
clamped at two opposite sides and with one rib (Figure 7)
located at 𝑥 = 500mm is studied.

The two other sides of the plate are free. Both the plate and
the rib are made of the same material, with Young’s modulus
𝐸 = 71.7GPa and Poisson’s ratio 𝜇 = 0.3. The plate is under
a uniformly distributed load 𝑞 in the 𝑧-direction, and the q
ranges from 0.2 to 0.8MPa. The central deflections of the
plate obtained by the proposedmodel and given by Koko and
Olson [10] under different loads are shown in Table 1. The
present solution is based on the following discrete scheme:
13 × 13 for the plate and 13 for the rib.

4.3. Square Plate with Two Cross Ribs. A simply supported
square plate with two ribs is studied. The ribs are located at
𝑥 = 0.5m and 𝑦 = 0.5m, and they are made of the same
material (Figure 8) as the plate.

Young’s modulus and Poisson’s ratio are 𝐸 = 71.7GPa
and 𝜇 = 0.33, respectively. Under a uniformly distributed
load 𝑞 in the 𝑧-direction, the load-central deflection curves of
the plate given by the proposed model and a large deflection
analysis of FEM are shown in Figure 9.When the plate is fully
clamped, the load-central stress 𝜎𝑥 curves of the top surface
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Figure 8: Square plate with two cross ribs.

of the plate are shown in Figure 10. The solution of FEM
is obtained using ANSYS software with a three-dimensional
model (SOLID45 element is used). The number of discrete
elements is 30416 (Figure 11), and two layers are used along
the thickness. Figure 9 shows good agreement. In Figure 10,
one can observe that the present results given by a discrete
scheme of 13 × 13 nodes have some differences from the
results of ANSYS, but the results given by a discrete scheme
of 17 × 17 nodes agree well with the results of ANSYS. It
illustrates that the proposed model need more discrete nodes
to calculate stress than it need to calculate displacement.

If the thickness of the plate is increased to 0.1m and the
plate is clamped, the load-central deflection curves of the
plate are shown in Figure 12.

4.4. Square Plate with One Rib and Different Discretization
Schemes. A square plate with one rib located at 𝑥 = 0.5m
(Figure 13) is studied.The rib is made of the same material as
the plate. Consider 𝐸 = 1.7 × 107 Pa and 𝜇 = 0.3.

The plate is under a uniformly distributed load q that
ranges from 0 to 0.1MPa in the 𝑧-direction. To test the new
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Figure 9: Load-central deflection curve of the simply supported
square plate with two ribs.
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Figure 10: Load-stress curve of the clamped square plate with two
ribs.

transformation equation (22) that was derived in Section 3.2,
the central deflection of the plate is given by ANSYS and
the proposed model (with different meshless schemes). In
ANSYS, a three-dimensional model for the ribbed plate
is used, and the number of discrete elements (SOLID45
element) is 1800 (Figure 14).

Firstly, the present results (Figure 17) are computed using
81 plate nodes (uniform and nonuniform distribution, as
shown in Figures 15 and 16, resp.).

Secondly, the present results (Figure 20) are calculated by
discretizing the plate with 121 nodes (uniform and nonuni-
form distribution, as shown in Figures 18 and 19, resp.).
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Figure 15: Nonuniform distribution of the 81 plate nodes.

Figure 16: Uniform distribution of the 9 × 9 plate nodes.
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Figure 17: Central deflection of the clamped plate with one rib (81
nodes).

Figure 18: Nonuniform distribution of the 121 plate nodes.

Figure 19: Uniform distribution of the 11 × 11 plate nodes.

ANSYS results

0 2000 4000 6000 8000 10000

0.00

0.02

0.04

0.06

0.08

0.10

C
en

tr
al

 d
efl

ec
tio

n 
(m

)

Present results (nonuniform, 121)
Present results (uniform, 11 × 11)

q (Pa)

Figure 20: Central deflection of the clamped plate with one rib (121
nodes).

Figure 21: Nonuniform distribution of the 169 plate nodes.

Figure 22: Uniform distribution of the 13 × 13 plate nodes.
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Figure 23: Central deflection of the clamped plate with one rib (169
nodes).

Finally, the present results (Figure 23) are given by a
discretization scheme of 169 plate nodes (uniform and
nonuniform distribution, as shown in Figures 21 and 22).

In Figures 15, 16, 18, 19, 21, and 22, the small circles
represent the nodes of the plate and the black dots denote
the nodes of the stiffener. Figures 17, 20, and 23 display
clearly that, in the cases of uniform distribution, Point 𝑃
is taken to be a node of the plate, while, in the cases of
nonuniform distribution, Point 𝑃 is no longer a node of the
plate (see Section 3.2). In Figure 17, the agreement is good
but slight difference exists. When we increase the nodes of
plate, the agreement becomes much better (Figures 20 and
23).The results in Figures 17, 20, and 23 demonstrate that the
placement of the plate nodes nearly has no effects on the final
solution and prove the accuracy of the new transformation
equation (22) that was derived in Section 3.2.

5. Conclusions

This paper presents a meshless model, which is based on the
FSDT and the MLS approximation to study the geometric
nonlinear behaviors of ribbed plate structures. Considering
a ribbed plate as a composite structure of plate and ribs, and
starting from the large deflection theory of von Karman, the
nonlinear behaviors of the plate and the ribs were studied,
respectively. Then, employing the meshless advantages of the
proposed model, the nonlinear governing equations of the
plate and the ribs were superposed with a new equation
derived for the nodal parameter transformation of the plate
and the ribs, and the geometric nonlinear equilibrium equa-
tion of the entire structure is established. The advantages of
the proposed model are that the ribs can be placed anywhere
on a plate and any changes of their positions will not lead
to the remeshing of the plate, which enhances computational
efficiency in solving the optimization of rib layout under the

consideration of nonlinear deformation. And the proposed
model do not rely on mesh; therefore, mesh disorder due
to the large deformation of problem domain is avoided.
The present results are compared with those from three-
dimensional FEM analysis and pieces of literature. Good
agreement can be observed, which proves the accuracy of the
proposed meshless model.
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