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We start our discussion with a class of nondifferentiable minimax programming problems in complex space and establish sufficient
optimality conditions under generalized convexity assumptions. Furthermore, we derive weak, strong, and strict converse duality
theorems for the two types of dual models in order to prove that the primal and dual problems will have no duality gap under the
framework of generalized convexity for complex functions.

1. Introduction

The literature of the mathematical programming is crowded
with necessary and sufficient conditions for a point to be
an optimal solution to the optimization problem. Levinson
[1] was the first to study mathematical programming in
complex space who extended the basic theorems of linear
programming over complex space. In particular, using a
variant of the Farkas lemma from real space to complex
space, he generalized duality theorems from real linear
programming. Since then, linear fractional, nonlinear, and
nonlinear fractional complex programming problems were
studied by many researchers (see [2–5]).

Minimax problems are encountered in several important
contexts. One of the major context is zero sum games, where
the objective of the first player is to minimize the amount
given to the other player and the objective of the second
player is to maximize this amount. Ahmad and Husain [6]
established sufficient optimality conditions for a class of non-
differentiable minimax fractional programming problems
involving (𝐹, 𝛼, 𝜌, 𝑑)-convexity. Later on, Jayswal et al. [7]
extended the work of Ahmad and Husain [6] to establish
sufficient optimality conditions and duality theorems for
the nondifferentiable minimax fractional problem under the
assumptions of generalized (𝐹, 𝛼, 𝜌, 𝑑)-convexity. Recently,
Jayswal and Kumar [8] established sufficient optimality
conditions and duality theorems for a class of nondiffer-
entiable minimax fractional programming problems under

the assumptions of (𝐶, 𝛼, 𝜌, 𝑑)-convexity. Lai et al. [9] estab-
lished several sufficient optimality conditions for minimax
programming in complex spaces under the assumptions of
generalized convexity of complex functions. Subsequently,
they applied the optimality conditions to formulate paramet-
ric dual and derived weak, strong, and strict converse duality
theorems.

The first work on fractional programming in complex
space appeared in 1970, when Swarup and Sharma [10]
generalized the results of Charnes and Cooper [11] to the
complex space. Lai and Huang [12] showed that a minimax
fractional programming problem is equivalent to a minimax
nonfractional parametric problem for a given parameter in
complex space and established the necessary and sufficient
optimality conditions for nondifferentiable minimax frac-
tional programming problem with complex variables under
generalized convexity assumptions.

Recently, Lai and Liu [13] considered a nondifferentiable
minimax programming problem in complex space and estab-
lished the appropriate duality theorems for parametric dual
and parameter free dual models. They showed that there is
no duality gap between the two dual problems with respect
to the primal problem under some generalized convexities of
complex functions in the complex programming problem.

In this paper, we focus our study on nondifferentiable
minimax programming over complex spaces. The paper is
organized as follows. In Section 2, we recall some notations
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and definitions in complex spaces. In Section 3, we establish
sufficient optimality conditions under generalized convexity
assumptions. Weak, strong, and strict converse duality the-
orems related to nondifferentiable minimax programming
problems in complex spaces for two types of dual models are
established in Sections 4 and 5 followed by the conclusion in
Section 6.

2. Notations and Preliminaries

We use the following notations that appear in most works on
mathematical programming in complex space:

𝐶
𝑛(𝑅𝑛) = 𝑛-dimensional vector space of complex

(real) numbers,
𝐶
𝑚×𝑛(𝑅𝑚×𝑛)= the set of𝑚×𝑛 complex (real)matrices,

𝑅𝑛
+

= {𝑥 ∈ 𝑅𝑛, 𝑥
𝑗

≥ 0, 𝑗 = 1, 2, . . . , 𝑛} = the
nonnegative orthant of 𝑅𝑛,

𝐴𝐻 = 𝐴
𝑇 = the conjugate transpose of 𝐴 = [𝑎

𝑖𝑗
],

⟨𝑧, 𝑢⟩ = 𝑢𝐻𝑧 = the inner product of 𝑢, 𝑧 in 𝐶𝑛.

Now, we recall some definitions related to mathematical
programming in complex space that are used in the sequel of
the paper.

Definition 1 (see [5]). A subset 𝑆 ⊆ 𝐶
𝑛 is polyhedral cone if

there is 𝑘 ∈ 𝑁 and 𝐴 ∈ 𝐶𝑛×𝑘 such that 𝑆 = 𝐴𝑅𝑘
+

= {𝐴𝑥 | 𝑥 ∈

𝑅𝑘
+
}; that is, 𝑆 is generated by a finite number of vectors (the

columns of 𝐴).
Equivalently, 𝑆 ⊆ 𝐶

𝑛 is said to be a polyhedral cone if
it is the intersection of a finite number of closed half-spaces
having the origin on the boundary; that is, there is a natural
number 𝑝 and 𝑝-points 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑝
such that

𝑆 =

𝑝

⋂
𝑘=1

𝐷(𝑢
𝑘
) = {𝑧 ∈ 𝐶

𝑛

| Re ⟨𝑧, 𝑢
𝑘
⟩ ≥ 0, 𝑘 = 1, 2, . . . , 𝑝} ,

(1)

where 𝐷(𝑢
𝑘
), 𝑘 = 1, 2, . . . , 𝑝 are closed half-spaces involving

the point 𝑢
𝑘
.

Definition 2 (see [5]). If 0 ̸= 𝑆 ⊂ 𝐶𝑛, then 𝑆∗ = {𝑦 ∈ 𝐶𝑛 |

for all 𝑧 ∈ 𝑆 ⇒ Re(𝑦𝐻𝑧) ≥ 0} constitute the dual (polar) of
𝑆.

IfΘ : 𝐶
𝑛 → 𝐶 is analytic in a neighbourhood of 𝑧

0
∈ 𝐶𝑛,

then∇
𝑧
Θ(𝑧
0
) = [𝜕Θ(𝑧

0
)/𝜕𝑧
𝑖
], 𝑖 = 1, 2, . . . , 𝑛, is the gradient of

functionΘ at 𝑧
0
. Similarly, if the complex functionΘ(𝑤1, 𝑤2)

is analytic in 2𝑛 variables (𝑤1, 𝑤2) and (𝑧
0
, 𝑧
0
) ∈ 𝐶2𝑛, we

define the gradients by

∇
𝑧
Θ(𝑧
0
, 𝑧
0
) = [

𝜕Θ (𝑧
0
, 𝑧
0
)

𝜕𝑤1
𝑗

] , 𝑗 = 1, 2, . . . , 𝑛,

∇
𝑧
Θ(𝑧
0
, 𝑧
0
) = [

𝜕Θ (𝑧
0
, 𝑧
0
)

𝜕𝑤2
𝑗

] , 𝑗 = 1, 2, . . . , 𝑛.

(2)

In this paper, we consider the following complex program-
ming problem:

min
𝜁∈𝑋

sup
𝜂∈𝑌

Re [𝑓 (𝜁, 𝜂) + (𝑧𝐻𝐴𝑧)
1/2

]

subject to 𝜁 ∈ 𝑋 = {𝜁 = (𝑧, 𝑧) ∈ 𝐶2𝑛 | −ℎ (𝜁) ∈ 𝑆} ,

(P)

where 𝑌 = {𝜂 = (𝑤,𝑤) | 𝑤 ∈ 𝐶𝑚} is a compact subset in
𝐶2𝑚, 𝐴 ∈ 𝐶𝑛×𝑛 is a positive semidefinite Hermitian matrix, 𝑆
is a polyhedral cone in 𝐶𝑝, 𝑓(⋅, ⋅) is continuous, and, for each
𝜂 ∈ 𝑌, 𝑓(⋅, 𝜂) : 𝐶2𝑛 → 𝐶 and ℎ(⋅) : 𝐶2𝑛 → 𝐶𝑝 are analytic in
𝑄 = {(𝑧, 𝑧) | 𝑧 ∈ 𝐶𝑛} ⊂ 𝐶2𝑛, where𝑄 is a linear manifold over
a real field. In order to have a convex real part for a nonlinear
analytic function, the complex functions need to be defined
on the linear manifold over 𝑅; that is, 𝑄 = {𝜁 = (𝑧, 𝑧) ∈ 𝐶2𝑛 |

𝑧 ∈ 𝐶𝑛}.

Special Cases. (i) If problem (P) is a real programming prob-
lem with two variables nondifferentiable minimax problem,
it may be expressed as

min sup
𝑦∈𝑌

𝑓 (𝑥, 𝑦) + (𝑥𝑇𝐵𝑥)
1/2

s.t. 𝑔 (𝑥) ≤ 0, 𝑥 ∈ 𝑅𝑛,

(3)

where 𝑌 is compact subset of 𝑅𝑙, 𝑓(⋅, ⋅) : 𝑅𝑛 × 𝑅𝑙 → 𝑅 and
𝑔(⋅) : 𝑅𝑛 → 𝑅𝑚 are continuously differentiable functions at
𝑥 ∈ 𝑅𝑛, and 𝐵 is a positive semidefinite symmetric matrix.
This problem was studied by Ahmad et al. [14, 15].

(ii) If 𝑌 vanishes in (P), then problem (P) reduces to the
problem considered by Mond and Craven [16]; that is,

min Re [𝑓 (𝜁) + (𝑧
𝐻𝐴𝑧)

1/2

]

s.t. 𝜁 ∈ 𝑋 = {𝜁 ∈ 𝐶2𝑛 | −ℎ (𝜁) ∈ 𝑆, 𝜁 = (𝑧, 𝑧) , 𝑧 ∈ 𝐶𝑛} .

(P
1
)

(iii) If 𝐴 = 0, then (P) becomes a differentiable complex
minimax programming problem studied by Datta and Bhatia
[3]; that is,

min
𝜁∈𝑋

sup
𝜂∈𝑌

Re𝑓 (𝜁, 𝜂)

s.t. 𝜁 ∈ 𝑋 = {𝜁 ∈ 𝐶2𝑛 | −ℎ (𝜁) ∈ 𝑆} .
(P
0
)

Definition 3. A functional 𝐹 : 𝐶𝑛 × 𝐶𝑛 × 𝐶𝑛 → 𝑅 is said to
be sublinear in its third variable, if, for any 𝑧

1
, 𝑧
2

∈ 𝐶𝑛, the
following conditions are satisfied:

(i) 𝐹(𝑧
1
, 𝑧
2
; 𝑢
1
+ 𝑢
2
) ≤ 𝐹(𝑧

1
, 𝑧
2
; 𝑢
1
) + 𝐹(𝑧

1
, 𝑧
2
; 𝑢
2
),

(ii) 𝐹(𝑧
1
, 𝑧
2
; 𝛼𝑢) = 𝛼𝐹(𝑧

1
, 𝑧
2
; 𝑢),

for any 𝛼 ≥ 0 in 𝑅
+
and 𝑢

1
, 𝑢
2
, 𝑢 ∈ 𝐶𝑛. From (ii), it is clear

that 𝐹(𝑧
1
, 𝑧
2
; 0) = 0.

Let 𝐹 : 𝐶𝑛 × 𝐶𝑛 × 𝐶𝑛 → 𝑅 be sublinear on the third
variable, 𝜃 : 𝐶𝑛 × 𝐶𝑛 → 𝑅

+
with 𝜃(𝑧

1
, 𝑧
2
) = 0, if 𝑧

1
= 𝑧
2
and

𝛼 : 𝐶𝑛 × 𝐶𝑛× → 𝑅
+
\ {0}. Let 𝑓 and ℎ be analytic functions

and 𝜌 let be a real number. Now, we introduce the following
definitions, which are extensions of the definitions given by
Lai et al. [9] and Mishra and Rueda [17].
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Definition 4. The real part Re[𝑓] of analytic function 𝑓 : 𝑄 ⊂

𝐶2𝑛 → 𝐶 is said to be (𝐹, 𝛼, 𝜌, 𝜃)-convex (strict (𝐹, 𝛼, 𝜌, 𝜃)-
convex) with respect to 𝑅

+
on the manifold 𝑄 = {𝜁 = (𝑧, 𝑧) |

𝑧 ∈ 𝐶𝑛} ⊂ 𝐶2𝑛, if, for any 𝜁 = (𝑧, 𝑧), 𝜁
0
= (𝑧
0
, 𝑧
0
) ∈ 𝑄, one has

Re [𝑓 (𝑧, 𝑧) − 𝑓 (𝑧
0
, 𝑧
0
)]

≥ (>) 𝐹 (𝑧, 𝑧
0
; 𝛼 (𝑧, 𝑧

0
)

× (∇
𝑧
𝑓 (𝑧
0
, 𝑧
0
) + ∇
𝑧
𝑓 (𝑧
0
, 𝑧
0
))) + 𝜌𝜃

2

(𝑧, 𝑧
0
) .

(4)

Definition 5. The real part Re[𝑓] of analytic function 𝑓 :

𝑄 ⊂ 𝐶2𝑛 → 𝐶 is said to be (𝐹, 𝛼, 𝜌, 𝜃)-quasiconvex (strict
(𝐹, 𝛼, 𝜌, 𝜃)-quasiconvex) with respect to 𝑅

+
on the manifold

𝑄 = {𝜁 = (𝑧, 𝑧) | 𝑧 ∈ 𝐶𝑛} ⊂ 𝐶2𝑛, if, for any 𝜁 = (𝑧, 𝑧),
𝜁
0
= (𝑧
0
, 𝑧
0
) ∈ 𝑄, one has

Re [𝑓 (𝑧, 𝑧) − 𝑓 (𝑧
0
, 𝑧
0
)]

≤ (<) 0 ⇒ 𝐹(𝑧, 𝑧
0
; 𝛼 (𝑧, 𝑧

0
)

× (∇
𝑧
𝑓 (𝑧
0
, 𝑧
0
) + ∇
𝑧
𝑓 (𝑧
0
, 𝑧
0
)))

≤ −𝜌𝜃
2

(𝑧, 𝑧
0
) .

(5)

Definition 6. The real part Re[𝑓] of analytic function 𝑓 :

𝑄 ⊂ 𝐶2𝑛 → 𝐶 is said to be (𝐹, 𝛼, 𝜌, 𝜃)-pseudoconvex (strict
(𝐹, 𝛼, 𝜌, 𝜃)-pseudoconvex) with respect to𝑅

+
on themanifold

𝑄 = {𝜁 = (𝑧, 𝑧) | 𝑧 ∈ 𝐶𝑛} ⊂ 𝐶2𝑛, if, for any 𝜁 = (𝑧, 𝑧),
𝜁
0
= (𝑧
0
, 𝑧
0
) ∈ 𝑄, one has

𝐹 (𝑧, 𝑧
0
; 𝛼 (𝑧, 𝑧

0
) (∇
𝑧
𝑓 (𝑧
0
, 𝑧
0
) + ∇
𝑧
𝑓 (𝑧
0
, 𝑧
0
)))

≥ −𝜌𝜃
2

(𝑧, 𝑧
0
) ⇒ Re [𝑓 (𝑧, 𝑧) − 𝑓 (𝑧

0
, 𝑧
0
)]

≥ (>) 0.

(6)

Definition 7. The mapping ℎ : 𝐶2𝑛 → 𝐶𝑝 is said to be
(𝐹, 𝛼, 𝜌, 𝜃)-convex (strict (𝐹, 𝛼, 𝜌, 𝜃)-convex) with respect to
the polyhedral cone 𝑆 ⊂ 𝐶

𝑝 on the manifold 𝑄 if, for any
𝜇 ∈ 𝑆 and 𝜁 = (𝑧, 𝑧), 𝜁

0
= (𝑧
0
, 𝑧
0
) ∈ 𝑄, one has

Re ⟨𝜇, ℎ (𝜁) − ℎ (𝜁
0
)⟩

≥ (>) 𝐹 (𝑧, 𝑧
0
; 𝛼 (𝑧, 𝑧

0
)

× (𝜇
𝑇

∇
𝑧
ℎ (𝜁
0
) + 𝜇
𝐻

∇
𝑧
ℎ (𝜁
0
))) + 𝜌𝜃

2

(𝑧, 𝑧
0
) .

(7)

Definition 8. The mapping ℎ : 𝐶2𝑛 → 𝐶𝑝 is said to be
(𝐹, 𝛼, 𝜌, 𝜃)-quasiconvex (strict (𝐹, 𝛼, 𝜌, 𝜃)-quasiconvex) with

respect to the polyhedral cone 𝑆 ⊂ 𝐶
𝑝 on the manifold 𝑄 if,

for any 𝜇 ∈ 𝑆 and 𝜁 = (𝑧, 𝑧), 𝜁
0
= (𝑧
0
, 𝑧
0
) ∈ 𝑄, one has

Re ⟨𝜇, ℎ (𝜁) − ℎ (𝜁
0
)⟩

≤ (<) 0 ⇒ 𝐹(𝑧, 𝑧
0
; 𝛼 (𝑧, 𝑧

0
)

× (𝜇
𝑇

∇
𝑧
ℎ (𝜁
0
) + 𝜇
𝐻

∇
𝑧
ℎ (𝜁
0
)))

≤ −𝜌𝜃
2

(𝑧, 𝑧
0
) .

(8)

Definition 9. The mapping ℎ : 𝐶2𝑛 → 𝐶𝑝 is said to be
(𝐹, 𝛼, 𝜌, 𝜃)-pseudoconvex (strict (𝐹, 𝛼, 𝜌, 𝜃)-pseudoconvex)
with respect to the polyhedral cone 𝑆 ⊂ 𝐶

𝑝 on the manifold
𝑄 if for any 𝜇 ∈ 𝑆 and 𝜁 = (𝑧, 𝑧), 𝜁

0
= (𝑧
0
, 𝑧
0
) ∈ 𝑄, one has

𝐹(𝑧, 𝑧
0
; 𝛼 (𝑧, 𝑧

0
) (𝜇
𝑇

∇
𝑧
ℎ (𝜁
0
) + 𝜇
𝐻

∇
𝑧
ℎ (𝜁
0
)))

≥ 𝜌𝜃
2

(𝑧, 𝑧
0
) ⇒ Re ⟨𝜇, ℎ (𝜁) − ℎ (𝜁

0
)⟩

≥ (>) 0.

(9)

Remark 10. In the proofs of theorems, sometimes it may be
more convenient to use certain alternative but equivalent
forms of the above definitions. Consider the following exam-
ple.

The real part Re[𝑓] of analytic function𝑓 : 𝑄 ⊂ 𝐶
2𝑛 → 𝐶

is said to be (𝐹, 𝛼, 𝜌, 𝜃)-pseudoconvex with respect to 𝑅
+
on

the manifold 𝑄 = {𝜁 = (𝑧, 𝑧) | 𝑧 ∈ 𝐶𝑛} ⊂ 𝐶2𝑛, if, for any
𝜁
0
= (𝑧
0
, 𝑧
0
) ∈ 𝑄, one has

Re [𝑓 (𝑧, 𝑧) − 𝑓 (𝑧
0
, 𝑧
0
)]

< 0 ⇒ 𝐹(𝑧, 𝑧
0
; 𝛼 (𝑧, 𝑧

0
)

× (∇
𝑧
𝑓 (𝑧
0
, 𝑧
0
) + ∇
𝑧
𝑓 (𝑧
0
, 𝑧
0
)))

< −𝜌𝜃
2

(𝑧, 𝑧
0
) .

(10)

Remark 11. If we take 𝛼(𝑧, 𝑧
0
) = 1, then the above definitions

reduce to that given by Lai et al. [9]. In addition, if we take
𝜌 = 0, then we obtain the definitions given by Mishra and
Rueda [17].

Let 𝐴 ∈ 𝐶
𝑛×𝑛 and 𝑧, 𝑢 ∈ 𝐶𝑛; then Schwarz inequality can

be written as

Re (𝑧𝐻𝐴𝑢) ≤ (𝑧
𝐻

𝐴𝑧)
1/2

(𝑢
𝐻

𝐴𝑢)
1/2

. (11)

The equality holds if 𝐴𝑧 = 𝜆𝐴𝑢 or 𝑧 = 𝜆𝑢 for 𝜆 ≥ 0.

Definition 12 (see [12]). The problem (P) is said to satisfy the
constraint qualification at a point 𝜁

0
= (𝑧
0
, 𝑧
0
), if, for any

nonzero 𝜇 ∈ 𝑆∗ ⊂ 𝐶𝑝,

Re ⟨ℎ
𝜁
(𝜁
0
) (𝜁 − 𝜁

0
) , 𝜇⟩ ̸= 0, for 𝜁 ̸= 𝜁

0
. (12)

In the next section, we recall some notations and discuss
necessary and sufficient optimality conditions for problem
(P) on the basis of Lai and Liu [18] and Lai and Huang [12].
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3. Necessary and Sufficient Conditions

Let 𝑓(𝜁, ⋅), 𝜁 = (𝑧, 𝑧) ∈ 𝐶2𝑛 be a continuous function defined
on𝑌, where𝑌 ⊂ 𝐶2𝑚 is a specified compact subset in problem
(P). Then the supremum sup]∈𝑌 Re𝑓(𝜁, ]) will be attained to
its maximum in 𝑌, and the set

𝑌 (𝜁) = {𝜂 ∈ 𝑌 | Re𝑓 (𝜁, 𝜂) = sup
]∈𝑌

Re𝑓 (𝜁, ])} (13)

is then also a compact set in 𝐶2𝑚. In particular, if 𝜁 = 𝜁
0

=

(𝑧
0
, 𝑧
0
) is an optimal solution of problem (P), there exist a

positive integer 𝑘 and finite points 𝜂
𝑖
∈ 𝑌(𝜁

0
), 𝜆
𝑖
> 0, 𝑖 =

1, 2, . . . , 𝑘 with∑
𝑘

𝑖=1
𝜆
𝑖
= 1 such that the Lagrangian function

𝜙 (𝜁) =

𝑘

∑
𝑖=1

𝜆
𝑖
𝑓 (𝜁, 𝜂

𝑖
) + ⟨ℎ (𝜁) , 𝜇⟩ , (𝜇 ̸= 0 in 𝑆

∗

) , (14)

satisfies the Kuhn-Tucker type condition at 𝜁
0
. That is,

(

𝑘

∑
𝑖=1

𝜆
𝑖
𝑓


𝜁
(𝜁
0
, 𝜂
𝑖
) + ⟨ℎ



𝜁
(𝜁
0
) , 𝜇⟩) (𝜁 − 𝜁

0
) = 0, (15)

Re ⟨ℎ (𝜁
0
) , 𝜇⟩ = 0. (16)

Equivalent form of expression (15) at 𝜁 = 𝜁
0
∈ 𝑄 is

𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + ∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
)]

+ (𝜇
𝑇

∇
𝑧
ℎ (𝜁
0
) + 𝜇
𝐻

∇
𝑧
ℎ (𝜁
0
)) = 0.

(17)

For the integer 𝑘, corresponding a vector 𝜂 ≡ (𝜂
1
, 𝜂
2
, . . . , 𝜂

𝑘
) ∈

𝑌(𝜁
0
)
𝑘 and 𝜆

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑘 with∑

𝑘

𝑖=1
𝜆
𝑖
= 1, we define a

set as follows:

𝑍
𝜂
(𝜁
0
) =

{

{

{

𝜁 ∈ 𝐶
2𝑛

| −ℎ


𝜁
(𝜁
0
) 𝜁 ∈ 𝑆 (−ℎ (𝜁

0
)) ,

𝜁 = (𝑧, 𝑧) ∈ 𝑄,

Re[
𝑘

∑
𝑖=1

𝜆
𝑖
𝑓


𝜁
(𝜁
0
, 𝜂
𝑖
) 𝜁 + ⟨𝐴𝑧, 𝑧⟩

1/2

] < 0} ,

(18)

where the set 𝑆(𝑠
0
) is the intersection of closed half-spaces

having the point 𝑠
0
∈ 𝑆 on their boundaries.

Theorem 13 (necessary optimality conditions). Let 𝜁
0

=

(𝑧
0
, 𝑧
0
) ∈ 𝑄 be an optimal solution to (P). Suppose that the

constraint qualification is satisfied for (P) at 𝜁
0
and 𝑧𝐻

0
𝐴𝑧
0

=

⟨𝐴𝑧
0
, 𝑧
0
⟩ > 0. Then there exist 0 ̸= 𝜇 ∈ 𝑆∗ ⊂ 𝐶𝑝, 𝑢 ∈ 𝐶𝑛 and a

positive integer 𝑘 with the following properties:

(i) 𝜂
𝑖
∈ 𝑌(𝜁
0
), 𝑖 = 1, 2, . . . , 𝑘,

(ii) 𝜆
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑘, ∑𝑘

𝑖=1
𝜆
𝑖
= 1,

such that ∑
𝑘

𝑖=1
𝜆
𝑖
𝑓(𝜁, 𝜂

𝑖
) + ⟨ℎ(𝜁), 𝜇⟩ + ⟨𝐴𝑧, 𝑧⟩

1/2 satisfies the
following conditions:

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + ∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + 𝐴𝑢}

+ (𝜇
𝑇

∇
𝑧
ℎ (𝜁
0
) + 𝜇
𝐻

∇
𝑧
ℎ (𝜁
0
)) = 0,

(19)

Re ⟨ℎ (𝜁
0
) , 𝜇⟩ = 0, (20)

𝑢
𝐻

𝐴𝑢 ≤ 1, (21)

(𝑧
𝐻

0
𝐴𝑧
0
)
1/2

= Re (𝑧𝐻
0
𝐴𝑢) . (22)

Theorem 14 (sufficient optimality conditions). Let 𝜁
0

=

(𝑧
0
, 𝑧
0
) ∈ 𝑄 be a feasible solution to (P). Suppose that there

exists a positive integer 𝑘, 𝜆
𝑖
> 0, 𝜂
𝑖
∈ 𝑌(𝜁
0
), 𝑖 = 1, 2, . . . , 𝑘with

∑
𝑘

𝑖=1
𝜆
𝑖
= 1 and 0 ̸= 𝜇 ∈ 𝑆∗ ⊂ 𝐶𝑝 satisfying conditions (19)–

(22). Further, if Re[∑𝑘
𝑖=1

𝜆
𝑖
[𝑓(𝜁, 𝜂

𝑖
) + 𝑧𝐻𝐴𝑢]] is (𝐹, 𝛼

1
, 𝜌
1
, 𝜃)-

convex with respect to 𝑅
+
on 𝑄, ℎ(𝜁) is (𝐹, 𝛼

2
, 𝜌
2
, 𝜃)-convex on

𝑄with respect to the polyhedral cone 𝑆 ⊂ 𝐶𝑝, and𝜌
1
/𝛼
1
(𝑧, 𝑧
0
)+

𝜌
2
/𝛼
2
(𝑧, 𝑧
0
) ≥ 0, then 𝜁

0
= (𝑧
0
, 𝑧
0
) is an optimal solution to

(P).

Proof. We prove this theorem by contradiction. Suppose that
there is a feasible solution 𝜁 ∈ 𝑄 such that

sup
𝜂∈𝑌

Re [𝑓 (𝜁, 𝜂) + (𝑧
𝐻

𝐴𝑧)
1/2

]

< sup
𝜂∈𝑌

Re [𝑓 (𝜁
0
, 𝜂) + (𝑧

𝐻

0
𝐴𝑧
0
)
1/2

] .

(23)

Since 𝜂
𝑖
∈ 𝑌(𝜁
0
), 𝑖 = 1, 2, . . . , 𝑘, we have

sup
𝜂∈𝑌

Re [𝑓 (𝜁
0
, 𝜂) + (𝑧

𝐻

0
𝐴𝑧
0
)
1/2

]

= Re [𝑓 (𝜁
0
, 𝜂
𝑖
) + (𝑧

𝐻

0
𝐴𝑧
0
)
1/2

] ,

for 𝑖 = 1, 2, . . . , 𝑘,

Re [𝑓 (𝜁, 𝜂
𝑖
) + (𝑧

𝐻

𝐴𝑧)
1/2

]

< sup
𝜂∈𝑌

Re [𝑓 (𝜁, 𝜂) + (𝑧
𝐻

𝐴𝑧)
1/2

] ,

for 𝑖 = 1, 2, . . . , 𝑘.

(24)

Thus, from the above three inequalities, we obtain

Re [𝑓 (𝜁, 𝜂
𝑖
) + (𝑧

𝐻

𝐴𝑧)
1/2

]

< Re [𝑓 (𝜁
0
, 𝜂
𝑖
) + (𝑧

𝐻

0
𝐴𝑧
0
)
1/2

] ,

for 𝑖 = 1, 2, . . . , 𝑘.

(25)
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Using (21) and generalized Schwarz inequality, we get

Re (𝑧𝐻𝐴𝑢) ≤ (𝑧
𝐻

𝐴𝑧)
1/2

(𝑢
𝐻

𝐴𝑢)
1/2

≤ (𝑧
𝐻

𝐴𝑧)
1/2

= Re [(𝑧𝐻𝐴𝑧)
1/2

]

(26)

and inequality (22) yields

Re (𝑧𝐻
0
𝐴𝑢) = Re [(𝑧𝐻

0
𝐴𝑧
0
)
1/2

] . (27)

Using (26) and (27) in (25), we have

Re [𝑓 (𝜁, 𝜂
𝑖
) + 𝑧
𝐻

𝐴𝑢] < Re [𝑓 (𝜁
0
, 𝜂
𝑖
) + 𝑧
𝐻

0
𝐴𝑢] ,

for 𝑖 = 1, 2, . . . , 𝑘.

(28)

Since 𝜆
𝑖
> 0 and ∑

𝑘

𝑖=1
𝜆
𝑖
= 1, we have

𝑟𝑙Re[
𝑘

∑
𝑖=1

𝜆
𝑖
[𝑓 (𝜁, 𝜂

𝑖
) + 𝑧
𝐻

𝐴𝑢] −

𝑘

∑
𝑖=1

𝜆
𝑖
[𝑓 (𝜁
0
, 𝜂
𝑖
) + 𝑧
𝐻

0
𝐴𝑢]]

< 0.

(29)

Since Re[∑𝑘
𝑖=1

𝜆
𝑖
[𝑓(𝜁, 𝜂

𝑖
) + 𝑧𝐻𝐴𝑢]] is (𝐹, 𝛼

1
, 𝜌
1
, 𝜃)-convex

with respect to 𝑅
+
on 𝑄, we have

Re[
𝑘

∑
𝑖=1

𝜆
𝑖
[𝑓 (𝜁, 𝜂

𝑖
) + 𝑧
𝐻

𝐴𝑢]

−

𝑘

∑
𝑖=1

𝜆
𝑖
[𝑓 (𝜁
0
, 𝜂
𝑖
) + 𝑧
𝐻

0
𝐴𝑢]]

≥ 𝐹[𝑧, 𝑧
0
; 𝛼
1
(𝑧, 𝑧
0
)

×(

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + ∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + 𝐴𝑢})]

+ 𝜌
1
𝜃
2

(𝑧, 𝑧
0
) .

(30)

From (29) and (30), we conclude that

𝐹[𝑧, 𝑧
0
; 𝛼
1
(𝑧, 𝑧
0
)

×(

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓(𝜁
0
, 𝜂
𝑖
) + ∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + 𝐴𝑢})]

< −𝜌
1
𝜃
2

(𝑧, 𝑧
0
) ,

(31)

which due to sublinearity of 𝐹 can be written as

𝐹[𝑧, 𝑧
0
;

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + ∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + 𝐴𝑢}]

< −
𝜌
1

𝛼
1
(𝑧, 𝑧
0
)
𝜃
2

(𝑧, 𝑧
0
) .

(32)

On the other hand, from the feasibility of 𝜁 to (P), we have
−ℎ(𝜁) ∈ 𝑆, or Re⟨ℎ(𝜁), 𝜇⟩ ≤ 0 for 𝜇 ∈ 𝑆∗, which along with
(20) yields

Re ⟨ℎ (𝜁) , 𝜇⟩ ≤ 0 = Re ⟨ℎ (𝜁
0
) , 𝜇⟩ . (33)

Since ℎ(𝜁) is (𝐹, 𝛼
2
, 𝜌
2
, 𝜃)-convex on 𝑄 with respect to the

polyhedral cone 𝑆 ⊂ 𝐶𝑝, we have

Re ⟨ℎ (𝜁) , 𝜇⟩ − Re ⟨ℎ (𝜁
0
) , 𝜇⟩

≥ 𝐹 [𝑧, 𝑧
0
; 𝛼
2
(𝑧, 𝑧
0
) (𝜇
𝑇

∇
𝑧
ℎ (𝜁
0
) + 𝜇
𝐻

∇
𝑧
ℎ (𝜁
0
))]

+ 𝜌
2
𝜃
2

(𝑧, 𝑧
0
) .

(34)

From (33) and (34), it follows that

𝐹 [𝑧, 𝑧
0
; 𝛼
2
(𝑧, 𝑧
0
) (𝜇
𝑇

∇
𝑧
ℎ (𝜁
0
) + 𝜇
𝐻

∇
𝑧
ℎ (𝜁
0
))]

≤ −𝜌
2
𝜃
2

(𝑧, 𝑧
0
) ,

(35)

which due to sublinearity of 𝐹 can be written as

𝐹 [𝑧, 𝑧
0
; 𝜇
𝑇

∇
𝑧
ℎ (𝜁
0
) + 𝜇
𝐻

∇
𝑧
ℎ (𝜁
0
)] ≤ −

𝜌
2

𝛼
2
(𝑧, 𝑧
0
)
𝜃
2

(𝑧, 𝑧
0
) .

(36)

On adding (32) and (36) and using sublinearity of 𝐹, we get

𝐹[𝑧, 𝑧
0
;

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + ∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + 𝐴𝑢}

+𝜇
𝑇

∇
𝑧
ℎ (𝜁
0
) + 𝜇
𝐻

∇
𝑧
ℎ (𝜁
0
) ]

< −(
𝜌
1

𝛼
1
(𝑧, 𝑧
0
)
+

𝜌
2

𝛼
2
(𝑧, 𝑧
0
)
) 𝜃
2

(𝑧, 𝑧
0
) .

(37)

The above inequality, together with the assumption
𝜌
1
/𝛼
1
(𝑧, 𝑧
0
) + 𝜌
2
/𝛼
2
(𝑧, 𝑧
0
) ≥ 0, gives

𝐹[𝑧, 𝑧
0
;

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + ∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + 𝐴𝑢}

+ 𝜇
𝑇

∇
𝑧
ℎ (𝜁
0
) + 𝜇
𝐻

∇
𝑧
ℎ (𝜁
0
) ] < 0,

(38)

which contradicts (19), hence the theorem.
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Theorem 15 (sufficient optimality conditions). Let 𝜁
0

=

(𝑧
0
, 𝑧
0
) ∈ 𝑄 be a feasible solution to (P). Suppose that there

exists a positive integer 𝑘, 𝜆
𝑖
> 0, 𝜂
𝑖
∈ 𝑌(𝜁
0
), 𝑖 = 1, 2, . . . , 𝑘with

∑
𝑘

𝑖=1
𝜆
𝑖
= 1 and 0 ̸= 𝜇 ∈ 𝑆∗ ⊂ 𝐶𝑝 satisfying conditions (19)–

(22). Further, if Re[∑𝑘
𝑖=1

𝜆
𝑖
[𝑓(𝜁, 𝜂

𝑖
) + 𝑧𝐻𝐴𝑢]] is (𝐹, 𝛼

1
, 𝜌
1
, 𝜃)-

pseudoconvex with respect to 𝑅
+
on 𝑄, ℎ(𝜁) is (𝐹, 𝛼

2
, 𝜌
2
, 𝜃)-

quasiconvex on 𝑄 with respect to the polyhedral cone 𝑆 ⊂ 𝐶𝑝,
and 𝜌

1
/𝛼
1
(𝑧, 𝑧
0
) + 𝜌
2
/𝛼
2
(𝑧, 𝑧
0
) ≥ 0, then 𝜁

0
= (𝑧
0
, 𝑧
0
) is an

optimal solution to (P).

Proof. Proceeding as in Theorem 14, we have

Re[
𝑘

∑
𝑖=1

𝜆
𝑖
[𝑓 (𝜁, 𝜂

𝑖
) + 𝑧
𝐻

𝐴𝑢] −

𝑘

∑
𝑖=1

𝜆
𝑖
[𝑓 (𝜁
0
, 𝜂
𝑖
) + 𝑧
𝐻

0
𝐴𝑢]]

< 0,

(39)

which, by (𝐹, 𝛼
1
, 𝜌
1
, 𝜃)-pseudoconvexity of

Re[∑𝑘
𝑖=1

𝜆
𝑖
[𝑓(𝜁, 𝜂

𝑖
) + 𝑧𝐻𝐴𝑢]] with respect to 𝑅

+
on 𝑄,

yields

𝐹[𝑧, 𝑧
0
; 𝛼
1
(𝑧, 𝑧
0
)

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + ∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + 𝐴𝑢}]

< −𝜌
1
𝜃2 (𝑧, 𝑧

0
) .

(40)

Using the sublinearity of 𝐹, the above inequality can be
written as

𝐹[𝑧, 𝑧
0
;

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + ∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + 𝐴𝑢}]

< −
𝜌
1

𝛼
1
(𝑧, 𝑧
0
)
𝜃2 (𝑧, 𝑧

0
) .

(41)

On the other hand, from the feasibility of 𝜁 to (P), we have
−ℎ(𝜁) ∈ 𝑆, or Re⟨ℎ(𝜁), 𝜇⟩ ≤ 0 for 𝜇 ∈ 𝑆∗, which along with
(20) yields

Re ⟨ℎ (𝜁) , 𝜇⟩ ≤ 0 = Re ⟨ℎ (𝜁
0
) , 𝜇⟩ . (42)

Since ℎ(𝜁) is (𝐹, 𝛼
2
, 𝜌
2
, 𝜃)-quasiconvex on 𝑄 with respect to

the polyhedral cone 𝑆 ⊂ 𝐶𝑝, the above inequality yields

𝐹 [𝑧, 𝑧
0
; 𝛼
2
(𝑧, 𝑧
0
) (𝜇
𝑇

∇
𝑧
ℎ (𝜁
0
) + 𝜇
𝐻

∇
𝑧
ℎ (𝜁
0
))]

≤ −𝜌
2
𝜃2 (𝑧, 𝑧

0
) ,

(43)

which due to sublinearity of 𝐹 can be written as

𝐹 [𝑧, 𝑧
0
; 𝜇
𝑇

∇
𝑧
ℎ (𝜁
0
) + 𝜇

𝐻

∇
𝑧
ℎ (𝜁
0
)] ≤ −

𝜌
2

𝛼
2
(𝑧, 𝑧
0
)
𝜃
2

(𝑧, 𝑧
0
) .

(44)

On adding (41) and (44) and using sublinearity of 𝐹, we get

𝐹[𝑧, 𝑧
0
;

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + ∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + 𝐴𝑢}

+ 𝜇
𝑇

∇
𝑧
ℎ (𝜁
0
) + 𝜇
𝐻

∇
𝑧
ℎ (𝜁
0
) ]

< −(
𝜌
1

𝛼
1
(𝑧, 𝑧
0
)
+

𝜌
2

𝛼
2
(𝑧, 𝑧
0
)
) 𝜃
2

(𝑧, 𝑧
0
) .

(45)

The above inequality, together with the assumption
𝜌
1
/𝛼
1
(𝑧, 𝑧
0
) + 𝜌
2
/𝛼
2
(𝑧, 𝑧
0
) ≥ 0, gives

𝐹[𝑧, 𝑧
0
;

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + ∇
𝑧
𝑓 (𝜁
0
, 𝜂
𝑖
) + 𝐴𝑢}

+𝜇
𝑇

∇
𝑧
ℎ (𝜁
0
) + 𝜇
𝐻

∇
𝑧
ℎ (𝜁
0
) ] < 0,

(46)

which contradicts (19), hence the theorem.

Theorem 16 (sufficient optimality conditions). Let 𝜁
0

=

(𝑧
0
, 𝑧
0
) ∈ 𝑄 be a feasible solution to (P). Suppose that there

exists a positive integer 𝑘, 𝜆
𝑖
> 0, 𝜂
𝑖
∈ 𝑌(𝜁
0
), 𝑖 = 1, 2, . . . , 𝑘with

∑
𝑘

𝑖=1
𝜆
𝑖
= 1 and 0 ̸= 𝜇 ∈ 𝑆∗ ⊂ 𝐶𝑝 satisfying conditions (19)–

(22). Further, if Re[∑𝑘
𝑖=1

𝜆
𝑖
[𝑓(𝜁, 𝜂

𝑖
) + 𝑧𝐻𝐴𝑢]] is (𝐹, 𝛼

1
, 𝜌
1
, 𝜃)-

quasiconvex with respect to 𝑅
+
on𝑄, ℎ(𝜁) is strict (𝐹, 𝛼

2
, 𝜌
2
, 𝜃)-

pseudoconvex on𝑄 with respect to the polyhedral cone 𝑆 ⊂ 𝐶
𝑝,

and 𝜌
1
/𝛼
1
(𝑧, 𝑧
0
) + 𝜌
2
/𝛼
2
(𝑧, 𝑧
0
) ≥ 0, then 𝜁

0
= (𝑧
0
, 𝑧
0
) is an

optimal solution to (P).

Proof. The proof follows on the similar lines of Theorem 15.

4. Parametric Duality

We adopt the following notations in order to simplify the
formulation of dual:

𝐾 (𝜉) = {(𝑘, �̃�, 𝜂) ∈ 𝑁 × 𝑅
𝑘

+
× 𝐶
2𝑚𝑘

|

�̃� = (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑘
) with

𝑘

∑
𝑖=1

𝜆
𝑖
= 1,

𝜂 = (𝜂
1
, 𝜂
2
, . . . , 𝜂

𝑘
)

with 𝜂
𝑖
∈ 𝑌 (𝜉) , 𝑖 = 1, 2, . . . , 𝑘} ,

(47)

for 𝜉 = (𝑢, 𝑢) ∈ 𝑄 ⊂ 𝐶2𝑛.
Now, we formulate a parametric dual problem (D1) with

respect to the complex minimax programming problem (P)
as follows:

max
(𝑘,
̃
𝜆,𝜂)∈𝐾(𝜉)

sup
(𝜉,𝜇,𝑤,𝑡)∈𝑋(𝑘,̃𝜆,𝜂)

𝑡,
(D1)
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where𝑋(𝑘, �̃�, 𝜂) denotes the set of all (𝜉, 𝜇, 𝑤, 𝑡) ∈ 𝐶2𝑛 ×𝐶𝑝 ×

𝐶𝑛 × 𝑅 to satisfy the following conditions:
𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤]

+ 𝜇𝑇 ∇
𝑧
ℎ (𝜉) + 𝜇𝐻∇

𝑧
ℎ (𝜉) = 0,

(48)

𝑘

∑
𝑖=1

𝜆
𝑖
{Re𝑓 (𝜉, 𝜂

𝑖
) + (𝑢

𝐻

𝐴𝑢)
1/2

− 𝑡} ≥ 0, (49)

Re ⟨ℎ (𝜉) , 𝜇⟩ ≥ 0, (50)

𝑤
𝐻

𝐴𝑤 ≤ 1, (51)

(𝑢
𝐻

𝐴𝑢)
1/2

= Re (𝑢𝐻𝐴𝑤) , (52)

0 ̸= 𝜇 ∈ 𝑆
∗

. (53)

If, for a triplet (𝑘, �̃�, 𝜂) ∈ 𝐾(𝜉), the set 𝑋(𝑘, �̃�, 𝜂) = 0,
then we define the supremum over 𝑋(𝑘, �̃�, 𝜂) to be −∞ for
nonexecption in the formulation of (D1).

Theorem 17 (weak duality). Let 𝜁 = (𝑧, 𝑧) and
(𝑘, �̃�, 𝜂, 𝜉, 𝜇, 𝑤, 𝑡) be feasible solutions to (P) and (D1),
respectively. Further, if Re[∑𝑘

𝑖=1
𝜆
𝑖
[𝑓(𝜁, 𝜂

𝑖
) + 𝑧𝐻𝐴𝑤]] is

(𝐹, 𝛼
1
, 𝜌
1
, 𝜃)-pseudoconvex with respect to 𝑅

+
on 𝑄, ℎ(𝜁) is

(𝐹, 𝛼
2
, 𝜌
2
, 𝜃)-quasiconvex on 𝑄 with respect to the polyhedral

cone 𝑆 ⊂ 𝐶𝑝, and 𝜌
1
/𝛼
1
(𝑧, 𝑢) + 𝜌

2
/𝛼
2
(𝑧, 𝑢) ≥ 0, Then

sup
𝜂∈𝑌

Re [𝑓 (𝜁, 𝜂) + (𝑧
𝐻

𝐴𝑧)
1/2

] ≥ 𝑡. (54)

Proof. Suppose, on the contrary, that

sup
𝜂∈𝑌

Re [𝑓 (𝜁, 𝜂) + (𝑧
𝐻

𝐴𝑧)
1/2

] < 𝑡. (55)

By compactness of 𝑌(𝜉) ⊂ 𝑌 in 𝐶𝑝, 𝜉 ∈ (𝑢, 𝑢) ∈ 𝑄, there
exist an integer 𝑘 > 0 and finite points 𝜂

𝑖
∈ 𝑌(𝜉), 𝜆

𝑖
> 0,

𝑖 = 1, 2, . . . , 𝑘 with ∑
𝑘

𝑖=1
𝜆
𝑖
= 1 such that (49) holds. From

(49) and (55), we have

Re[
𝑘

∑
𝑖=1

𝜆
𝑖
[𝑓 (𝜁, 𝜂

𝑖
) + (𝑧

𝐻

𝐴𝑧)
1/2

]] <

𝑘

∑
𝑖=1

𝜆
𝑖
𝑡

≤

𝑘

∑
𝑖=1

𝜆
𝑖
Re [𝑓 (𝜉, 𝜂

𝑖
) + (𝑢

𝐻

𝐴𝑢)
1/2

] .

(56)

From (51) and the generalized Schwarz inequality, we have

Re (𝑧𝐻𝐴𝑤) ≤ (𝑧
𝐻

𝐴𝑧)
1/2

(𝑤
𝐻

𝐴𝑤)
1/2

≤ (𝑧
𝐻

𝐴𝑧)
1/2

. (57)

Using (52) and (57) in (56), we get

Re[
𝑘

∑
𝑖=1

𝜆
𝑖
[𝑓 (𝜁, 𝜂

𝑖
) + 𝑧
𝐻

𝐴𝑤]]

< Re[
𝑘

∑
𝑖=1

𝜆
𝑖
[𝑓 (𝜉, 𝜂

𝑖
) + 𝑢
𝐻

𝐴𝑤]] .

(58)

Since Re[∑𝑘
𝑖=1

𝜆
𝑖
[𝑓(𝜁, 𝜂

𝑖
) + 𝑧𝐻𝐴𝑤]] is (𝐹, 𝛼

1
, 𝜌
1
, 𝜃)-

pseudoconvex with respect to 𝑅
+
on 𝑄, the above inequality

implies that

𝐹[𝑧, 𝑢; 𝛼
1
(𝑧, 𝑢)

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤}]

< −𝜌
1
𝜃
2

(𝑧, 𝑢) ,

(59)

which due to sublinearity of 𝐹 can be written as

𝐹[𝑧, 𝑢;

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤}]

< −
𝜌
1

𝛼
1
(𝑧, 𝑢)

𝜃
2

(𝑧, 𝑢) .

(60)

By the feasibility of 𝜁 = (𝑧, 𝑧) to (P), we have −ℎ(𝜁) ∈ 𝑆, or
Re⟨ℎ(𝜁), 𝜇⟩ ≤ 0, for 𝜇 ∈ 𝑆∗, which along with (50) yields

Re ⟨ℎ (𝜁) , 𝜇⟩ ≤ 0 ≤ Re ⟨ℎ (𝜉) , 𝜇⟩ . (61)

The above inequality, together with the (𝐹, 𝛼
2
, 𝜌
2
, 𝜃)-

quasiconvexity of ℎ(𝜁) on 𝑄 with respect to the polyhedral
cone 𝑆 ⊂ 𝐶

𝑝, implies

𝐹 [𝑧, 𝑢; 𝛼
2
(𝑧, 𝑢) (𝜇

𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉))]

≤ −𝜌
2
𝜃
2

(𝑧, 𝑢) ,

(62)

which due to sublinearity of 𝐹 can be written as

𝐹 [𝑧, 𝑢; 𝜇
𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉)]

≤ −
𝜌
2

𝛼
2
(𝑧, 𝑢)

𝜃
2

(𝑧, 𝑢) .
(63)

On adding (60) and (63) and using sublinearity of 𝐹, we get

𝐹[𝑧, 𝑢;

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤}

+ 𝜇
𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉) ]

< −(
𝜌
1

𝛼
1
(𝑧, 𝑢)

+
𝜌
2

𝛼
2
(𝑧, 𝑢)

) 𝜃
2

(𝑧, 𝑢) .

(64)

From the assumption 𝜌
1
/𝛼
1
(𝑧, 𝑢) +𝜌

2
/𝛼
2
(𝑧, 𝑢) ≥ 0, the above

inequality yields

𝐹[𝑧, 𝑢;

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤}

+ 𝜇
𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉) ] < 0,

(65)

which contradicts (48), hence the theorem.
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Theorem 18 (weak duality). Let 𝜁 = (𝑧, 𝑧) and
(𝑘, �̃�, 𝜂, 𝜉, 𝜇, 𝑤, 𝑡) be feasible solutions to (P) and (D1),
respectively. Further, if Re[∑𝑘

𝑖=1
𝜆
𝑖
[𝑓(𝜁, 𝜂

𝑖
) + 𝑧

𝐻

𝐴𝑤]] is
(𝐹, 𝛼
1
, 𝜌
1
, 𝜃)-quasiconvex with respect to 𝑅

+
on 𝑄, ℎ(𝜁) is

(𝐹, 𝛼
2
, 𝜌
2
, 𝜃)-pseudoconvex on 𝑄 with respect to the polyhedral

cone 𝑆 ⊂ 𝐶𝑝, and 𝜌
1
/𝛼
1
(𝑧, 𝑢) + 𝜌

2
/𝛼
2
(𝑧, 𝑢) ≥ 0, then

sup
𝜂∈𝑌

Re [𝑓 (𝜁, 𝜂) + (𝑧
𝐻

𝐴𝑧)
1/2

] ≥ 𝑡. (66)

Proof. Theproof follows the same lines as inTheorem 17.

Theorem 19 (strong duality). Let 𝜁
0
= (𝑧
0
, 𝑧
0
) be an optimal

solution to the problem (P) at which a constraint qualification
is satisfied. Then there exist (𝑘, �̃�, 𝜂) ∈ 𝐾(𝜁

0
) and (𝜁

0
, 𝜇, 𝑤, 𝑡) ∈

𝑋(𝑘, �̃�, 𝜂) such that (𝑘, �̃�, 𝜂, 𝜁
0
, 𝜇, 𝑤, 𝑡) is a feasible solution to

the dual problem (D1). If the hypotheses of Theorem 17 or 18
are satisfied, then (𝑘, �̃�, 𝜂, 𝜁

0
, 𝜇, 𝑤, 𝑡) is optimal to (D1), and

the two problems (P) and (D1) have the same optimal values.

Proof. Theproof follows along the lines ofTheorem6 (Lai and
Liu [13]).

Theorem 20 (strict converse duality). Let 𝜁 and
(�̂�,

̂̃
𝜆, ̂̃𝜂, 𝜉, 𝜇, 𝑤, �̂�) be optimal solutions to (P) and (D1),

respectively, and assume that the assumptions of Theorem 19
are satisfied. Further, assume that the following conditions are
satisfied:

(i) Re∑
̂
𝑘

𝑖=1
�̂�
𝑖
[𝑓(𝜁, 𝜂

𝑖
) + �̂�𝐻𝐴𝑤] is strict (𝐹, 𝛼

1
, 𝜌
1
, 𝜃)-

pseudoconvex with respect to 𝑅
+
on 𝑄 and ℎ(𝜁) is

(𝐹, 𝛼
2
, 𝜌
2
, 𝜃)-quasiconvex on 𝑄 with respect to the

polyhedral cone 𝑆 ⊂ 𝐶𝑝;
(ii) 𝜌
1
/𝛼
1
(�̂�, �̂�) + 𝜌

2
/𝛼
2
(�̂�, �̂�) ≥ 0.

Then 𝜁 = 𝜉; that is, 𝜁 is optimal solution to (D1).

Proof. On the contrary, suppose that (�̂�, �̂�) = 𝜁 ̸= 𝜉 = (�̂�, �̂�).
On applyingTheorem 19, we know that

�̂� = sup
̂
�̃�∈𝑌

Re [𝑓 (𝜁, ̂̃𝜂) + (�̂�
𝐻

𝐴�̂�)
1/2

] . (67)

From the feasibility of 𝜁 ∈ 𝑄 to (P), 𝜇 ∈ 𝑆∗ and (50), we have

Re ⟨ℎ (𝜁) , 𝜇⟩ ≤ 0 ≤ Re ⟨ℎ (𝜉) , 𝜇⟩ . (68)

Since ℎ(𝜁) is (𝐹, 𝛼
2
, 𝜌
2
, 𝜃)-quasiconvex on 𝑄 with respect to

the polyhedral cone Sin 𝐶𝑝, the above inequality yields

𝐹 [�̂�, �̂�; 𝛼
2
(�̂�, �̂�) (𝜇

𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉))]

≤ −𝜌
2
𝜃
2

(�̂�, �̂�) ,

(69)

which by sublinearity of 𝐹 implies

𝐹 [�̂�, �̂�; (𝜇
𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉))]

≤ −
𝜌
2

𝛼
2
(�̂�, �̂�)

𝜃
2

(�̂�, �̂�) .

(70)

By (48) and the sublinearity of 𝐹, we have

𝐹[

[

�̂�, �̂�;

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤]]

]

+ 𝐹 [�̂�, �̂�; (𝜇
𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉))]

≥ 𝐹[

[

�̂�, �̂�;

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤]

+ 𝜇
𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉)]

]

= 0.

(71)

The above inequality, together with (70) and 𝜌
1
/𝛼
1
(�̂�, �̂�) +

𝜌
2
/𝛼
2
(�̂�, �̂�) ≥ 0, gives

𝐹[

[

�̂�, �̂�;

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤]]

]

≥ −𝐹 [�̂�, �̂�; (𝜇
𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉))]

≥
𝜌
2

𝛼
2
(�̂�, �̂�)

𝜃
2

(�̂�, �̂�)

≥ −
𝜌
1

𝛼
1
(�̂�, �̂�)

𝜃
2

(�̂�, �̂�) .

(72)

That is,

𝐹[

[

�̂�, �̂�;

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤]]

]

≥ −
𝜌
1

𝛼
1
(�̂�, �̂�)

𝜃
2

(�̂�, �̂�) ,

(73)

which by sublinearity of 𝐹 implies

𝐹[

[

�̂�, �̂�; 𝛼
1
(�̂�, �̂�)

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤]]

]

≥ −𝜌
1
𝜃
2

(�̂�, �̂�) .

(74)

Since Re∑
̂
𝑘

𝑖=1
�̂�
𝑖
[𝑓(𝜁, 𝜂

𝑖
) + �̂�𝐻𝐴𝑤] is strict (𝐹, 𝛼

1
, 𝜌
1
, 𝜃)-

pseudoconvex with respect to 𝑅
+
on 𝑄, the above inequality

implies that

Re[

[

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[𝑓 (𝜁, 𝜂

𝑖
) + �̂�
𝐻

𝐴𝑤]]

]

> Re[

[

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[𝑓 (𝜉, 𝜂

𝑖
) + �̂�
𝐻

𝐴𝑤]]

]

.

(75)
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From (51), (52), and the generalized Schwarz inequality, we
have

Re (�̂�𝐻𝐴𝑤) ≤ (�̂�
𝐻

𝐴�̂�)
1/2

, Re (�̂�𝐻𝐴𝑤) = (�̂�
𝐻

𝐴�̂�)
1/2

,

(76)

which on substituting in (75) and by using (49), we obtain

Re[

[

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[𝑓 (𝜁, 𝜂

𝑖
) + (�̂�

𝐻

𝐴�̂�)
1/2

]]

]

> Re[

[

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[𝑓 (𝜉, 𝜂

𝑖
) + (�̂�

𝐻

𝐴�̂�)
1/2

]]

]

≥

̂
𝑘

∑
𝑖=1

�̂�
𝑖
�̂�.

(77)

Consequently, there exist certain 𝑖
0
which satisfy

Re [𝑓 (𝜁, 𝜂
𝑖0
) + (�̂�

𝐻

𝐴�̂�)
1/2

] > �̂�. (78)

Hence,

sup
̂
�̃�∈𝑌

Re [𝑓 (𝜁, ̂̃𝜂) + (�̂�
𝐻

𝐴�̂�)
1/2

]

≥ Re [𝑓 (𝜁, 𝜂
𝑖0
) + (�̂�

𝐻

𝐴�̂�)
1/2

] > �̂�,

(79)

which contradicts (67), hence the theorem.

5. Parameter Free Duality

Making use of the optimality conditions, we show that
the following formation is a dual (D2) to the complex
programming problem (P):

max
(𝑘,
̃
𝜆,𝜂)∈𝐾(𝜉)

sup
(𝜉,𝜇,𝑤)∈𝑋(𝑘,̃𝜆,𝜂)

Re [𝑓 (𝜉, 𝜂) + (𝑢
𝐻

𝐴𝑢)
1/2

] , (D2)

where𝑋(𝑘, �̃�, 𝜂) denotes the set of all (𝜉, 𝜇, 𝑤) ∈ 𝐶2𝑛×𝐶𝑝×𝐶𝑛

to satisfy the following conditions:

𝑘

∑
𝑖=1

𝜆
𝑖
[∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤]

+ 𝜇
𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉) = 0,

(80)

Re ⟨ℎ (𝜉) , 𝜇⟩ ≥ 0, (81)

𝑤
𝐻

𝐴𝑤 ≤ 1, (82)

(𝑢
𝐻

𝐴𝑢)
1/2

= Re (𝑢𝐻𝐴𝑤) . (83)

If, for a triplet (𝑘, �̃�, 𝜂) ∈ 𝐾(𝜉), the set 𝑋(𝑘, �̃�, 𝜂) = 0,
then we define the supremum over 𝑋(𝑘, �̃�, 𝜂) to be −∞ for
nonexception in the formulation of (D2).

Now,we establish appropriate duality theorems and prove
that optimal values of (P) and (D2) are equal under the
assumption of generalized convexity in order to show that the
problems (P) and (D2) have no duality gap.

Theorem21 (weak duality). Let 𝜁 = (𝑧, 𝑧) and (𝑘, �̃�, 𝜂, 𝜉, 𝜇, 𝑤)

be feasible solutions to (P) and (D2), respectively. Further,
if Re[∑𝑘

𝑖=1
𝜆
𝑖
[𝑓(𝜁, 𝜂

𝑖
) + 𝑧𝐻𝐴𝑤]] is (𝐹, 𝛼

1
, 𝜌
1
, 𝜃)-pseudoconvex

with respect to 𝑅
+
on 𝑄, ℎ(𝜁) is (𝐹, 𝛼

2
, 𝜌
2
, 𝜃)-quasiconvex on 𝑄

with respect to the polyhedral cone 𝑆 ⊂ 𝐶𝑝, and 𝜌
1
/𝛼
1
(z, 𝑢) +

𝜌
2
/𝛼
2
(𝑧, 𝑢) ≥ 0, then

sup
𝜂∈𝑌

Re [𝑓 (𝜁, 𝜂) + (𝑧
𝐻

𝐴𝑧)
1/2

]

≥ sup
𝜂∈𝑌

Re [𝑓 (𝜉, 𝜂) + (𝑢
𝐻

𝐴𝑢)
1/2

] .

(84)

Proof. On the contrary, we suppose that

sup
𝜂∈𝑌

Re [𝑓 (𝜁, 𝜂) + (𝑧
𝐻

𝐴𝑧)
1/2

]

< sup
𝜂∈𝑌

Re [𝑓 (𝜉, 𝜂) + (𝑢
𝐻

𝐴𝑢)
1/2

] .

(85)

Since 𝜂
𝑖
∈ 𝑌(𝜉) ⊂ 𝑌, 𝑖 = 1, 2, . . . , 𝑘, we have

sup
𝜂∈𝑌

Re [𝑓 (𝜉, 𝜂) + (𝑢
𝐻

𝐴𝑢)
1/2

]

= Re [𝑓 (𝜉, 𝜂
𝑖
) + (𝑢

𝐻

𝐴𝑢)
1/2

] , 𝑖 = 1, 2, . . . , 𝑘,

(86)

Re [𝑓 (𝜁, 𝜂
𝑖
) + (𝑧

𝐻

𝐴𝑧)
1/2

]

≤ sup
𝜂∈𝑌

Re [𝑓 (𝜁, 𝜂) + (𝑧
𝐻

𝐴𝑧)
1/2

] , 𝑖 = 1, 2, . . . , 𝑘.

(87)

Then the above three inequalities give

Re [𝑓 (𝜁, 𝜂
𝑖
) + (𝑧

𝐻

𝐴𝑧)
1/2

]

< Re [𝑓 (𝜉, 𝜂
𝑖
) + (𝑢

𝐻

𝐴𝑢)
1/2

] , 𝑖 = 1, 2, . . . , 𝑘.

(88)

From (82), (83), (88), and the generalized Schwarz inequality,
we have

Re [𝑓 (𝜁, 𝜂
𝑖
) + (𝑧

𝐻

𝐴𝑤)]

< Re [𝑓 (𝜉, 𝜂
𝑖
) + (𝑢

𝐻

𝐴𝑤)] , 𝑖 = 1, 2, . . . , 𝑘.

(89)

As 𝜆
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑘 and ∑

𝑘

𝑖=1
𝜆
𝑖
= 1, we have

Re[
𝑘

∑
𝑖=1

𝜆
𝑖
[𝑓 (𝜁, 𝜂

𝑖
) + (𝑧

𝐻

𝐴𝑤)]]

− Re[
𝑘

∑
𝑖=1

𝜆
𝑖
[𝑓 (𝜉, 𝜂

𝑖
) + (𝑢

𝐻

𝐴𝑤)]] < 0.

(90)
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Since Re[∑𝑘
𝑖=1

𝜆
𝑖
[𝑓(𝜁, 𝜂

𝑖
) + 𝑧𝐻𝐴𝑤]] is (𝐹, 𝛼

1
, 𝜌
1
, 𝜃)-

pseudoconvex with respect to 𝑅
+
on 𝑄, the above inequality

implies that

𝐹[𝑧, 𝑢; 𝛼
1
(𝑧, 𝑢)

×

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤}]

< −𝜌
1
𝜃
2

(𝑧, 𝑢) ,

(91)

which by sublinearity of 𝐹 becomes

𝐹[𝑧, 𝑢;

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤}]

< −
𝜌
1

𝛼
1
(𝑧, 𝑢)

𝜃
2

(𝑧, 𝑢) .

(92)

By the feasibility of 𝜁 = (𝑧, 𝑧) to (P), 0 ̸= 𝜇 ∈ 𝑆∗, and the
inequality (81), we obtain

Re ⟨ℎ (𝜁) , 𝜇⟩ ≤ 0 ≤ Re ⟨ℎ (𝜉) , 𝜇⟩ . (93)

The above inequality together with the (𝐹, 𝛼
2
, 𝜌
2
, 𝜃)-

quasiconvexity of ℎ(𝜁) on 𝑄 with respect to the polyhedral
cone 𝑆 ⊂ 𝐶

𝑝 implies

𝐹 [𝑧, 𝑢; 𝛼
2
(𝑧, 𝑢) (𝜇

𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉))]

≤ −𝜌
2
𝜃
2

(𝑧, 𝑢) ,

(94)

which by sublinearity of 𝐹 becomes

𝐹 [𝑧, 𝑢; 𝜇
𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉)]

≤ −
𝜌
2

𝛼
2
(𝑧, 𝑢)

𝜃
2

(𝑧, 𝑢) .
(95)

On adding (92) and (95) and using the sublinearity of 𝐹, we
get

𝐹[𝑧, 𝑢;

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤}

+𝜇
𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉) ]

< −(
𝜌
1

𝛼
1
(𝑧, 𝑢)

+
𝜌
2

𝛼
2
(𝑧, 𝑢)

) 𝜃
2

(𝑧, 𝑢) .

(96)

From the assumption 𝜌
1
/𝛼
1
(𝑧, 𝑢) +𝜌

2
/𝛼
2
(𝑧, 𝑢) ≥ 0, the above

inequality yields

𝐹[𝑧, 𝑢;

𝑘

∑
𝑖=1

𝜆
𝑖
{∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤}

+ 𝜇
𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉) ] < 0,

(97)

which contradicts (80), hence the theorem.

Theorem 22 (weak duality). Let 𝜁 = (𝑧, 𝑧) and
(𝑘, �̃�, 𝜂, 𝜉, 𝜇, 𝑤) be feasible solutions to (P) and (D2),
respectively. Further, if Re[∑𝑘

𝑖=1
𝜆
𝑖
[𝑓(𝜁, 𝜂

𝑖
) + 𝑧

𝐻

𝐴𝑤]] is
(𝐹, 𝛼
1
, 𝜌
1
, 𝜃)-quasiconvex with respect to 𝑅

+
on 𝑄, ℎ(𝜁) is

(𝐹, 𝛼
2
, 𝜌
2
, 𝜃)-pseudoconvex on 𝑄 with respect to the polyhedral

cone 𝑆 ⊂ 𝐶𝑝, and 𝜌
1
/𝛼
1
(𝑧, 𝑢) + 𝜌

2
/𝛼
2
(𝑧, 𝑢) ≥ 0, then

sup
𝜂∈𝑌

Re [𝑓 (𝜁, 𝜂) + (𝑧
𝐻

𝐴𝑧)
1/2

]

≥ sup
𝜂∈𝑌

Re [𝑓 (𝜉, 𝜂) + (𝑢
𝐻

𝐴𝑢)
1/2

] .

(98)

Proof. Theproof follows the same lines as inTheorem 21.

Theorem 23 (strong duality). Let 𝜁
0
= (𝑧
0
, 𝑧
0
) be an optimal

solution to the problem (P) at which a constraint qualification
is a satisfied. Then there exist (𝑘, �̃�, 𝜂) ∈ 𝐾(𝜁

0
) and (𝜁

0
, 𝜇, 𝑤) ∈

𝑋(𝑘, �̃�, 𝜂) such that (𝑘, �̃�, 𝜂, 𝜁
0
, 𝜇, 𝑤) is a feasible solution to the

dual problem (D2). Further, if the hypotheses of Theorem 21
or Theorem 22 are satisfied, then (𝑘, �̃�, 𝜂, 𝜁

0
, 𝜇, 𝑤) is optimal

to (D2), and the two problems (P) and (D2) have the same
optimal values.

Proof. Theproof follows along the lines ofTheorem8 (Lai and
Liu [13]).

Theorem 24 (strict converse duality). Let 𝜁 and
(�̂�,

̂̃
𝜆, ̂̃𝜂, 𝜉, 𝜇, 𝑤) be optimal solutions to (P) and (D2),

respectively, and the conditions of Theorem 23 are satisfied.
Further, assume that the following conditions are satisfied:

(i) Re∑
̂
𝑘

𝑖=1
�̂�
𝑖
[𝑓(𝜁, 𝜂

𝑖
) + 𝑧𝐻𝐴𝑤] is strict (𝐹, 𝛼

1
, 𝜌
1
, 𝜃)-

pseudoconvex with respect to 𝑅
+
on 𝑄 and ℎ(𝜁) is

(𝐹, 𝛼
2
, 𝜌
2
, 𝜃)-quasiconvex on 𝑄 with respect to the

polyhedral cone 𝑆 ⊂ 𝐶𝑝;
(ii) 𝜌
1
/𝛼
1
(�̂�, �̂�) + 𝜌

2
/𝛼
2
(�̂�, �̂�) ≥ 0.

Then 𝜁 = 𝜉; that is, 𝜉 is an optimal solution to (D2).

Proof. On the contrary, we assume that (�̂�, �̂�) = 𝜁 ̸= 𝜉 = (�̂�, �̂�).
On applyingTheorem 23, we know that

sup
̂
�̃�∈𝑌

Re [𝑓 (𝜁, ̂̃𝜂) + (�̂�
𝐻

𝐴�̂�)
1/2

]

= sup
̂
�̃�∈𝑌

Re [𝑓 (𝜉, ̂̃𝜂) + (�̂�
𝐻

𝐴�̂�)
1/2

] .

(99)

From the feasibility of 𝜁 ∈ 𝑄 to (P), 𝜇 ∈ 𝑆∗, inequality (81)
yields

Re ⟨ℎ (𝜁) , 𝜇⟩ ≤ 0 ≤ Re ⟨ℎ (𝜉) , 𝜇⟩ . (100)

Since ℎ(𝜁) is (𝐹, 𝛼
2
, 𝜌
2
, 𝜃)-quasiconvex on 𝑄 with respect to

the polyhedral cone 𝑆 in 𝐶𝑝, the above inequality yields

𝐹 [�̂�, �̂�; 𝛼
2
(�̂�, �̂�) (𝜇

𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉))]

≤ −𝜌
2
𝜃
2

(�̂�, �̂�) ,

(101)
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which by sublinearity of 𝐹 implies

𝐹 [�̂�, �̂�; (𝜇
𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉))]

≤ −
𝜌
2

𝛼
2
(�̂�, �̂�)

𝜃
2

(�̂�, �̂�) .

(102)

By (80) and the sublinearity of 𝐹, we have

𝐹[

[

�̂�, �̂�;

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤]]

]

+ 𝐹 [�̂�, �̂�; (𝜇
𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉))]

≥ 𝐹[

[

�̂�, �̂�;

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤]

+ 𝜇
𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉)]

]

= 0.

(103)

The above inequality, together with (102) and 𝜌
1
/𝛼
1
(�̂�, �̂�) +

𝜌
2
/𝛼
2
(�̂�, �̂�) ≥ 0, gives

𝐹[

[

�̂�, �̂�;

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤]]

]

≥ −𝐹 [�̂�, �̂�; (𝜇
𝑇

∇
𝑧
ℎ (𝜉) + 𝜇

𝐻

∇
𝑧
ℎ (𝜉))]

≥
𝜌
2

𝛼
2
(�̂�, �̂�)

𝜃
2

(�̂�, �̂�)

≥ −
𝜌
1

𝛼
1
(�̂�, �̂�)

𝜃
2

(�̂�, �̂�) .

(104)

That is,

𝐹[

[

�̂�, �̂�;

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤]]

]

≥ −
𝜌
1

𝛼
1
(�̂�, �̂�)

𝜃2 (�̂�, �̂�) ,

(105)

which by sublinearity of 𝐹 implies

𝐹[

[

�̂�, �̂�; 𝛼
1
(�̂�, �̂�)

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + ∇
𝑧
𝑓 (𝜉, 𝜂

𝑖
) + 𝐴𝑤]]

]

≥ −𝜌
1
𝜃2 (�̂�, �̂�) .

(106)

Since Re∑
̂
𝑘

𝑖=1
�̂�
𝑖
[𝑓(𝜁, 𝜂

𝑖
) + 𝑧𝐻𝐴𝑤] is strict (𝐹, 𝛼

1
, 𝜌
1
, 𝜃)-

pseudoconvex with respect to 𝑅
+
on 𝑄, the above inequality

implies that

Re[

[

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[𝑓 (𝜁, 𝜂

𝑖
) + �̂�
𝐻

𝐴𝑤]]

]

> Re[

[

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[𝑓 (𝜉, 𝜂

𝑖
) + �̂�
𝐻

𝐴𝑤]]

]

.

(107)

From (82), (83), and the generalized Schwarz inequality, we
get

Re (�̂�𝐻𝐴𝑤) ≤ (�̂�
𝐻

𝐴�̂�)
1/2

, Re (�̂�𝐻𝐴𝑤)
1/2

= (�̂�
𝐻

𝐴�̂�)
1/2

,

(108)

which on substituting in (107), we obtain

Re[

[

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[𝑓 (𝜁, 𝜂

𝑖
) + (�̂�

𝐻

𝐴�̂�)
1/2

] ]

]

> Re[

[

̂
𝑘

∑
𝑖=1

�̂�
𝑖
[𝑓 (𝜉, 𝜂

𝑖
) + (�̂�

𝐻

𝐴�̂�)
1/2

]]

]

.

(109)

Consequently, there exist certain 𝑖
0
which satisfy

Re [𝑓 (𝜁, 𝜂
𝑖0
) + (�̂�𝐻𝐴�̂�)

1/2

]

> Re [𝑓 (𝜉, 𝜂
𝑖0
) + (�̂�𝐻𝐴�̂�)

1/2

] .

(110)

Hence,

sup
̂
�̃�∈𝑌

Re [𝑓 (𝜁, ̂̃𝜂) + (�̂�
𝐻

𝐴�̂�)
1/2

]

≥ Re [𝑓 (𝜁, 𝜂
𝑖0
) + (�̂�

𝐻

𝐴�̂�)
1/2

]

> Re [𝑓 (𝜉, 𝜂
𝑖0
) + (�̂�

𝐻

𝐴�̂�)
1/2

]

= sup
̂
�̃�∈𝑌

Re [𝑓 (𝜉, ̂̃𝜂) + (�̂�
𝐻

𝐴�̂�)
1/2

] ,

(111)

which contradicts (99), hence the theorem.

6. Conclusion

In this paper, we introduced generalized (𝐹, 𝛼, 𝜌, 𝜃)-convex
functions and established sufficient optimality conditions for
a class of nondifferentiable minimax programming problems
in complex space. These optimality conditions are then
used to construct two types of dual model and finally we
derived weak, strong, and strict converse duality theorems
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to show that there is no duality gap between the two dual
problems with respect to the primal problem under some
generalized convexities of complex functions in the complex
programming problem. As a future task, the authors would
like to extend these results to second and higher order cases
and establish the relations between primal and its second and
higher order dual problems.
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