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Multisensors (LiDAR/IMU/CAMERA) integrated Simultaneous Location and Mapping (SLAM) technology for navigation and
mobile mapping in a GNSS-denied environment, such as indoor areas, dense forests, or urban canyons, becomes a promising
solution. An online (real-time) version of such system can extremely extend its applications, especially for indoor mobile mapping.
However, the real-time response issue of multisensors is a big challenge for an online SLAM system, due to the different sampling
frequencies and processing time of different algorithms. In this paper, an online ExtendedKalman Filter (EKF) integrated algorithm
of LiDAR scan matching and IMUmechanization for Unmanned Ground Vehicle (UGV) indoor navigation system is introduced.
Since LiDAR scan matching is considerably more time consuming than the IMU mechanism, the real-time synchronous issue
is solved via a one-step-error-state-transition method in EKF. Stationary and dynamic field tests had been performed using a
UGV platform along typical corridor of office building. Compared to the traditional sequential postprocessed EKF algorithm, the
proposedmethod can significantly mitigate the time delay of navigation outputs under the premise of guaranteeing the positioning
accuracy, which can be used as an online navigation solution for indoor mobile mapping.

1. Introduction

The establishment of highly efficient, accurate, and low-cost
indoor mapping technology is becoming more and more
necessary and urgent, due to the growing interest andmarket
of indoor Location Based Services (LBSs). Simultaneous
Location and Mapping (SLAM) has become a popular and
effective indoor mapping technology in recent years. The
SLAM technique is a process of building a map of an
unknown environment by traversing it with range sensors
while determining the system location on themap simultane-
ously; it has been explored in robotics and computer science
for decades. LiDAR-based SLAM is one of themost successful
technologies, as it can provide high frequency and high
precision range measurements [1]. It combines positioning
and mapping by utilizing two or more consecutive frames of
scan points (called scan matching) with various algorithms
[2–8]. However, LiDAR-based SLAM is heavily dependent
on environment features and performs poorly in a featureless
area. Various data fusion solutions have been researched

for a long time in order to offset the poor performance
of standalone sensor [9–13]. The LiDAR/IMU integrated
method is a feasible way to solve such problems [1, 5–
8, 14], because inertial measurement unit- (IMU-) based
inertial navigation system (INS) can offer accurate relative
positions and attitudes in a short period using gyroscopes
and accelerometers [5–8]. Finally, LiDAR/IMU integrated
method can provide sustainable and accurate position and
attitude results for indoor mobile mapping.

Presently, themost popular SLAM algorithms are divided
into the following types: Kalman filter, particle filters, and
graph-based. Hector SLAM estimates the 3D navigation state
based on robust scanmatching and inertial navigation system
by Extended Kalman Filter (EKF) [15]. Gmapping is a Rao-
Blackwellized Particle Filter SLAM approach which requires
a high number of particles to obtain good results. Therefore,
an adaptive resampling technique needs to be developed to
solve the depletion problems [16]. Karto SLAM is a graph-
based SLAM approach.The higher the number of landmarks,
themore amount ofmemory required [17].The sensor system
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in this paper is only composed of LiDAR and IMU. The
Extended Kalman Filter method is adopted for LiDAR/IMU
integrated in order to exploit IMU’s advantages in this paper.

However, most of the existing highly accurate SLAM
systems are postprocessed works [18–21]. An efficient online
solution is still a challenge in the field of highly accurate
mapping applications. For the LiDAR/IMU integrated sys-
tem, although IMU can accelerate the computation of LiDAR
scan matching, the time cost of LiDAR scan matching is still
much larger than the IMU sampling and processing.Thereby,
in an online application, if the IMU data are received when
the LiDAR scans arematching, these IMUdata have towait in
the buffer until the LiDAR scan matching process is finished
via the traditional sequential postprocessedmethod.The time
delay will hinder the IMU observation in current time from
being obtained and processed in time.This is a fatal influence
for an online system [22].

Various methods for the time delay issue have already
been addressed in previous works; many efforts concen-
trate on optimizing the fusion filter [23–25]. Guivant et al.
presented an optimal algorithm that significantly reduces
the computational requirements by propagating the stored
information in the local area to the rest of the global
map in only one iteration [22]. Other methods include
dividing the large-scale maps into small amenable maps
[24] or building a hierarchical submap method [23]; these
algorithms are suitable for large-scale maps that have sev-
eral landmarks. In 2016, Google’s Cartographer provides a
real-time solution for indoor mapping, which belongs to
the graph-based SLAM algorithm. Its time consumption of
LiDAR scan matching is far less than that in this paper.
However, the Cartographer needs to achieve real-time loop
closure to eliminate the accumulated errors and the CPU
occupancy is extremely high for accelerating the computa-
tion speed [26]. In addition, optimizing a large number of
variables in the SLAM issue simultaneously by using two
algorithms is another alternative to do mapping in real-
time. One algorithm performs odometry at a high frequency
but low fidelity to estimate velocity of the LiDAR. Another
algorithm runs at a frequency of an order of magnitude
lower for fine matching and registration of the point cloud
[27].

The details of the LiDAR/IMU fused method were
introduced in our previous work [4, 5]. In this paper,
we will introduce an efficient online solution based on
the compensation method by state propagating for the
LiDAR/IMU integrated inertial navigation system for indoor
mobile mapping, which is an extension of our previous
works. This state propagating method has been studied in
a GNSS/IMU integrated system but not in a LiDAR/IMU
integrated system. It has the advantages of low computa-
tion complexity, simple implementation, and high reliability
[28].

The proposed LiDAR scan matching algorithm in this
paper is an improved, probabilistically motivated Maximum
Likelihood Estimation (IMLE) algorithm. It is a brute global
optimum search method that can obtain the global opti-
mum position for each scan matching. Aided with IMU,
its mapping precision can achieve centimeter-level with

the current postprocessed Extended Kalman Filter (EKF)
method [4]. The original sequential LiDAR scan matching
and IMU mechanism process workflow is divided into two
independent and parallel workflows. Then, the time delay
between the LiDAR scan matching and IMU mechanism is
synchronized via the one-step-error-state-transitionmethod,
which is applied to a standard EKF. Compared with existing
online mapping solutions, this paper offers several major
contributions: (a) it presents an improved method based
on our previous works [4, 5], keeping the high precision
characteristics of the LiDAR/IMU fusion algorithm; (b) the
parallel approach can make the LiDAR scan matching and
IMU mechanization operate independently, accelerating the
processing of the whole system; (c) the one-step-error-state-
transition mathematic model applied in EKF only records
and propagates the error state in EKF prediction epochs
and does not increase the dimension of the state matrix,
which keeps the data fusion synchronized and reduces the
computation complexity and processing time.

The rest of this paper is organized as follows: Section 2
gives the workflow of the online LiDAR/IMU integrated sys-
tem and describes the mathematic principle of the proposed
method; Section 3 presents the indoor field tests anddiscusses
the results; conclusions are drawn in Section 4.

2. Online LiDAR/IMU Integrated
System Modeling

2.1. Sequential IMU and LiDAR Fusion Modeling. The over-
view of the traditional sequential LiDAR/IMU integrated
systemmathematic model is shown in Figure 1.The sampling
rates of IMU and LiDAR are approximately 200Hz and 10Hz,
respectively. The rate of IMU is higher than that of LiDAR.
IMU can calculate the position (𝑟𝑛IMU), velocity (V𝑛IMU), and
attitudes (𝐶𝑛𝑏 IMU) by using the mechanization algorithm,
when no LiDAR observation information is received. The
local level frame of north, east, and down (NED) named
navigation frame (n-frame) is taken as the reference frame for
the inertial navigation.Thebody frame (b-frame) is defined at
the IMU’s centre, with the axes pointing forward, right, and
down, respectively. In fact, the IMU output contains errors
and the errors will cause the navigation results to drift rapidly
over a long time.Thus, an error propagationmodelmustwork
alongside the system motion model to further correct and
obtain better navigation results. The Phi-Angle error model
is selected to describe the time-dependent behavior errors
[25, 26]. The error state vector is defined in the n-frame as
follows:

𝛿𝑥 (𝑡) = [(𝛿𝑟𝑛IMU)𝑇 (𝛿V𝑛IMU)𝑇 𝜖𝑇𝑏𝑇𝑔 𝑏𝑇𝑎 ] , (1)

where the error state 𝛿𝑥 consists of the errors of position
(𝛿𝑟𝑛IMU), the errors of velocity (𝛿V𝑛IMU), the errors of attitude
(𝜖), the bias of gyroscope (𝑏𝑔), and the bias of acceleration
(𝑏𝑎), which is a 15-dimension vector.
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Figure 1: The mathematical model of the LiDAR/IMU integrated system.

The biases of gyroscope and accelerometer are modeled
as a first-order Gauss-Markov process with correlation time𝑇 and mean square value 𝜎2. The model is described by

�̇�𝑔 (𝑡) = − 1𝑇𝑔𝑏 𝑏𝑔 (𝑡) + 𝑤𝑔𝑏 (𝑡) ,
�̇�𝑎 (𝑡) = − 1𝑇𝑎𝑏 𝑏𝑎 (𝑡) + 𝑤𝑎𝑏 (𝑡) .

(2)

The INS error model with the sensor error models in
continuous time can be expressed by

𝛿�̇� (𝑡) = 𝐹 (𝑡) 𝛿𝑥 (𝑡) + 𝐺 (𝑡) 𝑤 (𝑡) . (3)

𝐹 is the dynamic matrix, 𝐺 is a noise-input mapping
matrix, and 𝑤 is the forcing vector of white noise, according
to the system motion model and concrete formation of 𝐹, 𝐺
that can be found in theworks of Shin, 2001 and 2005 [29, 30].

The discrete form of (3) is

𝛿𝑥𝑘 = 𝜙𝑘/𝑘−1𝛿𝑥𝑘−1 + 𝐺𝑘−1𝑤𝑘−1, (4)

where 𝜙𝑘/𝑘−1 is the state transition matrix and 𝑤𝑘−1 is the
driven white noise

𝜙𝑘/𝑘−1 = exp (𝐹 (𝑡𝑘) Δ𝑡) ≈ 𝐼 + 𝐹 (𝑡𝑘) Δ𝑡. (5)

𝑤𝑘−1 is a sequence of zero-mean random variable and the
covariance matrix associated with 𝑤𝑘 is given by

𝐸 [𝑤𝑘𝑤𝑇𝑗 ] = {{{
0, 𝑘 = 𝑗
𝑄𝑘, 𝑘 ̸= 𝑗, (6)

𝑄𝑘 ≈ 𝜙𝑘𝐺 (𝑡𝑘) 𝑄𝐺 (𝑡𝑘)𝑇𝜙𝑇𝑘Δ𝑡, (7)

𝑄 = diag (𝐸 [𝑤2V] , 𝐸 [𝑤2𝜙] , 𝐸 [𝑤2𝑔𝑏] , 𝐸 [𝑤2𝑎𝑏])
= diag(vrw2, arw2, 2𝜎2𝑔𝑏𝑇𝑔𝑏 ,

2𝜎2𝑎𝑏𝑇𝑎𝑏 ) . (8)

𝑄𝑘 is the covariance matrix; 𝑄 is the spectral density
matrix; vrw and arw are velocity random walk and angular
random walk, which are given by the IMU user manual;𝑇𝑔𝑏 and 𝑇𝑎𝑏 are the correlation times of gyroscopes and
accelerometers, respectively; 𝜎2𝑔𝑏 and 𝜎2𝑎𝑏 are the mean square
values of gyroscopes and accelerometers, respectively, which
are described in formula (2).

The LiDAR and IMU measurements are fused by the
EKF algorithm only at the epoch in which LiDAR scan
information is obtained. The EKF observation functions are
given briefly by

𝑧𝑘 = [𝑟𝑛IMU − 𝑟𝑛LiDAR𝜖𝑛IMU − 𝜖𝑛LiDAR] = 𝐻𝑘𝛿𝑥𝑘 + V𝑘, (9)

𝐻𝑘 =
[[[[[
[

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

]]]]]
]
, (10)

where 𝑧𝑘 is a 4-dimensional measurement vector; 𝑟𝑛IMU is
the predicted position from the IMU mechanization; 𝑟𝑛LiDAR
is the observed position from LiDAR; 𝜖𝑛IMU and 𝜖𝑛LiDAR are
the predicted and observed heading angles, respectively,
which are expressed as Euler angles. They make up the
four observations. The LiDAR observations of 2-dimension
position (𝑥, 𝑦) and heading angle can be obtained from
the LiDAR scan matching. And owing to the flatness of
building floor in indoor environment, the height of LiDAR
observation is assumed constant, which is set as zero in this
paper; 𝐻𝑘 is the designed matrix that describes the relation
between the state vector and the measurements and is given
in (10); V𝑘 is the driven response of the input white noise at
time 𝑡(𝑘+1).
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Figure 2: The parallel processing sequence diagram.

The measurement covariance matrix is written as

𝐸 [V𝑘V𝑇𝑗 ] = {{{
0, 𝑘 = 𝑗
𝑅𝑘, 𝑘 ̸= 𝑗

𝑅𝑘 = diag (𝛿2𝑟 , 𝛿2𝜖) .
(11)

𝑅𝑘 is a 4-dimension covariance matrix. 𝛿𝑟, 𝛿𝜖 are the errors
of position and heading, approximate values based on the
properties of the laser scanner device, and the angle and range
searching intervals of the LiDAR scan matching algorithm.

The estimates of the EKF prediction functions are

𝛿𝑥−𝑘+1 = 𝜙𝑘𝛿𝑥𝑘,
𝑃−𝑘+1 = 𝜙𝑘𝑃𝑘𝜙𝑇𝑘 + 𝑄𝑘. (12)

The Kalman gain is

𝐾𝑘 = 𝑃−𝑘𝐻𝑇𝑘 (𝐻𝑘𝑃−𝑘𝐻𝑇𝑘 + 𝑅𝑘)−1 . (13)

The state vector is updated as

𝛿𝑥𝑘 = 𝛿𝑥−𝑘 + 𝐾𝑘 (𝑧𝑘 − 𝐻𝑘𝛿𝑥−𝑘 ) ,
𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘) 𝑃−𝑘 , (14)

where 𝛿𝑥−𝑘 and 𝑃−𝑘 are the prior estimate and its error
covariance. The 𝑃 matrix, namely, the estimated standard
deviations of the estimated states, consists of

𝑃 = 𝐸 {𝑥, 𝑥𝑇}
= diag (𝛿2𝑥, 𝛿2𝑦, 𝛿2ℎ, 𝛿2V𝑥, 𝛿2V𝑦, 𝛿2V𝑧, 𝛿2𝜀𝑥, 𝛿2𝜀𝑦, 𝛿2𝜀𝑧) , (15)

where the initial value of 𝑃matrix 𝑃0 in the experiment is set
as follows: 𝛿𝑥, 𝛿𝑦, and 𝛿𝑧 are the precision of initial position
and are given at centimeters level, which is the precision of

positioning by LiDAR scan matching; 𝛿V𝑥, 𝛿V𝑦, and 𝛿V𝑧 are
small values about 0.001m/s, because the whole system is
started from stationary state [31]; 𝛿𝜀𝑥, 𝛿𝜀𝑦, and 𝛿𝜀𝑧 are the
accuracy of initial heading, which are empirical value about 1
degree, 1 degree, and 5 degrees, respectively.

Finally, the estimated error 𝛿𝑥𝑘 is fed back to the INS
mechanization to correct the final output of navigation state,𝑟𝑛EKF, V𝑛EKF, and 𝐶𝑛𝑏EKF, which will also be the initial state for
the LiDAR scanmatching algorithm in the next epoch.Then,
the next iteration continues.

2.2. Online Improvement. In the previous sequential IMU
and LiDAR fusion model, the next IMUmechanization must
wait until the prior LiDAR scanmatching has completed. For
instance, with the configuration in this system, the time of
LiDAR scanmatching costs approximately 70ms.Thismeans
that the following IMUdata in this 70ms cannot be processed
in time.Thus, the timedelay of IMUmechanization due to the
processing time cost of LiDAR scan matching is a challenge
for online processing.

To settle this issue, a parallel online method is utilized for
LiDAR scan matching and the IMU mechanization process.
Figure 2 describes the processing sequence.When scan points
are received at 𝑡0, LiDAR scan matching begins to work
in the LiDAR thread; meanwhile, the IMU mechanization
continues to run in the IMU thread. Normally, after the
LiDAR scan matching finishes, the matching results have to
be fused with the IMU at epoch 𝑡0 in the sequential process
model. However, the integration finishing time, namely,
the current time, is not 𝑡0. Only when the current error
state estimate 𝛿𝑥 corrects the current IMU output can we
obtain the real-time information. Therefore, the calculated𝛿𝑥𝑡0 and its covariance in 𝑡0 have to be propagated to the
current time correctly by using the one-step-error-state-
transition algorithm, which will be introduced in detail in
Section 2.3. Then, error state estimation 𝛿𝑥 at the current
time can be fed back to correct the final output of navigation
in time.
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2.3. One-Step-Error-State-Transition. This section will de-
scribe mathematical derivation of propagating the error state
estimation of EKF from 𝑡0 to the current time. The sampling
frequency of IMU is 200Hz, which means every 5ms there
will be an IMU data. Mechanization of IMU is not costly and
it can be done during this 5ms and it implies that predictions
of EKF can be performed at proper times online. However,
LiDAR scan matching takes much more time to get the
observation result. For example, if we get IMU and LiDAR
data at time 𝑡0. Mechanization of IMU can get the prediction𝑆IMU(𝑡0) immediately. While LiDAR scan matching will cost
about 70ms to get the EKF observation position 𝑆LiDAR(𝑡0)
of time 𝑡0. After scan matching, current time has shifted to𝑡1 = 𝑡0 +70ms; then EKF can only update the result 𝑆EKF(𝑡0) at
the moment of 𝑡1. At the time 𝑡1, the INS prediction moved
to 𝑡1, and 𝑃 matrix and error state vector 𝛿𝑥 have already
been predicted to time 𝑡1 that are 𝑃−𝑡1 and 𝛿𝑥−𝑡1 , which are not
corrected by observation of LiDAR (𝑆LiDAR(𝑡0)).Therefore, we
only have the updated results 𝑆EKF(𝑡0), 𝑃+𝑡0 , and 𝛿𝑥+𝑡0 at time 𝑡1.
Thereby, 𝑃+𝑡0 and 𝛿𝑥+𝑡0 need to be propagated to 𝑃+𝑡1 and 𝛿𝑥+𝑡1 in
time for online application.

State transition means using the state in time 𝑡𝑘 to
estimate the state in time 𝑡𝑗 (𝑗 > 𝑘). The Kalman Filter used
in the field of navigation is a minimum variance estimation
that can be defined simply through the use of a conditional
expectation [29]:

𝛿𝑥𝑗/𝑘 = 𝐸 [𝛿𝑥𝑗 | 𝑧1, 𝑧2, . . . , 𝑧𝑘] , (16)

where 𝐸[⋅] is the expectation operator; 𝛿𝑥 is the state vector;𝑧 represents the measurements from time 𝑡1 to 𝑡𝑘.
Considering 𝜙𝑘+1/𝑘−1 = 𝜙𝑘+1/𝑘𝜙𝑘/𝑘−1, the state vector 𝛿𝑥𝑗

can be deduced from formula (4) as

𝛿𝑥𝑗 = 𝜙𝑗/𝑘𝛿𝑥𝑘 +
𝑗∑
𝑖=𝑘+1

𝜙𝑗/𝑖𝐺𝑖/𝑖−1𝑤𝑖−1, 𝑘 < 𝑗. (17)

Combining (16) and (17) yields

𝛿𝑥𝑗/𝑘 = 𝐸 [𝛿𝑥𝑗 | 𝑧1, 𝑧2, . . . , 𝑧𝑘]
= 𝐸[(𝜙𝑗/𝑘𝛿𝑥𝑘 +

𝑗∑
𝑖=𝑘+1

𝜙𝑗/𝑖𝐺𝑖/𝑖−1𝑤𝑖−1) | 𝑧1, 𝑧2,

. . . , 𝑧𝑘] = 𝐸 [𝜙𝑗/𝑘𝛿𝑥𝑘 | 𝑧1, 𝑧2, . . . , 𝑧𝑘]

+ 𝑗∑
𝑖=𝑘+1

𝜙𝑗/𝑖𝐺𝑖/𝑖−1𝐸 [𝑤𝑖−1 | 𝑧1, 𝑧2, . . . , 𝑧𝑘] .

(18)

According to formulas (4) and (8),𝑤𝑖−1 only has an effect
on the state vector 𝛿𝑥𝑖−1 and is irrelevant to themeasurements𝑧1, 𝑧2, . . . , 𝑧𝑘. Additionally, 𝑤𝑖−1 is white noise, which is a
sequence of zero-mean random variables that is uncorrelated
timewise. Its expectation is given by 𝑤𝑖−1. Therefore, (18) can
be simplified as follows:

𝛿𝑥𝑗/𝑘 = 𝜙𝑗/𝑘 [𝛿𝑥𝑘 | 𝑧1, 𝑧2, . . . , 𝑧𝑘] = 𝜙𝑗/𝑘𝛿𝑥𝑘, (19)

where 𝛿𝑥𝑘 is the updating estimate of 𝛿𝑥𝑘.

Defining 𝛿𝑥𝑗/𝑘 as the error of 𝛿𝑥𝑗 and 𝛿𝑥𝑗/𝑘,
𝛿𝑥𝑗/𝑘 = 𝛿𝑥𝑗 − 𝛿𝑥𝑗/𝑘

= 𝜙𝑗/𝑘𝛿𝑥𝑘 +
𝑗∑
𝑖=𝑘+1

𝜙𝑗/𝑖𝐺𝑖/𝑖−1𝑤𝑖−1 − 𝜙𝑗/𝑘𝛿𝑥𝑘

= 𝜙𝑗/𝑘𝛿𝑥𝑘 +
𝑗∑
𝑖=𝑘+1

𝜙𝑗/𝑖𝐺𝑖/𝑖−1𝑤𝑖−1.
(20)

The covariance matrix associated with 𝑤𝑖−1 is given by
[23]

𝐸 [𝑤𝑖−1𝑤𝑖−1𝑇] = 𝑄𝑖−1. (21)

The covariance of 𝛿𝑥𝑗/𝑘 can be

𝑃−𝑗/𝑘 = 𝐸 [𝛿𝑥𝑗/𝑘𝛿𝑥𝑗/𝑘𝑇]
= 𝜙𝑗/𝑘𝐸 [𝛿𝑥𝑘𝛿𝑥𝑘𝑇] 𝜙𝑇𝑗/𝑘

+ 𝑗∑
𝑖=𝑘+1

𝜙𝑗/𝑖𝐺𝑖/𝑖−1𝐸 [𝑤𝑖−1𝑤𝑇𝑖−1] 𝐺𝑇𝑖/𝑖−1𝜙𝑇𝑗/𝑖

= 𝜙𝑗/𝑘�̂�𝑘𝜙𝑇𝑗/𝑘 +
𝑗∑
𝑖=𝑘+1

𝜙𝑗/𝑖𝐺𝑖/𝑖−1𝑄𝑖−1𝐺𝑇𝑖/𝑖−1𝜙𝑇𝑗/𝑖.

(22)

𝐺𝑖/𝑖−1 is a positive-definite matrix, which satisfies 𝐺𝑖/𝑖−1𝑄𝑖−1𝐺𝑇𝑖/𝑖−1 = 𝑄𝑖−1.
Defining𝑀𝑗,𝑘+1 = ∑𝑗

𝑖=𝑘+1
𝜙𝑗/𝑖𝑄𝑖−1𝜙𝑇𝑗/𝑖 yields

𝑀𝑘+1,𝑘+1 = 𝐺𝑘+1/𝑘𝑄𝑘𝐺𝑇𝑘+1/𝑘 = 𝑄𝑘,
𝑀𝑗+1,𝑘+1 = 𝑄𝑗 + 𝜙𝑗+1/𝑗𝑀𝑗,𝑘+1𝜙𝑇𝑗+1/𝑗. (23)

Combining the above equations yields

𝛿𝑥𝑗/𝑘 = 𝜙𝑗/𝑘𝛿𝑥𝑘,
𝑃−𝑗/𝑘 = 𝜙𝑗/𝑘�̂�𝑘𝜙𝑇𝑗/𝑘 + 𝑀𝑗,𝑘+1 (24)

which means that the error state estimate and its error
covariance can be obtained by using the accumulated state
transition matrixes. The LiDAR sampling time is treated as
time 𝑡𝑘 and the LiDAR/IMU integration finish time is 𝑡𝑗. The
state estimate and its covariance in 𝑡𝑘 can be propagated to𝑡𝑗 by using formula (24), and then the propagated results
can be updated using function (14). Finally, the updated state
estimate is fed back to the current IMU output to correct the
final output of navigation in the online EKF.

3. Results and Discussion

3.1. System Overview. To verify the online performance of
our proposed integrated system, a series of tests based on
the UGV mobile mapping platform has been designed. The
hardware and software platform in this paper is what used
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Table 1: The detailed parameters of LiDAR and IMU.

LiDAR IMU
Product model Hokuyo UTM-EX Product model MEMS-level MTi-G
Sampling frequency 10Hz Sampling frequency 200Hz
Scan range 0.1m–30m Gyroscope bias 200 degrees/h
Scan angle 270 degrees Accelerometer bias 2000mGal

(1 Gal = 1 cm/s2)Angular resolution 0.25 degrees

Table 2: The static positioning error statistics.

RMS error Mean error Maximum error

Post-EKF
North 0.0013 (m) 0.0011 (m) 0.0057 (m)
East 0.0036 (m) 0.0030 (m) 0.0132 (m)

Heading 0.2030 (degree) 0.2019 (degree) 0.4243 (degree)

Online EKF
North 0.0033 (m) 0.0017 (m) 0.0127 (m)
East 0.0046 (m) 0.0037 (m) 0.0154 (m)

Heading 0.2319 (degree) 0.2386 (degree) 0.2869 (degree)

Figure 3: Top view of FGI library.

in previous work called NAVIS [5]. The detail information
of LiDAR and IMU is listed in Table 1. The components
are installed horizontally on the UGV platform. The whole
system moves at a speed of about 0.9m/s, and the total time
spent on the experiments in this paper is approximately three
minutes and forty-six seconds.The following data processing
was conducted on a pad, with the Windows 8 operation
system and a 1.6GHz CPU, which is suitable for the online
process for the UGV.

The field tests of the proposed LiDAR/IMU integrated
systemwere conducted along the corridor of FinnishGeospa-
tial Research Institute (FGI) library (see Figure 3). To evaluate
the effectiveness of our proposed online EKF algorithm,
stationary and dynamic experiments were carried out, and
the mapping results generated by online EKF algorithm
and postprocessed EKF algorithm were compared with that
generated by a high precision laser scanner.

3.2. Accuracy Evaluation of Stationary Estimation. As shown
in Figure 4, the stationary test was conducted from the begin-
ning to 50th second. Table 2 shows the numerical positioning

error statistic results of the two methods. Absolute position
and the heading angle in the stationary moment were taken
as reference. The overall position result in this paper has
been projected in n-frame.The position RMS errors of north
with postprocessed EKF method and online EKF method
were 13mm and 33mm; the position RMS errors of east
were 36mm and 46mm; the RMS errors of the heading
were 0.2030 degrees and 0.2319 degrees, respectively. The
difference in RMS of the two methods was approximately
2.0mm, 1.0mm, and 0.03 degrees. Considering that the
range error of LiDAR is approximately 2–4 cm, and the
angular resolution is about 0.25 degrees, such differences
are acceptable. Thereby, in stationary positioning, the overall
estimated accuracy of the position and attitude of the online
EKF algorithm can be regarded as being in accordance with
that of postprocessed EKF algorithm.

3.3. Accuracy Evaluation of Dynamic Estimation. Figure 5(a)
is generated by LiDAR scanmatching standalone. Figure 5(b)
is the likelihood map generated with the online EKF algo-
rithm. They are both the floor plan of the FGI library. By
comparing Figures 5(a) and 5(b), it can be seen that the
map results of LiDAR standalone system are much noisier
than that of the LiDAR/INS, and there appearedmismatching
in the long corridor in Figure 5(a), where the features are
little. Therefore, the LiDAR/INS system can overcome the
drawbacks of the LiDAR standalone system and achieve
higher mapping accuracy.

The trajectories of the UGV platform in dynamic mode
with postprocessed EKF algorithm and online algorithm are
also shown in Figure 5(b). The initial position was taken as
origin. As shown in the plot, the green trajectory coincides
well with the red trajectory, which implies that our online
EKFmethod has the same positioning accuracy as that of the
sequential postprocessed EKF method. The difference is not
obvious from the plot.
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Table 3: The dynamic positioning difference statistics between online EKF and post-EKF.

RMS error Mean error Maximum error
North 0.0138 (m) 0.0115 (m) 0.0379 (m)
East 0.0440 (m) 0.0343 (m) 0.0983 (m)
Heading 0.1979 (degree) 0.1513 (degree) 0.5422 (degree)
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Figure 4: (a) The positioning results with online EKF solution; (b) the positioning results with post-EKF solution; (c) the heading results
with online EKF and post-EKF.

The overall dynamic process lasted approximately 176 s.
Figure 6 is the positioning difference with postprocessed
EKF solution and the online EKF solution, and the statistics
result is listed in Table 3. The position RMS errors of
north and east are 0.0138m and 0.0440m, respectively;
the RMS error of the heading is 0.1979 degrees. The posi-
tion difference is still at centimeter-level, and the heading

result is also under the angular resolution of LiDAR. As
a result, the accuracy of the position and attitude of the
online EKF algorithm can be considered as being at the
same level with that of the postprocessed EKF in dynamic
mode.

In addition to the comparison of trajectory accuracy,
the map quality also needs to be verified. Figures 7(a)
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(a)

Post EKF

Online-EKF
(b)

Figure 5: (a)The map results of UGV platform with LiDAR scan matching standalone. (b)The map and trajectories result of UGV platform
with post-EKF solution and online EKF solution.
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Figure 6: The comparison of positioning outputs by the post-EKF
solution and online EKF solution.

and 7(b) show the likelihood map generated by the two
different solutions—postprocessed EKF solution and online
EKF solution. They are compared with the reference map,
which is presented in Figure 7(c) and generated with a
Terrestrial Laser Scanner (TLS, FARO Focus3D 330X). By
comparing the zoom-in-images of each map, it is obvious
that the line features in Figures 7(a) and 7(b) are remarkably
noisier than that in Figure 7(c). The profiles are wider than
their counterparts generated by TLS, and some of the corners
are too ambiguous to be detected. The reason is that the

Table 4: The comparison of accuracy results statistics for the se-
lected feature points.

Post-EKF Online EKF
Feature points 67 67
RMS (m) 0.0562 0.0732

adopted Hokuyo laser scanner is a big footprint scanner
with centimeter ranging accuracy but the TLS applies small
footprint millimeter accuracy laser.

The unmovable corners of book shelves and walls are
selected as the main feature points for accuracy evaluation.
There are in total 67 feature points of corners picked out from
the three maps for evaluation.The RMS errors of the selected
feature points of the FGI library with the postprocessed EKF
solution and online EKF solution are listed in Table 4. The
RMS error with the postprocessed EKF method is 0.0562m,
and the RMS error with the online EKF method is 0.0732m.
The difference of RMS errors with the two methods is under
0.02m. Considering the errors brought by manual operation,
the accuracy is reasonable.

The positioning precision is reflected by the mapping
precision indirectly in the indoor environment, due to the
lacking of trajectory reference truth. Figure 8(a) shows the
cumulative distribution of the mapping results errors with
post-EKF and online EKF, respectively. The 𝑦-axis means
the percentage of less than the corresponding errors in 𝑥-
axis. The mapping results errors of feature points with post-
EKF are all less than 0.011m, and the errors of 70%–80%
feature points are less than 0.06m.While the errors of feature
points with online EKF are all less than 0.013m, the errors
of 70%–80% feature points are less than 0.08m. Figure 8(b)
describes the drift of mapping results with online EKF. The
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(a) (b)

(c)

Figure 7: (a) NAVISmap result with selected feature points with online EKF solution; (b) NAVISmap result with selected feature points with
post-EKF solution; (c) TLS reference map and the selected feature points.
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Figure 8: (a) The cumulative distribution of the mapping errors with post-EKF and online EKF; (b) the mapping error drift of the online
EKF.
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Figure 9:The output delay using online EKF solution and post-EKF
solution.

errors of LiDAR and IMU will be accumulated continuously
over time, if there is no loop closure or some other methods
to correct the errors. The final drift is about 0.013m.

3.4. Verification of Real-Time Performance. To evaluate the
performance of online EKF solution, the time delay of each
output epoch is compared with those of postprocessed EKF
solution in Figure 9. Theoretically, as introduced in Figure 2,
if there is no LiDAR data received, the IMU mechanization
results will be output, and the output delay of one epoch
means the time consumption of IMU mechanization. When
the LiDARdata is received, for the traditional sequential EKF,
the output delay of one epoch equals the total time it takes
to complete the LiDAR scan matching, IMU mechanization,
and Kalman update, but for the proposed parallel online EKF,
the output delay of each epoch is composed of only the IMU
mechanization, Kalmanupdate, and the one-step-error-state-
transition process, which will be much shorter.

As the results shown in Figure 9, the time delay of each
output epoch with the online EKF is much less than that
with the postprocessed EKF. As observed in Table 5 the mean
output delay using the postprocessed EKF is 1.69ms, while
the maximum is 88.65ms. The mean time delay of each
output epoch using the online EKF is 0.280ms, while the
maximum is 3.76ms. The mean output delay of the online
EKF reduced about 6 times, and the maximum value reduces
23 times. The mean and maximum value improvement is
because the online EKF can take advantage of the parallel
processing, that is, dual processing threads running on two
CPU cores, and the online EKF utilizes the one-step-error-
state-transition method to make it possible to use previous
update information (LiDAR scan matching) to correct cur-
rent IMUmechanization results, so that IMUoutput does not
have to wait until the LiDAR scan matching process finished.
Therefore, according to Figure 9, the improved EKF method
in this paper can reduce the output delay efficiently compared

Table 5: The output delay statistics with online-EKF solution and
post-EKF solution.

Mean Maximum
Post-EKF 1.69ms 88.65ms
Online EKF 0.28ms 3.76ms

with the postprocessed EKFmethod, and it ensures the better
real-time performance for the online system.

4. Conclusions

An online solution for the LiDAR/IMU integrated system
is proposed in this paper. The positioning results of IMU
and LiDAR scan matching are real-time synchronized using
the proposed one-step-error-state-transition method in the
EKF to improve the real-time response of the LiDAR/IMU
integrated navigation. The accuracy and online improve-
ment results prove that (1) the proposed online method
can achieve the same positioning and mapping accuracy
(centimeters level) as the sequential post-EKF method; (2)
the online EKF solution can reduce the maximum output
delay from 88.65ms in postprocessed EKF to 3.76ms. It
improves the real-time performance effectively. In conclu-
sion, the online solution proposed in this paper can solve
the time lag issue of LiDAR/IMU integration without the
loss of the positioning accuracy. In the future work, the pro-
posed method will be integrated into embedded-hardware
platform and applied for real-time 2D and 3D indoor
mapping.
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