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Thermal cracking of massive concrete structures occurs as a result of stresses caused by hydration in real environment conditions.
The extended finite element method that combines thermal fields and creep is used in this study to analyze the thermal cracking
of massive concrete structures. The temperature field is accurately simulated through an equivalent equation of heat conduction
that considers the effect of a cooling pipe system. The time-dependent creep behavior of massive concrete is determined by the
viscoelastic constitutive model with Prony series. Based on the degree of hydration, we consider the main properties related to
cracking evolving with time. Numerical simulations of a real massive concrete structure are conducted. Results show that the
developed method is efficient for numerical calculations of thermal cracks on massive concrete. Further analyses indicate that
a cooling system and appropriate heat preservation measures can efficiently prevent the occurrence of thermal cracks.

1. Introduction

In massive hardening concrete, the thermal gradients under
the heat of hydration during hardening can cause thermal
cracking. The thermal cracking of concrete structures is a
serious concern in construction. Some cracks with wide
openings can particularly result in durability problems.

To address this concern, various numerical models have
been proposed to investigate the nature of thermal cracks
for massive concrete by means of finite element calculations.
de Borst and van den Boogaard [1] studied deformation and
cracking in early-age concrete modeled by finite element
method (FEM). Xiang et al. [2] conducted thermoelastic
analysis by examining time-dependent evolutions of heat
release caused by hydration and material properties. Mazars
and Bournazel [3], Waller et al. [4], and Lackner and Mang
[5] performed thermal-elastic (or plastic) analyses of massive
concrete without considering creep strain. de Schutter [6]
simulated crack initiation and propagation by employing a
simple stress-based cracking criterion and a smeared crack
model based on the heat of hydration in hardening massive
concrete elements. Benboudjema and Torrenti [7] developed
a numerical model to predict early-age cracking of massive
concrete through Kelvin-Voigt elements and an elastic dam-
age model that considered autogenous and thermal shrink-
age. Briffaut et al. [8, 9] examined the early-age cracking

of massive concrete structures caused by thermal restrained
shrinkage by using the thermal active restrained shrinkage
ring test and FE methods. Buffo-Lacarrière et al. [10] pro-
posed FE modeling to predict thermal cracking through the
evolution of the damage variable law, which considered creep
and damage behavior based on nonlinear viscoelasticity.

Massive concrete has been widely used in civil engineer-
ing, such as in the construction of dams, buildings, and
bridges. Traditional finite element methods have been widely
applied in the thermal analysis of massive concrete. However,
conventional FEM is formulated with continuous media,
so additional remeshing is necessary to accurately predict
irregular crack propagation [11]. The extended finite element
method (XFEM) [12–15] enhances conventional FEM capa-
bilities by excluding the mesh requirement to conform to
discontinuities. XFEM has been widely used in numerous
fields with discontinuous problems, particularly in fracture
mechanics, because XFEM is an excellent method of address-
ing discrete crack propagation in various types of materials.
XFEM was applied to thermal problems in [16] and to shear
band problems with thermal effects in [17]. It was applied by
Duflot for the first time in steady-state thermoelastic fracture
mechanics [18]. Zamani and Eslami [19, 20] investigated
thermoelastic fractures by implementing XFEM for dynamic
fractures and by improving accuracy through high-order
crack tip enrichments. In these papers, the authors employed
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XFEM to characterize both the displacement discontinuity
and the temperature discontinuity. In addition to XFEM, the
embedded finite element method (EFEM) [21–23], meshfree
methods (MMs) [24–27], and boundary elements (BEMs)
[28–31] are also efficient computationalmethods based on the
continuum-mechanics for discrete cracks.

An alternative pathway to simulate crack initiation and
propagation offers methods based on the discrete-mechanics
such as the particle simulation method [32–37] and the
particle element method [38, 39]. The methods have been
recently developed to discretize the continuum into particles
so that crack generation at a contact between two particles is
a natural process. Zhao et al. [40] simulatedmagma intrusion
problems using solid particles for the surrounding rock and
fluid particles for the intruded magma, respectively. The
particle simulation method can efficiently simulate hydraulic
fracturing because the fluid particles are allowed to move
through the cracks between the solid particles. In addition,
the particle simulation method has also been used to solve a
broad range of scientific and engineering problems [41–43].

In accordance with the literature review, this paper
aims to develop a numerical method based on XFEM to
analyze thermal cracks in massive concrete structures. A
practical thermal model that considers an artificial water-
cooling system is adopted to simulate the temperature field.
Time-dependent viscoelastic behavior is implemented for
creep. As input parameters for XFEM that combines the
temperature field and the viscoelastic constitutive model, the
main properties develop over time when thermal cracking is
calculated.The reliability of the developed method is verified
by a case study on a lift of an arch dam, which underwent
a cold wave during its construction. Subsequently, further
analysis on thermal cracking is conducted.

2. XFEM for Thermal Cracking of
Massive Concrete

2.1. Briefing on XFEM. Compared with the classical FEM,
XFEM provides significant benefits in modeling crack prop-
agation. The crack geometry in XFEM does not need to
be aligned with the element edges. XFEM is based on the
partition of unity concept and introduces additional degrees
of freedom which are tied to the nodes of the elements
intersected by the crack [12, 13].

XFEM displacement approximation around the crack
uℎ(x) is enriched with the step function to model the
crack surface and with asymptotic displacement fields to
model crack tips. The displacement approximation takes the
following form [13]:

uℎ (x) = ∑
𝑛∈𝑁
𝑛

𝑁𝑛 (x)u𝑖 + ∑
𝑗∈𝑁cr

𝑁𝑗 (x) ℎ (x) a𝑗

+ ∑
𝑘∈𝑁tip

𝑁𝑘(

4

∑
𝑙=1

𝜓𝑙 (x) b𝑘𝑙) ,

(1)

where the first term is the classical FE approximation, 𝑁𝑛
is the FE shape function, and u𝑖 is the vector of the regular

degrees of nodal freedom. The other terms are the enriched
terms, where 𝑁cr and 𝑁tip stand for the set of nodes that
have crack faces and crack tips in their support domain,
respectively. a𝑗 and b𝑘𝑙 denote the vectors of additional
degrees of nodal freedom for modeling crack faces and crack
tips, respectively.

Step function ℎ(x) simulates the displacement at the crack
location with the help of the signed distance function 𝜙(x) to
the crack, which is also called the normal level set [13, 15]:

ℎ (x) = sign (𝜙 (x)) . (2)

The four following branch functions, which define the
discontinuity near the crack tip, enrich the nodes with a dis-
tance to the front inferior to a prescribed enrichment radius:

𝜓 (x)

= [√𝑟 sin 𝜃

2
,√𝑟 cos 𝜃

2
,√𝑟 sin 𝜃

2
cos 𝜃
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2
cos 𝜃] ,

(3)

where r and 𝜃 are polar coordinates in the local crack-tip
coordinate system.

Duflot [18] applied the same procedure to temperature
enrichment. The step function ℎ(x) can account for the
temperature jump. The leading term of the asymptotic field
for the temperature of an adiabatic crack can be written as

𝑇 = −
𝐾𝑇

𝜆
√
2𝑟

𝜋
sin(𝜃

2
) , (4)

where coefficient𝐾𝑇 provides the strength of flux singularity
at the crack tip.The temperature field is discretized similar to
the displacement field but with only the second branch func-
tion (4), which is the only discontinuous branch function.The
approximation of the temperature field 𝑇ℎ(x) is then written
as

𝑇
ℎ
(x) = ∑

𝑛∈𝑁

𝑁𝑛 (x) 𝑇𝑖 + ∑
𝑗=𝑁cr

𝑁𝑗 (x) ℎ (x) 𝑐𝑗

+ ∑
𝑘∈𝑁tip

𝑁𝑘𝜓2 (x) 𝑑𝑘.
(5)

As in standard FEM, performing numerical integration
over the element domain is necessary to compute the element
stiffness matrix. The subdomain method [44], in which the
crack is one of the subdomain boundaries to carry out the
numerical integration, is adopted for the elements that are cut
by the crack.

2.2. Equivalent Equation of Heat Conduction. An isotropic
homogenous domain Ω bounded by boundary Γ is consid-
ered. The thermal properties of this domain are independent
of temperature, so the equation of thermal conduction is

q = −𝜆∇𝑇

−∇q + 𝜌𝑐𝑇̇ = 𝑄̇,
(6)
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where q is the heat flux, 𝜆 is the thermal conductivity,𝑇 is the
temperature, 𝜌 is the density, 𝑐 is the specific heat, and 𝑄̇ is
the heat source.

For massive concrete structures, the hydration heat of
concrete, which varies with age, is the main heat source.
Temperature control is one of the critical problems in the
construction of massive concrete, and embedding water-
cooling pipes in massive concrete is one of the key methods
to address this problem. Zhu [45] suggested that heat removal
through a cooling system can be regarded as a negative heat
source. Therefore, the heat source consists of the following
two parts in consideration of the cooling pipe system:

𝑄 = 𝜌𝑐𝜉
󸀠
(𝑡 +

Δ𝑡

2
) + 𝜌𝑐 [𝑇 (𝑡) − 𝑇𝑤] 𝜑

󸀠
(𝑡 +

Δ𝑡

2
) . (7)

In the equation, the first part is the heat source caused by
hydration, and the second part is the “cool source” caused
by the water cooling system. 𝜉(𝑡) is the adiabatic temperature
rise of concrete at time 𝑡, Δ𝑡 is the increment step, 𝑇𝑤 is
the temperature of the cooling water inlet, and 𝜑(𝑡) is the
cooling function illustrated by Yang et al. [46]. Yang et al. [46]
emphasized that although the temperature gradient near the
cooling pipes cannot be obtained, uniformly dispersing heat
throughout the solution domain is feasible.

For the adiabatic temperature rise of concrete, Zhu [47]
proposed a compound exponential formula that is convenient
for mathematical operation and is in accordance with experi-
mental results.Thehydrationmodel can bewritten as follows:

𝜉 (𝑡) =

𝑛

∑
𝑖=1

𝜉𝑖 (1 − 𝑒
−𝑚
𝑖
𝑡
) , (8)

where 𝜉𝑖 and 𝑚𝑖 are the parameters that can be obtained
through the optimization method or the trial method whose
details can be found in the literature [47].

2.3. Thermal Boundary Conditions. When the concrete is in
contact with air, we assume that the heat flux on the concrete
surface is proportional to the difference between concrete
surface temperature 𝑇surf and air temperature 𝑇air. Therefore,
the thermal boundary conditions at the concrete surface can
be written as

−𝜆
𝜕𝑇

𝜕𝑛
= ℎ𝑇 (𝑇surf − 𝑇air) , (9)

where ℎ𝑇 is the surface heat convection coefficient and 𝑛

represents the normal direction of outer surfaces.

2.4. Viscoelastic Creep Model. Early-age concrete exhibits
high creep, which reduces the stresses significantly more
than any other influencing parameter, as well as assisting
in mitigating thermal cracking by reducing thermal stress.
Bažant [48] briefly summarized the method of calculating
concrete creep.

The mechanism of concrete creep is not entirely clear,
but the viscoelastic constitutive model composed of spring
and dashpots can describe its performance. In this study,
creep is included in time-dependent viscoelastic behavior.

The constitutive relationship of viscoelastic materials can be
represented in an integral form as follows [49]:

𝜎𝑖𝑗 (𝑡) = 2∫
𝑡

0

𝐺(𝑡 − 𝑡
󸀠
)
𝜕𝜀

dev
𝑖𝑗

𝜕𝑡󸀠
d𝑡󸀠

+ 3∫
𝑡

0

𝐾(𝑡 − 𝑡
󸀠
)
𝜕𝜀𝑘𝑘 (𝑡

󸀠)

𝜕𝑡󸀠
d𝑡󸀠,

(10)

where 𝐺 and 𝐾 are the shear and bulk moduli, respectively,
which are functions of reduced time 𝑡. Superscript dots
denote differentiation with respect to time 𝑡󸀠, and 𝜀dev

𝑖𝑗
and

𝜀𝑘𝑘 are the mechanical deviatory and volumetric strains,
respectively. The bulk (K) and shear (G) moduli can be
defined individually through Prony series representation,
which is expressed as

𝐺 (𝑡) = 𝐺0 [1 −

𝑛
𝐺

∑
𝑖=1

𝑔𝑖 (1 − 𝑒
−𝑡/𝜏
𝐺

𝑖 )] ,

𝐾 (𝑡) = 𝐾0 [1 −

𝑛
𝐾

∑
𝑖=1

𝑘𝑖 (1 − 𝑒
−𝑡/𝜏
𝐾

𝑖 )] ,

(11)

where 𝑔𝑖, 𝜏
𝐺

𝑖
, 𝑘𝑖, and 𝜏𝐾

𝑖
are material constants. Variable

numbers of Prony series parameters end in 𝑛𝐾 and 𝑛𝐺. 𝐺0 =
𝐺(0) and 𝐾0 = 𝐾(0) are the instantaneous relaxation moduli
obtained by the instantaneous Young’s moduli as follows:

𝐺0 =
𝐸0

2 ⋅ (1 + 𝜐)
,

𝐾0 =
𝐸0

3 ⋅ (1 − 2𝜐)
,

(12)

where 𝜐 is the Poisson’s ratio.
To obtain the relaxation modulus, the normalized shear

and bulk moduli can be defined as functions of the creep
coefficient, which is expressed as follows [50]:

𝐺 (𝑡)

𝐺0
=

1

(1 + 𝜑 (𝑡, 𝑡0))
,

𝐾 (𝑡)

𝐾0
=

1

(1 + 𝜑 (𝑡, 𝑡0))
,

(13)

where 𝜑(𝑡, 𝑡0) is the creep coefficient, which can be calculated
as follows [51]:

𝜑 (𝑡, 𝑡0) = 𝜑(𝑡, 𝑡0)stan ⋅ 𝛽 (𝑡0) 𝛽 (ℎ0) 𝛽 (𝑓𝑐𝑘) ⋅ 𝛽𝑇𝛽𝑓𝛽𝛼 (14)

with

𝜑(𝑡, 𝑡0)stan = 3.7419(1 − (
11520 − 𝑡

11520
)
21.528

)

0.263

, (15)

where 𝛽(𝑡0), 𝛽(ℎ0), 𝛽(𝑓𝑐𝑘), 𝛽𝑇, 𝛽𝑓, and 𝛽𝛼 represent a series
of correction coefficients that were described in detail in the
literature [51]. Through nonlinear least-squares fit, the Prony
series parameters in (11) are calculated.
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The developed XFEM method that combines the equiv-
alent equation of heat conduction and the viscoelastic creep
model, as previously described, can be used in the numerical
calculation of the thermal cracking of massive concrete.
Therefore, considering hydration and creep, we can simulate
a few discrete thermal cracks on amassive concrete structure.

3. Fracture Criteria and Evolution of
Material Properties

The temperature gradient in massive concrete leads to tensile
stress, which in turn causes crack initiation and evolution. In
modeling thermal cracking evolution, an appropriate law on
crack initiation and damage evolution should be defined.The
mechanical properties of concrete are essential to predict the
development of thermal stress in massive concrete elements.

3.1. Criterion for Initiation. As a possible first approximation,
the maximum principal stress criterion can be applied to
simulate the onset of thermal cracks. This criterion can be
defined as follows:

𝑓 = {
⟨𝜎max⟩

𝜎0max
} , (16)

where 𝑓 is the maximum principle stress ratio and 𝜎max and
𝜎0max denote the maximum principle stress and maximum
allowable principle stress (tensile strength), respectively. The
symbol ⟨⟩ represents the so-called Macaulay brackets, which
enable ⟨𝜎max⟩ to have an alternative value of 0 (when 𝜎max <
0) and 𝜎max (when 𝜎max ≥ 0). The crack initiates when 𝑓 = 1.

3.2. Criterion for Evolution. In this study, the analysis of crack
growth is based on the approach of linear elastic fracture
mechanics and is conducted with the framework of the
extended-FEM method. The power law criterion proposed
by Wu and Reuter [52] can be extended to 3D problems as
follows [53]:

(
𝐺I
𝐺I𝑐

)

𝛼

+ (
𝐺II
𝐺II𝑐

)

𝛽

+ (
𝐺III
𝐺III𝑐

)

𝜒

= 1, (17)

where 𝛼, 𝛽, and 𝜒 are parameters with values of 1 to 2,
respectively. 𝐺I, 𝐺II, and 𝐺III denote the strain energy release
rate parameters of mode I, mode II, and mode III compo-
nents, respectively; 𝐺I𝑐, 𝐺II𝑐, and 𝐺III𝑐 are the critical values
of the strain energy release rate (the fracture toughness) for
the three fracture modes. The law forms an energy envelope
surface, and if the energy release rate exceeds this surface, the
crack propagates.

3.3. Evolution of Material Properties. During the construc-
tion period in which concrete changes from an almost liquid
state to a solid state, most of the mechanical properties
rapidly vary in relation to the age of concrete. Among
these properties, modulus of elasticity, tensile strength, and
fracture toughness are the key parameters used in analyzing
thermal cracking.

Degree of hydration is a fundamental parameter that
describes concrete behavior during hardening. de Schutter
and Taerwe [54, 55] proposed a degree-of-hydration-based
description of these material properties as follows:

𝐸 (𝛾)

𝐸 (𝛾 = 1)
= (

𝛾 − 𝛾0

1 − 𝛾0
)

𝑎
0

,

𝜎0max (𝛾)

𝜎0max (𝛾 = 1)
= (

𝛾 − 𝛾0

1 − 𝛾0
)

𝑏
0

,

𝐺𝑐

𝐺𝑐 (𝛾 = 1)
= (

𝛾 − 𝛾0

1 − 𝛾0
)

𝑐
0

,

(18)

where 𝐸(𝛾), 𝜎0max(𝛾), and 𝐺𝑐(𝛾) are the Young’s modulus,
tensile strength, and critical values of strain energy release
rate at degree of reaction 𝛾, respectively; and 𝐸(𝛾 = 1),
𝜎0max(𝛾 = 1), and 𝐺𝑐(𝛾 = 1) correspond to these values when
𝛾 = 1. 𝛾0, a0, b0, and c0 are parameters that depend on the
concrete composition.

A practical estimation of the degree of hydration at
each moment 𝑡 can be expressed as the ratio between the
accumulated heat of hydration at time 𝑡 and that at the end
of reaction, which can be calculated through the adiabatic
temperature rise:

𝛾 (𝑡) =
∫
𝑡

0
𝜉 (𝜏) 𝑑𝜏

∫
𝑡end

0
𝜉 (𝜏) 𝑑 (𝜏)

, (19)

where 𝛾(𝑡) is the degree of hydration at time t and 𝑡end is the
time at end of hydration reaction.

The coefficient of thermal expansion of concrete is
another key parameter for thermal cracking analysis. Its
measured values tend to be stable within two days [56], so
a constant for it is adopted in this paper.

4. Numerical Examples

4.1. Introduction. A 286m high parabolic double-curvature
arch dam under construction is located in Southwest China
at an altitude of 610m above sea level (level of crest). The
dam consists of 31monoliths, each containing a series of lifts.
The 10th lift of the 13th monolith was poured on September
5, 2009 and underwent a cold wave before the next lift
was poured. This lift was selected for the thermal cracking
analysis. The 9th lift was also used in our calculation as the
lower boundary of the 10th lift.

Figure 1 illustrates the finite element mesh of the two
lifts with cast corners (they were used to facilitate the
construction and increase the rigidity of the bottom of the
dam) at downstream; each lift (1.5m high) contains four-
layer elements. Each element in Figure 1 has an edge length
of about 0.984m and a thickness of 0.375m. The numerical
model includes a total of 15488 elements, in which 5544
elements (the 10th lift) are used in the XFEMmesh.

4.2. Boundary Conditions. During construction, the 10th lift
of themonolith had been standing for 86 days before the next
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Figure 1: Element mesh of the two lifts (9th and 10th).
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Figure 2: Development of air temperature.

lift was poured. The increasing upstream and downstream
surface of the poured concrete slabs and the top surface of
the latest slab were assumed to be directly exposed to the
environment, where heat transfer by convention occurred.
Because the other lifts under the 9th lift and in the other
monoliths were not considered, the boundary condition of
the lower surface of the 9th lift was assumed to be adiabatic
with fixed vertical displacement.

The calculations correspond to a period of 128 days (the
duration between starting the 9th lift and starting the 11th
lift), and the 10th lift started to be poured 42 days after the
9th lift was poured. The daily mean air temperature curve at
the dam site, as shown in Figure 2, was used in this analysis.

4.3. Properties of Materials. According to [47], the hydration
model in the engineering case analyzed in this paper may be
written as follows:

𝜉 (𝑡) = 16.4 (1 − 𝑒
−0.516𝑡

) + 10.9 (1 − 𝑒
−0.052𝑡

) . (20)

The equation is in accordance with the experimental data.
Each concrete slab contains one-layer staggered heteroge-
neous iron cooling pipes in the middle for artificial cooling;
related property values are illustrated in [46, 57].

Equations (18) to (19) show that the Young’s modulus, the
maximum allowable principle stress, and the critical values of

Table 1: Main properties of concrete.

Property Values Note
Density 𝜌 2663.0 kg/m3 Constant
Thermal conductivity 𝜆 184.9 kJ/m⋅day ∘C Constant
Specific heat 𝑐 0.86 kJ/kg ∘C Constant
Heat convection
coefficient ℎ𝑇

1200.0 kJ/m2⋅day ∘C Constant

𝑎0 1.40 Constant
𝑏0 0.62 Constant
𝑐0 0.88 Constant
𝛾
0

0.25 Constant
Elastic modulus 𝐸 (28 d) 40GPa Time-dependent
Poisson’s ratio 𝜐 0.167 Constant
Coefficient of thermal
expansion 𝛼 7 × 10−6/∘C Constant

Allowable maximum
principle 𝜎0max (28 d)

1.98MPa Time-dependent

Critical energy release
rate for model I 𝐺I𝑐
(28 d)

47.92N/m Time-dependent
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Figure 3: Development of the creep coefficient.

strain energy release rate can be written as time-dependent
functions (𝐸(𝑡), 𝜎0max(𝑡), and 𝐺𝑐(𝑡)) when (20) is used. In
the simplest case, the fracture process can be isotropic, and
parameters 𝐺I𝑐(𝑡) = 𝐺II𝑐(𝑡) = 𝐺III𝑐(𝑡) and 𝛼 = 𝛽 = 𝜒 = 1. The
main properties of concrete are presented in Table 1. Figure 3
shows the inclusion of the creep coefficient in viscoelastic
material behavior during the cracking analysis for the 10th
lift.

4.4. Results and Discussions. Accurate temperature fields are
required to calculate thermal cracking. Figure 4 compares the
temperature histories of the concrete in the calculated results
and the actual measured temperature from thermometers
buried at middle height of the lift. Overall, the calculated
results obtained from the methods used in this study agree
with themeasured data. A sudden temperature drop occurred
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Figure 4: Development of concrete temperature.

in the position of the buried thermometers five days after
the cold wave, and an inflection point was observed in the
computed curve two days in advance.These conditions can be
related to the positions of the thermometers and the thermal
conductivity.

Both elastic and viscoelastic models were applied in the
stress analysis. Four elements of different heights at the
center of the slab (see Figure 1) were selected, with the time-
dependent maximum principal stress at the centroid of these
elements shown in Figure 5. Overall creep can reduce the
stress levels by approximately 20%. At the beginning, the
bottom element bears low tensile stress levels because of
the effects from the lower lift. The three other elements
bear compressive stresses because of the restraint of thermal
dilatation and the rise to their peaks seven days after the
lift casting. After the temperature decreases in the core
as a result of artificial water cooling, compressive stresses
decrease gradually, and then, tensile stress occurs. Affected
by the ambient temperature, the stresses fluctuate over time
and increase suddenly as a result of the cold wave. The stress
of the surface element that contacts with air has the largest
varied amplitude and exceeds the tensile strength eventually.

The cold wave results in a thermal gradient (between
the core and the skin of the lift), which causes tensile stress
that is particularly serious on the surface. The cracks occur
at discrete locations where the maximum principle stress
exceeds the allowable values and propagates based on the
criterion. The cracks simulated by XFEM and observed on
the slab are presented in Figure 6. This figure illustrates that
the numerical results are generally consistent with real crack
occurrence. Most of the main cracks are initiated at the edges
of the lift where high-temperature gradients occur, and this
condition favors crack initiation. The evolution paths of the
simulated cracks are almost close to the lines because of the
isotropic assumption for the material and the crack evolution
law. The discrepancy between the simulated and real crack
directions in the middle of the lift surface is a result of
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Figure 5: Development of stresses of different heights.

excluding the other lifts (except the 9th and 10th) and the
foundation in the calculation. In addition, crack crossing
cannot be simulated because of the limitations of XFEM.The
numerical simulation indicates that ambient temperature is
among the main reasons for the thermal cracking of massive
concrete structures.

The casting temperature obviously affects the cracking
risk if no cooling system is used [58]. The concrete pouring
temperature in the preceding analysis is 6.7∘C, and then, we
gradually increase the casting temperature to the ambient
one (30.3∘C). The maximum principle stresses with different
pouring temperatures are presented in Figure 7. The result
indicates that an increase in casting temperature does not
exert significant effects on the stresses during the early stage
because the embedded water-cooling system decrease the
concrete temperature effectively. A negligible discrepancy is
observed between these stresses at a later stage.

Heat preservation measures can be adopted during the
intermission between the pouring of two lifts to reduce
the thermal gradient of concrete. In this study, we used
different heat convection coefficients to simulate different
levels of thermal insulation effects.The stress evolutionwith a
series of heat convection coefficients is illustrated in Figure 8.
The stress levels decrease significantly with a decrease
in the coefficients, particularly from 400 kJ/m⋅day ∘C to
200 kJ/m⋅day ∘C. In contrast to the case during the early stage,
a small convection coefficient assumes a critical function
when the cold wave arrives. The results demonstrate that
appropriate heat insulation measures can effectively reduce
the risk of thermal cracking.
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(a) (b)

Figure 6: Comparison between simulated and actual thermal cracks: (a) simulated via XFEM and (b) actual crack occurrence.
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Figure 7: Development of stresses with different pouring tempera-
tures.

5. Conclusions

This study presents an effective XFEM method to simulate
the thermal cracking of massive concrete. The temperature
field in the slab can be obtained by the equivalent equation
of heat conduction, which includes the hydration heat of
concrete and the effect of cooling pipe systems. The time-
dependent viscoelastic behavior presented by the Prony series
for concrete is included in the prediction of stresses to
describe the stress relaxation that results from creep. The
Young’s modulus, tensile strength, and critical values of
strain energy release rate which evolve over time are the
key parameters that affect the likelihood of thermal cracking
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Figure 8: Development of stresses with different heat convection
coefficients.

in massive concrete. Thermal cracking of massive concrete
can be described through a combination of XFEM with the
temperature field and the viscoelastic creep model.

Compared with existing numerical methods to simulate
thermal cracks on massive concrete, the developed XFEM
method in this study has advantages in efficiently simulating
multiple discrete thermal crack propagationswithout presup-
posing crack path and remeshing.Therefore, this method can
be conveniently applied to analyze thermal cracking for mas-
sive concrete structures during the design and construction
phases.
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The precision of the developed method was verified by
an engineering application. The simulated and actual results
were in agreement, as shown in two comparisons: the com-
parison between the calculated time-dependent temperature
curves and the measured ones and the comparison between
the numerical simulated cracks and the actual observed crack
occurrence. If the structure is embedded with a cooling
system and the ambient temperature is appropriate, the
casting temperature for concrete exerts a limited effect on
thermal cracking risk that is different for the case without
a cooling system. However, heat preservation measures can
exert a significant effect on thermal crack control for massive
concrete, particularly when a cold wave occurs. These mea-
sures deserve attention during the construction of massive
concrete structures.
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