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Steganalysis of adaptive multirate (AMR) speech is a significant research topic for preventing cybercrimes based on steganography
in mobile speech services. Differing from the state-of-the-art works, this paper focuses on steganalysis of AMR speech with
unknown embedding rate, where we present three schemes based on support-vector-machine to address the concern. The first
two schemes evolve from the existing image steganalysis schemes, which adopt different global classifiers. One is trained on a
comprehensive speech sample set including original samples and steganographic samples with various embedding rates, while
the other is trained on a particular speech sample set containing original samples and steganographic samples with uniform
distributions of embedded information. Further, we present a hybrid steganalysis scheme, which employs Dempster—Shafer theory
(DST) to fuse all the evidence from multiple specific classifiers and provide a synthesized detection result. All the steganalysis
schemes are evaluated using the well-selected feature set based on statistical characteristics of pulse pairs and compared with the
optimal steganalysis that adopts specialized classifiers for corresponding embedding rates. The experimental results demonstrate
that all the three steganalysis schemes are feasible and effective for detecting the existing steganographic methods with unknown

embedding rates in AMR speech streams, while the DST-based scheme outperforms the others overall.

1. Introduction

Steganography is an ancient but effective technique for covert
communications through hiding confidential messages into
seemingly innocent carriers with imperceptible distortion.
Although its history can date back to 440 BC [1], its candidate
carriers have been ceaselessly evolving with the elapsing of
years [2]. Over the last years, the steganographic carriers have
developed from image [3, 4] to almost all media forms (e.g.,
video [5, 6], audio [7, 8], text [9, 10], network protocol [11,12],
and Voice over IP [13-16]). However, steganography is a
double-edged sword. Illegal usage of this technique would
facilitate cybercrime activities and thereby pose a great threat
to information security. Thus, its countermeasure, steganal-
ysis, has been also attracting considerable attention [17-25],
whose purpose is to detect potential steganographic behav-
iors effectively.

In today’s mobile world, adaptive multirate (AMR) codec
has become a well-known and important compression stan-
dard for speech coding and been widely employed in not only
3G and 4G speech services [26-28] but also various mobile
instant messaging apps (such as WhatsApp, Snapchat, LINE,
and WeChat). Moreover, it is also a popular file format for
storing AMR-encoded spoken audio supported by almost all
mobile communication devices. Due to its increasing popu-
larity and broad influence in mobile communications, AMR
speech is spontaneously considered as an ideal carrier by the
steganographic research community, and some relevant stud-
ies have been successfully performed [29-33].

AMR isatypical codec based on an algebraic code-excited
linear prediction algorithm, in which algebraic codebook
indices (ACIs), also called fixed codebook indices (FCIs),
occupy a large percentage of each speech frame [26-28].
Taking the AMR speech codec at 12.2 kbps mode [28], for
example, 140 bits out of 244 frame bits is allocated to FClIs,
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suggesting that FClIs account for a large proportion (57.38%)
of all frame bits [33]. Therefore, they are popularly regarded
as nice candidates for steganographic carriers in the existing
studies [29-33]. Geiser and Vary [29] first incorporated infor-
mation hiding into speech coding of the AMR codec by mod-
ifying the fixed-codebook-search algorithm. Specifically, two
secret bits can be hidden into a track pulse through limiting
the searching range of the second FCI to two of eight candi-
date values. Their experimental results demonstrate that this
method can offer a steganographic bandwidth of 2 kbit/s for
the AMR speech codec at 12.2 kbps mode, while guaranteeing
an imperceptible impact on speech quality and fairly small
computational complexity. Moreover, following the similar
idea, Miao et al. [30] proposed an adaptive suboptimal pulse
combination constrained method for steganography in the
AMR speech stream. Their main advantage over the previous
method is enabling regulation of the steganographic capacity
by introducing an embedding factor #. For example, for the
AMR speech codec at 12.2 kbps mode, 7 can be typically set as
1, 2, or 4, so the steganographic bandwidths are correspond-
ingly 1, 2, or 3 kbit/s [32, 33]. It has been demonstrated that,
by choosing a befitting #, this method can achieve a nice
trade-off between the distortion of speech quality and the
embedding capacity [30].

To prevent potential cybercrimes based on the above
steganographic methods, some steganalysis studies have
accordingly been conducted. Miao et al. [31] first presented
two steganalysis methods for AMR speech. One is called
Markov-based method that adopts Markov transition prob-
abilities to evaluate the relationship between pulse positions
in each track, while the other is Entropy-based method that
employs the joint entropy and the conditional entropy to
measure the uncertainty of pulse positions [31]. However, the
above two kinds of statistical features are not accurate enough
for characterizing AMR speech, because they ignore the
fact that the pulse positions may often be interchanged in
the AMR encoding process [33]. Moreover, Ren et al. [32]
presented a steganalysis method called Fast-SPP, which
employs probabilities of same pulse positions (SPP) as the
features to detect the existing steganographic methods [29,
30]. However, the SPP features only reflect the distributions
of two track-pulses being in the same position, which are
not comprehensive enough to characterize AMR speech [33].
Particularly, if a steganographic method designedly abandons
the track-pulses with the same positions and the ones that
would be the same after the embedding operation, Fast-SPP
could not detect any abnormalities [33]. Therefore, in our
previous work [33], we presented more accurate and more
complete features for steganalysis of AMR speech. To avoid
the impact induced by possible interchange of pulse positions
in each track, we employ the statistical features of pulse
pairs to characterize AMR speech, including the probability
distributions of pulse pairs reflecting the long-term distri-
bution of speech signals, Markov transition probabilities of
pulse pairs depicting the short-term invariant characteristic
of speech signals, and joint probability matrices of pulse pairs
characterizing the track-to-track correlation [33]. Moreover,
to optimize the feature set as well as cut down the dimen-
sion, a feature selection mechanism using adaptive boosting
(AdaBoost) [34-38] is designed. Employing the selected
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optimal feature set, a support-vector-machine (SVM) based
steganalysis of AMR speech was presented. The experimental
results show that the proposed method significantly outper-
forms the previous ones.

However, all the above steganalysis methods assume that
the embedding rate (also called the usage rate of the cover,
which is the ratio between the practical embedded bits and
the total number of cover bits) of steganographic samples
in a given test set is exactly known. In other words, they
generally train specific classifiers for steganographic sam-
ples with predefined embedding rates, and each specialized
classifier is expected to detect the steganographic samples
with the corresponding embedding rate. Unfortunately, in
practice, we usually cannot ascertain whether the stegano-
graphic operation has been performed on a given sample,
let alone knowing the concrete embedding rate. Thus, it is
necessary and significant to develop detection technique for
steganography with unknown embedding rate [39-41]. To the
best of our knowledge, this work in this paper is the first one
dedicated to address the concern in the speech steganalysis
field. In the image steganalysis field, however, some pioneer
researchers have presented two useful schemes for detect-
ing image steganography with unknown embedding rate.
Both the two schemes adopt global classifiers based on a
machine-learning algorithm (e.g., SVM) as the detectors, but
the components of their training set are different. Specifi-
cally, the training set of the first scheme includes original
(untouched) samples and steganographic samples with var-
ious embedding rates [40, 41], while that of the other one
consists of original samples and steganographic samples with
uniform distributions of embedded data [40]. In this work,
we would like to attempt to first extend the two existing
schemes to AMR speech steganalysis with unknown embed-
ding rate employing the state-of-the-art steganalysis features
presented in our recent work [33]. Besides, incorporating
with Dempster-Shafer theory (DST) [42, 43], we further
present a hybrid steganalysis scheme for AMR speech based
steganography with unknown embedding rate. DST, also
called evidence theory, is a well-established framework for
uncertain reasoning, which can fuse available evidence from
different sources and achieve a level of belief (confidence;
trust) by considering all of them [42-46]. The main idea
behind the presented steganalysis scheme is employing an
algorithm based on DST to combine all the evidence from
a set of classifiers intended for detecting steganographic
approaches with specific embedding rates and accordingly
providing a synthesized judgement for having or not having
hidden information. All the three steganalysis schemes are
evaluated with a great number of AMR-encoded speech
samples and compared with the optimal steganalysis that uses
every specialized classifier to detect the steganography with
the corresponding embedding rate. The experimental results
show that all these steganalysis schemes are feasible and
efficient for detecting the state-of-the-art steganographic
methods with unknown embedding rates in AMR speech
streams, while the DST-based scheme can achieve better
detection performance than the other ones.

The remaining of this paper is organized as fol-
lows. To make this paper self-contained, Section 2 first
reviews the state-of-the-art steganalysis features based on
statistical characteristics of pulse pairs. Section 3 presents the
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three steganalysis schemes for detecting AMR speech based
steganography with unknown embedding rate. Section 4
evaluates the performance of the three steganalysis schemes
by a set of comprehensive experiments, which is followed by
concluding remarks given in Section 5.

2. Steganalysis Features Based on Statistical
Characteristics of Pulse Pairs

In this work, all the presented steganalysis schemes would
adopt the state-of-the-art detection features based on

statistical characteristics of pulse pairs for AMR speech,
which consists of long- term features, short-term features,
and track-to-track features [33].

The probability distributions of the pulse pairs are
employed to depict the long-term features of AMR speech.
Assume that the given AMR speech sample to be detected has
N subframes and each subframe contains T tracks. For the
jth (0 < j < T -1)trackin the ith (0 <i < N — 1) subframe,
two pulse positions as a pulse pair (p;,p;j,r) can be
extracted. For a pulse pair («, f3), its probability (denoted by
Pp) appearing in all subframes can be determined as
follows:

X3 (8 (s = @) 83 (pijer = B)) 1 (3 (pis = B) & (pyjer = @))) 0

Plap) =

where “&” is the binary AND operation, “||” is the binary OR
operation, and §(x = y) is a characteristic function defined
as follows:

], =
a(x=y>={ 7 2)

0, x#y.

Let the number of candidate positions for every pulse
in each track be 7; the number of the possible pulse pairs
(denoted by v) is

WZTZ_T(T—I):T2+T. 3)
2 2

Therefore, there are y x T pulse pairs in each subframe.
That is to say, the dimension of the long-term feature set
(LTES) for pulse pairs is y x T.

According to the short-term invariance of speech signals
[47], the pulse pair of a track in the current subframe is bound
to have a strong correlation with the one of the same track
in the prior subframe [33]. In this sense, for the ith (0 <
i < T — 1) pulse pairs (i.e., the pulse pairs of the ith tracks)
in all subframes, the sequence of pulse-position pairs S; =
{80s8i15+-->8;n_1} can be considered as a Markov chain.
Accordingly, the Markov transition matrix (MTM) can be
employed to describe the transitive correlation of pulse-pair
states in the given track. Moreover, as a first-order Markov
chain, §; satisfies

P(s,-,j | s,-’o,s,-,l,...,si)j,l) = P(si,j | si)j,l). (4)

In the ith tracks of all subframes, the probability P((«,, 3;) |
(@, 3,)) that the pulse pair (o, 3;) occurs after the pulse pair

(a5, B;) is
P (o, B1) | (2, B2))
= P(Si,j = (0‘1’51) | Sij-1 = (“2’/32))

_ P(Si,j = (0‘1’/31)’51',]‘—1 = (“2»/32))
P(Si,j—l = (“2’/32)) '

)

>

N

Further, the MTM for the ith track (denoted by M;) can be
determined as follows:

M;
P(Vi,o | Vi,o) P(Vi,o | Vi,1) P(Vi,w—l |Vi,u/—1)
P(Vu | Vi,o) (6)
p (vi,w—l | Vi,o) - P (vi,t//—l | Vi,w—l)

where y is the number of all possible pulse-position pairs for
the ith track that can be determined as (3); v; . = (; ., 1; ) is
the kth (0 < k < y — 1) possible pulse-position pair for the
ith track, where u; , and u; , are the potential pulse positions
for the ith track. Moreover, assume that there are 7 candidate
positions for each pulse; x, y, and k satisty the following

relation:

k

S x=0,0<y<7t-1
= x—1

Z(T—i)+y—x, l<x<7-1,0<y<7-1

i=0

Since there are y possible pulse-position pairs in each
track, the size of each MTM is y x y. Taking the MTM:s of
all T tracks into account, the dimension of the feature set
would be very large. However, the characteristics of all the
MTMs are similar. Therefore, we often adopt the average
Markov transition probabilities (MTPs) as the steganalysis
features instead. Apparently, the average MTM (denoted by
M) is determined as

Tio M; ®)
T

Accordingly, the dimension of the short-term feature set
(STES) for pulse pairs is y x .

Furthermore, the joint probability matrices of the pulse
pairs in different tracks are employed to characterize the

M =
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TABLE 1: The composition of the reduced feature set [33].

Feature sets Original dimensions

Reduced dimensions

Proportion in the reduced feature set

LTFS 180 58 11.65%
STES 1296 250 50.20%
TTFS 1296 190 38.15%
Total 2772 498 100%

track-to-track features. To be specific, for the pulse pair of the
ith track and the one of the jth track (0 < i,j < T - 1), the
joint probability matrix (JPM) J; ; is

Ii,j
P(Vi,o»vj,o) P(vi’o,vj)l) P(vi)u,_l,vj,w_l)
P (v;1:750) )
P (Viy1Vjo) + P (Vg1 Viy)

where v is the number of all possible pulse-position pairs for
the ith track that can be determined by (3); v; (v;4) is the
kth (0 < k < y — 1) possible pulse-position pair for the ith
(jth) track; and P(v;y, v;j,) is the joint probability of v;; and
vin (0 < k,h < y - 1). Specifically, the joint probability of
the pulse-position pair («;, 3;) in the ith track and the pulse-
position pair («;, 8;) in the jth track can be determined as
follows:

P((%ﬁi)»(“ﬁﬁj))

1121:_01 (6 (e = (o0, B;)) &S (”k,j = (“j’/gj)))
N

(10)

>

where N is the number of the subframes, v ; (1 ;) is the pulse
pair in the ith (jth) track of the kth subframe (0 < k < N-1),
O(x = y) is a characteristic function defined as (2), and “&”
is the binary AND operation.

Like STES above, we adopt the average JPM as the track-
to-track feature set (TTES) instead of all JPMs to reduce
the computational complexity. Specifically, the average JPM
(denoted by J) is

T-1 <T-1
2% Xjein L
- T(T-1

(1)

Apparently, the dimension of the TTFS is w x w. Accord-
ingly, the total dimension of all the three feature sets is y x T +
2y xy. Taking the AMR speech codec at 12.2 kbps mode as an
example, there are five tracks in each subframe (i.e., T = 5),
where two pulses share eight candidate positions, that is, 7 =
8. Thus, there are ¥ = 36 pulse pairs in each track, and the
total dimension of all feature sets is 2772. These features are
still too large to be directly adopted in the machine-learning
based steganalysis scheme, since very-high-dimensional fea-
tures would not only cause huge computational costs in the
detection phase but also be more likely to induce overfitting in

the training phase [33]. Thus, a feature selection mechanism
based on AdaBoost [34-38] is employed to optimize the
feature set as well as reduce the dimension. In the previous
work [33], by this mechanism a reduced feature set with the
498 most effective features is obtained for the AMR speech
codec at 12.2 kbps mode, of which the composition is shown
in Table 1. Given that the excellent effectiveness of the selected
feature set for steganalysis of AMR speech has been verified,
we directly employ it in this paper.

3. Steganalysis Schemes for Detecting AMR
Speech Steganography with Unknown
Embedding Rate

In this section, we present three steganalysis schemes for
detecting AMR speech based steganography with unknown
embedding rate employing SVM, which is a well-known
machine-learning tool with excellent performance on classi-
fication [48-53] and popularly employed in the steganalysis
field [17-20, 24, 25, 33]. The first two schemes are extended
from the existing image steganalysis schemes [40-42], which
both employ global classifiers to detect the steganography but
adopt different training sets. As depicted in Figures 1 and 2,
the first scheme trains the global classifier using a compre-
hensive speech sample set, including original samples and
steganographic samples with various embedding rates, while
the second one adopts a particular speech sample set, consist-
ing of original samples and steganographic samples with uni-
form distributions of embedded data, to train the global clas-
sifier. For ease of description, we denote the first scheme as
GC-M, meaning that it trains the global classifier on mixed
samples with various embedding rates, and the second
scheme as GC-U, meaning that it trains the global clas-
sifier on particular samples with uniform distributions of
embedded data. In this work, for each AMR speech based
steganographic method, the training set of GC-M involves
the steganographic samples with the embedding rates from
10% to 100%. Moreover, to obtain the steganographic AMR
speech samples with uniform distributions of embedded data
for GC-U, we choose the tracks for hiding information in each
subframe in a uniform random manner during the stegano-
graphic processes.

In addition, we further present a steganalysis scheme
based on Dempster-Shafer theory (DST) for AMR speech
based steganography with unknown embedding rate, as
shown in Figure 3. To make the paper self-contained, we first
review DST briefly. DST is a well-established mathematical
theory of evidence first presented by Dempster [42] and
Shafer [43], which can combine the evidence from different



Mobile Information Systems

Stego samples with
the embedding rate
of 10%

Stego samples with
the embedding rate
of 20%

Original samples

Training

Stego samples with / pair features

the embedding rate
of 100%

i
I
|
| Extracted pulse-
|
I
I

|
'/ Detection ) |
: results i
|

SVM-based

Stego samples
with unknown
embedding rates

i
: Extracted pulse- !
: / pair features i
i Detection

b e e e e e e e e e .

Training

Extracted pulse-

Stego samples with
uniform distributions
of embedded data

Original samples

Stego samples
with unknown
embedding rates

Original samples
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sources to obtain the probability of a certain event [43].
Owing to its powerful reasoning function based on evidence
combination, DST has been popularly employed in many
fields, such as information fusion [44], classification [45], and
intrusion detection [46].

Generally, DST is constructed on a finite set of n possible
elements (denoted by ® = {e,,e,,...,e,}) under considera-
tion, called a frame of discernment. Note that © is exhaustive,
and all elements in ® are mutually exclusive. Let 2° be the set
including all possible subsets of ®. A mass function for
assigning a probability mass to each element, also called basic
probability assignment, is defined as follows:

m(X):2° —[0,1],
st. m(0)=0,

Y mXx) =1,

Xe2®

(12)

where 0 is the empty set. Each nonempty subset X of © is
called a focal element, and its mass function m(X) represents
the exact belief for the proposition described by X. Further,
the belief function for a subset X of ®, denoted by Bel(X), is
the sum of the mass values of all its subsets; namely,

Bel (X) = Z’”(Y)’ (Y € 2®)~ (13)

YcX

The plausibility function for a subset X of ®, denoted by
PI(X), is the sum of the mass values of all the subsets of ® that
intersect X; namely,

PI(X)= Y m(Y)=1=Bel(X), (Ye2°). (14)
YNX+0

Moreover, DST provides a combination rule to obtain a
synthesized belief value for an element by fusing the evidence
from different sources. Formally, assume that m,, m,, ..., m,
are mass functions for a subset X of ® from different
evidence, the combination rule can be stated as follows:

0 X=0

m(X) = Zﬂ’?:l X;=A H?:]mi (Xz) (15)
1k B

where k is a conflict factor that measures the degree of conflict
for all the evidence and can be determined as follows:

k= Z ﬁmi(xi)' (16)

ML, X;=0i=1

Note that if k = 1, all the available evidence is highly
contradictory and thereby cannot be directly combined.

In our work, the frame of discernment ® for detecting
AMR speech based steganography with unknown embedding
rate is defined as ® = {C, S}, where C and S represent the
cover (original) and steganographic samples, respectively,
and accordingly, 29 = {0,{C}, (S}, {C, S}}. As shown in Fig-
ure 3, we adopt the specific SVM-based classifiers for the
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TABLE 2: The components of adopted ten-second speech samples.

Chinese English
Male Female Male Female

Number 743 739 905 979 3366

Category Total

embedding rates from 10% to 100% as ten independent
evidence sources. That is to say, there are ten mass func-
tions from the specific SVM-based classifiers for various
embedding rates. Specifically, the ith mass function from the
classifier for the embedding rate of 10% x i is defined as
follows:

m; ({C}) = Pc (SC;),

m; ({S}) = Ps (SCy), 17
where P.(SC;) (Ps(SC;)) is the confidence probability for
the test sample belonging to the cover (steganographic)
classification, offered by the SVM-based classifier for the

embedding rate of 10% x i.
According to (15), we can get

I1.%,Pc (SC))
C = >
"D = B B (sc) + T, (5)
10 p.(SC, (18)
m({S}) _ - Hz—l S( l(l)) ,
Hi:lPC (SCi) + Hi:lPS (Sci)
m({C,S}) = 0.

Incorporating (13) and (14), we can further obtain
Bel ({C}) = PL({C}) =m ({C}),
Bel ({S}) = PL({S}) = m ({S}) .

(19)

Thus, we can finally make a decision by comparing
m({C}) and m({S}). That is, for a test sample, its classification
(denoted by A) can be determined as follows:

{c, If m({C}) = m({S}),
- (20)
S,  Otherwise.

4. Performance Evaluation and Analysis

In this paper, all the SVM-based classifiers are implemented
employing LibSVM [49], a popular open-source software
library for SVM. Specifically, the classifiers are constructed
on the linear SVM (C-style) with RBF kernel, in which
the default parameters are employed, that is, ¢ = 1 and
g = 1/1064. Moreover, we collect a total of 3366 ten-second
speech samples from audio materials for language learning,
of which the components are shown in Table 2. Without
loss of generality, we typically choose the AMR codec at
12.2 kbps mode as the cover codec. In the experiments, all
steganalysis schemes are evaluated on through detecting
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FIGURE 4: Experimental results for detecting Geiser’s method.

the state-of-the-art steganographic methods, namely, Geiser’s
method [29] and Miao’s methods at the modes of # = 1,
2, and 4 [30]. Prior to the steganographic experiments, we
randomly select a half (1683) of the total speech samples as the
cover sample set for training (CSST) and take the remaining
samples as the cover sample set for detection (CSSD). In the
steganographic experiments, the embedded messages are all
randomly produced. For the three steganalysis schemes, we
define their training sets as follows:

(i) The training set of the first scheme (GC-M): for each

steganographic method, the training set includes 1400
speech samples randomly selected from CSST and
1400 mixed steganographic speech samples at the
embedding rates from 10% to 100%, where there are
140 speech samples at each embedding rate.

(ii) The training set of the second scheme (GC-U): for

each steganographic method, the training set includes
1400 speech samples randomly selected from CSST
and 1400 steganographic speech samples with uni-
form distributions of embedded messages.

(iii) The training sets of the third scheme (DST-based

scheme): for each steganographic method, it is nec-
essary to train the specific classifiers for different
embedding rates. Accordingly, for each embedding
rate, a training set needs to be created, which includes
1400 speech samples randomly selected from CSST
and 1400 samples generated by performing the given
steganographic method at the corresponding embed-
ding rate.
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FIGURE 5: Experimental results for detecting Miao’s method (7 = 1).

In addition, to evaluate the steganalysis performance at
the various embedding rates from 10% to 100%, we create
ten detection sample sets for each steganographic method.
Specifically, for each embedding rate, the detection sample set
consists of 1400 speech samples randomly chosen from CSSD
and 1400 speech samples generated by performing the given
steganographic method at the corresponding embedding
rate. Further, we evaluate the performance of the three
steganalysis schemes by comparing them with the steganal-
ysis based on specific classifiers (SCs) [33]. In all steganalysis
experiments, we make the statistical analyses on accuracy
(ACC, the proportion of true detection results), false positive
rate (FPR, the proportion of false positives out of all nega-
tives), and false negative rate (FNR, the proportion of false
negatives out of all positives).

Figures 4, 5, 6, and 7, respectively, show the experimental
results of detecting all the four steganographic methods for
the ten-second speech samples at the embedding rates from
10% to 100%, from which we can learn that all the three
steganalysis schemes in this paper are feasible and effective,
while there are some differences in their detection perfor-
mance. To be specific, the DST-based scheme outperforms
GC-U and GC-M on the whole as also shown in Tables 3-6,
since the detection accuracies of the DST-based scheme are
better than the others in most cases and closer to those of
the scheme based on SCs overall. Moreover, the FPRs of the
DST-based scheme are smaller than the others in any case. By
the way, for a given steganographic method, the FNRs of each
steganalysis scheme presented in this paper are almost the
same at any embedding rate, since each scheme adopts the
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FIGURE 6: Experimental results for detecting Miao’s method (17 = 2).
TABLE 3: Statistical results of accuracies for detecting Geiser’s method.
Difference between DST and other
Embedding rate GC-M GC-U DST SCs schemes
GC-M GC-U SCs
10% 56.57% 56.96% 54.57% 57.04% —2.00% -2.39% —2.46%
20% 65.18% 67.75% 62.75% 69.75% —2.43% —-5.00% -7.00%
30% 72.86% 77.32% 72.61% 76.71% -0.25% -4.71% -4.11%
40% 79.39% 85.86% 83.46% 85.14% 4.07% -2.39% -1.68%
50% 83.25% 90.82% 91.46% 91.68% 8.21% 0.64% -0.21%
60% 85.46% 93.04% 95.46% 95.36% 10.00% 2.43% 0.11%
70% 86.39% 93.29% 96.89% 97.68% 10.50% 3.61% -0.79%
80% 86.61% 93.93% 97.29% 98.61% 10.68% 3.36% -1.32%
90% 86.79% 93.50% 97.00% 99.25% 10.21% 3.50% -2.25%
100% 87.14% 93.64% 97.29% 99.64% 10.14% 3.64% -2.36%
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FIGURE 7: Experimental results for detecting Miaos method (1 = 4).
TABLE 4: Statistical results of accuracies for detecting Miaos method (1 = 1).
Difference between DST and other
Embedding rate GC-M GC-U DST SCs schemes
GC-M GC-U SCs
10% 54.21% 54.86% 54.25% 53.68% 0.04% —-0.61% 0.57%
20% 59.04% 62.07% 60.39% 61.93% 1.36% -1.68% -1.54%
30% 63.25% 68.46% 65.93% 67.86% 2.68% —-2.54% -1.93%
40% 68.71% 75.32% 73.93% 75.21% 5.21% -1.39% -1.29%
50% 73.00% 80.71% 81.36% 79.82% 8.36% 0.64% 1.54%
60% 75.57% 83.57% 86.32% 85.68% 10.75% 2.75% 0.64%
70% 78.68% 85.18% 89.96% 89.82% 11.29% 4.79% 0.14%
80% 80.14% 85.54% 91.50% 92.57% 11.36% 5.96% -1.07%
90% 81.82% 86.07% 92.75% 95.04% 10.93% 6.68% -2.29%
100% 82.61% 85.79% 92.50% 96.50% 9.89% 6.71% —4.00%
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FIGURE 8: Experimental results for detecting steganographic methods at variable embedding rates.

identical classifier to detect the cover samples. In the cases
of the embedding rates smaller than 40%, some detection
accuracies of the DST-based scheme are very slightly lower
than GC-U or GC-M. The main reason behind this phe-
nomenon is that the detection accuracies of the specific
classifiers are relatively low and thereby more likely make the
evidence from them highly contradictory. Overall, since the
embedding capacities of ten-second speech samples under
the embedding rates lower than 40% are very small, the
detection performance of all the steganalysis schemes is not
so good (particularly, the accuracies are lower than 80% for
Geiser’s method and Miaos methods at the modes of 7 =1
and 2). In this sense, how to further improve the steganalysis

performance for relatively low embedding rates is still a
question worthy of study.

In addition, to comprehensively evaluate the performance
of the presented schemes for detecting steganographic meth-
ods at variable embedding rates, we prepare a mixed detection
sample set for each steganographic method, which consists
of 1400 speech samples randomly chosen from CSSD and
140 steganographic samples generated by performing the
given steganographic method at each embedding rate from
10% to 100%. Figure 8 shows the statistical results of the
steganalysis experiments. From these charts, we can learn that
all the presented three schemes can achieve relatively good
accuracies for detecting the existing steganographic methods.
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FIGURE 9: The ROC curves for detecting Geiser’s method.

Specifically, for Geiser’s method, the accuracies are more than
79%; for Miaos method (y = 1), the accuracies more than
75%; for Miao’s method (1 = 2), the accuracies more than
80%; and for Miao’s method (77 = 4), the accuracies more than
87%. In a word, the presented three schemes are effective for
detecting the existing steganographic methods with any given
embedding rates.

To further assess the performance of the presented three
steganalysis schemes and compare them with the steganaly-
sis based on SCs, we draw receiver-operating-characteristic
(ROC) curves for detecting all the state-of-the-art stegano-
graphic methods at the typical embedding rates of 30%, 60%,
and 100%, as shown in Figures 9, 10, 11, and 12, and calculate
their areas under the curves (AUC), as shown in Table 7. The

experimental results demonstrate again that the presented
three steganalysis schemes are really feasible and effective for
detecting the state-of-the-art steganographic methods, while
the DST-based scheme can offer better detection perfor-
mance than GC-U and GC-M overall.

5. Conclusions

Due to its increasing popularity and broad influence in
mobile communications, AMR speech is spontaneously con-
sidered as an ideal carrier by the steganographic research
community, and some relevant steganographic techniques
have been successfully developed. However, AMR speech
based steganography is a double-edged sword. Illegal usage
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FIGURE 10: The ROC curves for detecting Miaos method (17 = 1).

TABLE 5: Statistical results of accuracies for detecting Miao’s method (17 = 2).

Difference between DST and other

Embedding rate GC-M GC-U DST SCs schemes
GC-M GC-U SCs

10% 5711% 55.89% 53.64% 57.04% -3.46% -2.25% -3.39%
20% 65.00% 67.32% 63.04% 66.75% -1.96% —4.29% -3.71%
30% 74.68% 77.89% 73.71% 78.04% —-0.96% —4.18% -4.32%
40% 79.18% 85.21% 83.18% 85.46% 4.00% —2.04% -2.29%
50% 83.57% 91.21% 90.43% 91.54% 6.86% —-0.79% -1.11%
60% 84.50% 93.93% 94.93% 95.00% 10.43% 1.00% -0.07%
70% 85.75% 94.39% 96.89% 97.79% 11.14% 2.50% —-0.89%
80% 86.00% 94.71% 97.11% 98.25% 11.11% 2.39% -1.14%
90% 85.54% 94.68% 97.00% 99.36% 11.46% 2.32% -2.36%
100% 86.11% 94.57% 97.07% 99.61% 10.96% 2.50% —2.54%
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FIGURE 11: The ROC curves for detecting Miao’s method (17 = 2).
TABLE 6: Statistical results of accuracies for detecting Miao’s method (1 = 4).
Difference between DST and other
Embedding rate GC-M GC-U DST SCs schemes
GC-M GC-U SCs
10% 63.07% 55.14% 53.86% 64.64% -9.21% -1.29% -10.79%
20% 75.54% 67.61% 64.86% 79.00% -10.68% -2.75% -14.14%
30% 85.04% 83.18% 80.96% 88.82% —4.07% -2.21% —7.86%
40% 89.29% 93.89% 92.25% 94.93% 2.96% -1.64% -2.68%
50% 90.36% 98.04% 97.64% 97.96% 7.29% -0.39% -0.32%
60% 91.18% 98.64% 98.79% 99.00% 7.61% 0.14% —-0.21%
70% 91.14% 98.64% 98.93% 99.46% 7.79% 0.29% -0.54%
80% 91.43% 98.75% 99.04% 99.75% 7.61% 0.29% -0.71%
90% 91.46% 98.64% 99.00% 99.86% 7.54% 0.36% -0.86%
100% 91.54% 98.86% 99.14% 99.96% 7.61% 0.29% -0.82%
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FIGURE 12: The ROC curves for detecting Miaos method (1 = 4).

of this technique would facilitate cybercrime activities and
thereby pose a great threat to information security. Thus, its
countermeasure, steganalysis of AMR speech, has been also a
significant problem worthy of study. Although some fruitful
steganalysis studies for AMR speech have been conducted,
all the state-of-the-art methods deal with the problem under
the assumption that the embedding rate of steganographic
samples to be tested is exactly known, which is actually
unpractical. Therefore, we are motivated to study steganalysis
of AMR speech with unknown embedding rate in this paper.
To address this problem, we came up with three different
schemes based on SVM. The first two schemes are extended
from the existing image steganalysis schemes, which both
use global classifiers to detect the steganography but adopt

different training sets. Specifically, the first scheme trains
the global classifier on a comprehensive speech sample set
including original samples and steganographic samples with
various embedding rates, while the second one trains the
global classifier on a particular speech sample set consisting
of original samples and steganographic samples with uniform
distributions of embedded data. Besides, we further pre-
sented the third hybrid steganalysis scheme based DST, which
adopts DST to combine all the evidence from a set of specific
classifiers and accordingly provide a synthesized decision
for having or not having hidden information. All the three
steganalysis schemes are evaluated employing the optimized
feature set based on statistical characteristics of pulse pairs
and compared with the optimal steganalysis that uses each
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TABLE 7: The areas under the ROC curves for detecting the existing steganographic methods.

Steganographic method Embedding rate AUC
GC-M GC-U DST SC
30% 0.807738 0.867176 0.870095 0.864861
Geiser’s method 60% 0.956495 0.991041 0.991186 0.990635
100% 0.991904 0.999748 0.999778 0.999790
30% 0.688343 0.754481 0.759237 0.752387
Miaos method (17 = 1) 60% 0.843580 0.937296 0.939769 0.941201
100% 0.948847 0.995716 0.995116 0.995560
30% 0.823086 0.871535 0.876069 0.871058
Miao’s method (17 = 2) 60% 0.957053 0.989038 0.989208 0.989506
100% 0.993139 0.999892 0.999890 0.999966
30% 0.932302 0.957791 0.959466 0.958470
Miao’s method (17 = 4) 60% 0.995550 0.999243 0.999135 0.999204
100% 0.999875 1.000000 1.000000 1.000000

specialized classifier to detect the steganography with the
corresponding embedding rate. The experimental results
demonstrate that all the presented steganalysis schemes are
feasible and effective for detecting the existing steganographic
methods with unknown embedding rates in AMR speech
streams, while the DST-based scheme can provide better
performance than the others in most cases.
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