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Millimeter-wave (MMW) imaging techniques have been used for the detection of concealed weapons and contraband carried by
personnel. However, the future application of the new technology may be limited by its large number of antennas. In order to
reduce the complexity of the hardware, a novel MMW imaging method based on compressive sensing (CS) is proposed in this
paper. The MMW images can be reconstructed from the significantly undersampled backscattered data via the CS approach. Thus
the number of antennas and the cost of system can be further reduced than those based on the traditional imaging methods that
obey the Nyquist sampling theorem. The effectiveness of the proposed method is validated by numerical simulations as well as by

real measured data of objects.

1. Introduction

Millimeter-wave (MMW) imaging techniques have been
applied for the detection of concealed weapons and con-
traband carried by personnel at airports and other secure
locations [1-5]. Millimeter waves can penetrate common
clothing barriers to form an image of a person as well as
any concealed items with different reflectivity or emissivity.
Also, millimeter waves are nonionizing and, therefore, pose
no known health hazard at moderate power levels, not like
X-ray systems.

However, a large number of antennas and switches (maybe
from hundreds to ten thousands) are needed to construct
one- or two-dimensional (1D or 2D) array to obtain three-
dimensional (3D) images, which increases the cost of the
imaging system and then limits its wide application. In order
to reduce the complexity and cost of the system, we propose
a compressive sensing- (CS-) based method for 3D MMW
imaging. The area of CS was initiated in 2006 by Candes et
al. [6] and by Donoho [7].

CS has been widely explored in the domain of radar
imaging [8-11], in which the image was usually converted

into a vector. And the 1D optimization algorithm was used
to recover the image. However, if we convert the 3D image
into a vector, a huge sensing matrix will be introduced. Then
the computational complexity will be largely increased. In
this paper, we introduce an operator as the sensing matrix to
represent the traditional imaging process based on wavenum-
ber domain algorithm (WDA) [12]. Thus, large-scale matrix
computations are avoided. The image resolution of the WDA
is determined by signal bandwidth, signal frequency, and the
length of synthetic aperture. And the resolution of the CS-
based imaging algorithm is determined mainly by the signal-
to-noise ratio and the matching degree of signal model to the
requirements of CS, such as the restricted isometry property
(RIP). The simulation and experiment results show that the
CS-based method offers a much more accurate image than
the traditional WDA just using a small subset of the full
samples.

The rest of the paper is organized as follows. In Section 2,
the CS imaging method based on the traditional WDA is
introduced. The results demonstrating the efficiency and
accuracy of the method are shown in Section 3. Section 4
summarizes the conclusions.
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FIGURE I: Cylindrical near-field 3D imaging configuration.
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FIGURE 2: Scheme of the wavenumber domain algorithm.

2. CS-Based Method for 3D MMW Imaging

For the 3D imaging geometry is illustrated in Figure 1. An
object formed by a distribution of independent scatterers of
reflectivity g(x, y,z) is located at the center of the imaging
scene. The backscattered field Y (k, 6, y') after demodulation
is given by

Y (k6,y') = mwg (. y,2)

-exp [—jZkRe)y, (%, v, z)] dxdydz,

@)

where k =
¢ represents the

2nf/c is the spatial frequency,
light speed, Ry (x,y,2) =

\/(Ro cos0 — x)? + (Rysin 0 — z)* + (y' — )* is the distance

from each antenna element at (R, cos, y', R, sin 0) to each

scattering center at (x, y,z), and R, is the radius of the
cylindrical aperture, as shown in Figure 1.

The scheme of the traditional WDA [12] for near-field
cylindrical 3D imaging is illustrated in Figure 2. We represent
the imaging process as an operator. Then, the inverse process
can be represented as the inversion of the operator. Thus the
imaging process is given by

9(%.2) =G[Y (k6,y')], )

where the operator G denotes the imaging process as shown
in Figure 2; that is,

G = IFFTyp, {IN,p, {IFFT,, {FFT, [FFT,, ()]
3)
: FFTG {eXp [jkszO cos (9)]}}}} >

where IN,(-) represents 2D interpolation.
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FIGURE 3: Target model.

Then Y (k, 0, y') can be expressed as the inversion of (2)
as follows:

Y (k6,y') =G " [g(x2)], (4)

where G™! denotes the inverse process of (3).

Due to the sparsity of the image scene g(x, y,z), only a
small subset of scattered data Y (k, 6, ') is enough to be used
to reconstruct the image exactly by solving the optimization
problem [13]:

min [yg (x, y,2),
(5)
st. Y(k6,y)=G"[g(x»2)],

where | - ||, is simply the number of nonzero components of
yyg, and ¥ represents a sparse transform, making yg a sparse
vector.

However, solving (5) is an NP-hard problem and thus
practically not feasible. Instead, its convex relaxation is
usually considered as

min {"Y (k, o, y') -G [g(x, y’z)]”z
(6)

Al (5.2l )

where || - ||, and || - |I, denote the ¢ norm and ¢, norm,
respectively. In this paper, we use the total-variation (TV) asa
sparse transform. The parameter A is used to balance the twin
objectives of minimizing both error and sparsity.

The operators G and G™' correspond to the Fourier
matrices if we express the signal model directly. Thus, G and
G satisty the RIP required by CS, and both (5) and (6)
have the same unique solution [6]. There are many state-of-
the-art optimization algorithms designed to solve the convex
optimization problem of (6) [14-17]. Here we use a nonlinear
conjugate gradient (CG) descent algorithm described in
[18]. The computational complexities of G! [g(x, y,2)] and
G[Y (k, 0, y")] both are an order of (NMP)-log, (NMP)+NMP-
K, N, M and P are the sizes of the scattered data, K being the
interpolator length. And the computational complexity of the
key part of the CG algorithm during an iteration is an order
of (NMP)log, (NMP) [18].
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TaBLE 1: Simulation parameters for full set of samples.
Parameters Values
Center frequency (GHz) 91
Bandwidth (GHz) 10
Sampling interval along azimuth-range direction (m) 0.004
Number of samples along azimuth-range direction 64
Sampling interval along elevation-range direction (m) 0.004
Number of samples along elevation-range direction 64

3. Results

The aforementioned algorithm is tested with numerical sim-
ulations and experimental data. The simulation parameters
are shown in Table 1. Figure 3 shows the target model with
8 point-like scatterers with equal radar cross section. The 3D
imaging result (isosurface of —13 dB relative to the maximum
value) of WDA using the full sampling data and the result
of the proposed CS-based method using only 25% of the
full data are shown in Figures 4(a) and 4(b), respectively.
Clearly, even with a small subset of the full data, the CS-
based method can provide a more accurate imaging result
with higher resolution than WDA.

The experiments on real measured data are performed. A
stepped-frequency W-band radar with two circular polarized
horn antennas is used for the measurement, which is shown
in Figure 5. Three screws and a card are measured, respec-
tively, as shown in Figure 6. The diameter of the cross section
of the screw is about 1 cm.

The corresponding MMW imaging results of WDA using
the full measured data are shown in Figures 7(a) and 8(a),
respectively. And the results of the CS-based method using
only 25% of the full data are demonstrated in Figures 7(b)
and 8(b), respectively. Due to the fact that the card is a
distributed target, the imaging result in Figure 8(b) is not
so good as the point-like target in Figure 7(b). However, the
main characteristics remained; for example, the chip inside
the card can be easily seen in Figure 8(b).
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FIGURE 4: 3D MMW images of the target model: (a) the result of WDA using the full data and (b) the result of the CS-based method using
only 25% of the full data.

FIGURE 5: W-band measurement radar.

FIGURE 6: Photo of three screws and a card.
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FIGURE 7: MMW images of the screws: (a) the result of WDA using the full data and (b) the result of the CS-based method using only 25%

of the full data.
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FIGURE 8: MMW images of the card: (a) the result of WDA using the full data and (b) the result of the CS-based method using only 25% of

the full data.

4. Conclusion

A CS-based method has been proposed for cylindrical
near-field 3D MMW imaging. The imaging process and its
inversion are represented by an operator and its inversion,
respectively, to avoid large-scale matrix computation. Thus
the CS approach can be applied to the cylindrical 3D imaging
by using the operator as the sensing matrix. Simulation and
experiment results show that the CS-based method can offer

highly accurate and reliable results, even using only a small
subset of the full samples compared with the traditional
wavenumber domain algorithm.
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