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ABSTRACT. Evans, Pulham, and Sheenan computed the number of complete 4-subgraphs
of Paley graphs by counting the number of edges of the subgraph containing only those
nodes x for which x and x — 1 are quadratic residues. Here we obtain formulae for the
number of edges of generalizations of these subgraphs using Gaussian hypergeometric
series and elliptic curves. Such formulae are simple in several infinite families, including
those studied by Evans, Pulham, and Sheenan.
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1. Preliminaries. Let G(p) be a graph with p vertices, and let G(p)¢ denote its
complement, the graph where xy is an edge if and only if xy is not an edge of G(p).
If p =1 (mod 4) is prime, then let P(p) denote the Paley graph whose vertices are
in GF(p), the finite field with p elements. This is the graph where xy is an edge if
and only if x — 7y is a quadratic residue modulo p. Motivated by a conjecture of Erdos,
which turned out to be false, Evans, Pulham, and Sheenan [2] computed k4(P(p)) +
k4(P(p)°), where k,, (G) denotes the number of complete m-subgraphs of G. Counting
the number of edges of G*(p), the subgraph of P(p) containing only those nodes x
for which x and x — 1 are both quadratic residues, was the main obstacle in obtaining
their result. They showed [2, Proposition 4] that if p = 42 + x2, then the number of
edges in G*(p) is

p2—22p +4x2+81
64 )

We compute the number of edges of G(i,t,p), natural generalizations of G*(p).

Throughout p is an odd prime, and GF (p) is the finite field with p elements. Further-
more let GF(p)”* denote the nonzero elements of GF(p), and let GF( p)XZ denote the
nonzero squares. For convenience we let ¢»(-) denote the Legendre symbol (-/p) ex-
tended to GF (p) under the convention that ¢(0) := 0. If n is an integer, then ord, (n)
is the power of p dividing n and ord, (a/b) := ord,(a) —ord, (b).

(1.1)

DEFINITION 1.1. Let 1 <i < 8 be an integer. If p is an odd prime and t a nonzero
integer, then the generalized Paley graph G(i,t,p) is the directed graph whose edge
set E(i,t,p) is

E(i,t,p):={x — ¥ | (x,») € GF(p)** xGF(p)**, p(1-x) = (~1)L0-D/4), 1.2)

) ) 1.
d)(l _y) _ (_1)l(1—1)/2J’ d)(x—ty) _ (_1)1—1},

where | - | denotes the greatest integer function.
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The reader should note that edges can be loops, and also that the index i simply
keeps track of the eight nontrivial combinations of signs for ¢(1 —x), ¢(1—y), and
¢P(x—ty).If p=1 (mod 4), then since ¢(x—y) = ¢(y —x) the graph G(1,1,p) is a
double cover of G*(p).

We recall the definition of a Gaussian hypergeometric series as defined in [3]. Extend
all characters x of GF(p)* to GF(p) by setting x(0) := 0.If A and B are two characters
of GF(p), then (g) is defined by the normalized Jacobi sum

(‘;‘) = BCD iy - BCED > A(x)B(1-x). (1.3)
14 xeGF(p)

DEFINITION 1.2. Given characters Ay, Ay,...Ay,, and By,B2,...B, of GF(p), let

Ag, A1, ...A, )
MF"( T (1.4)

be the Gaussian hypergeometric series defined by

Ao, A, Ay 4 (on) (Alx) (Anx>
F, ( t) =— (t), (1.5)
n+1f'n By, ---Bn| p—1% X Bix Bnx x(t)

where the summation is over all the characters x of GF(p).

Although the Gaussian hypergeometric series depend on the prime p, we suppress
its dependence in the notation under the assumption that the prime will be clear from
context.

For our purposes it will be important to evaluate

m0=m(T P11, sRw=se(P P ), (1.6)
where ¢ is the identity (i.e., e(x) = 1 for x # 0). In [3] it was shown that
R =20 S gp-x e -tx), (1.7)
xeGF(p)
Em =200 S e -b-mex-ty). (18
p x,Y€GF(p)

A useful alternative for computing these two Gaussian hypergeometric series was
given in [4], where it was shown that they may also be expressed in terms of the
number of points on special elliptic curves over GF (p). Define elliptic curves >E; (t)
and 3E>(t) by

2E1(t) iy =x(x—1)(x—t),

1.9
3Ex () : 2 = x3 —t2x2% + (43 — t4)x + 5 — 41, (1.9)

Denote the number of points on >E; (t) and 3E»(t) over GF(p) by
oNi(t,p) = |{(x,y) € GF(p)xGF(p) | y* =x(x-1)(x-1)}|, (110

sNa(t,p):=[{(x,¥) EGF(p) xGF(p) | y>=x3—t2x+ (43 —t*) x +1t5-41°}].
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Now define the Frobenius traces, »a; (t,p) and sa>(t,p) by

2ai(t,p):=p— 2Ni(t,p),

1.11
3ax(t,p):=p— 3Na2(t,p). ( )

In this notation, the following two theorems were proved in [4].

THEOREM 1.3. Ift € Q- {0,1} and p is an odd prime for which ord, (t(t —1)) =0,
then
_ ¢ 2ailt,p)
v .
THEOREM 1.4. If 6 € Q- {0,4} and p is an odd prime for which ord, (6(6-4)) =0,
then

oF 1 (t) = (1.12)

2 _ 2 _
3F2< 4 >:d>(5 46) (3a2(6,p)° —p) (1.13)

4-6 p?

2. Main theorems. Here we compute the number of edges of the graphs G(i,t,p)
whent # 0 (mod P).Without loss of generality, we assume that 1 <t < p—1, although
for aesthetic reasons we write t = —1 rather thant = p —1.

LEMMA 2.1. If p is an odd prime and t # 0 (mod p), then

(i) Xxecrp P(x2—1t) =1,

(i) [{x €GF(p) | p(x*—1) =1} =(p-2-¢(1))/2,

(iii) [{x € GF(p) | p(t—-x?)=1}=(p-1-p(t)-p(-1))/2,
(iv) {x € GF(p) | p(1-x?/t) =1} = (p—1—-p(t) —p(-1))/2.

PROOEF. (i) By Euler’s criterion that ¢ (x) = x?~1/2 (mod p) for all x € GF(p), and
the Binomial theorem we obtain

>opxi-t)= > (x*-)"""? (mod p)
xeGF(p) xeGF(p)
(p-1)/2 B (2.1)
_ Z <(}9 1)/2)er(_1)(p—1)/2—r (mod p).
XE€GE(p) 1=0 v
Since Zf;cp(p) =0 (mod p) for 0 < k < p —1, the above sum is
= > ()P V24ixP =1 (mod p). (2.2)

XEGF(p)
Furthermore, this sum is odd because ¥ ccr(p) ¢ (X2 —t) = p(—1)+2 Z;pzﬁl)/2¢(x2—t).
Therefore since | Y, vecr(p) @ (x*> —t)| < p, one easily concludes that the sum is —1.
(ii) Define S, and S_ by
S.:=|{x €GF(p) | p(x*>—t) = +1}]. (2.3)

By (i), S+ —S_ = —1. This and the equation S, +S_ = p — (1 + ¢(t)) determine S,.
(iii) and (iv) are also easy exercises. O
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LEMMA 2.2. Suppose p is an odd prime and t £ 0,1 (mod p). If y. . (t,p) is defined
by

2
y+u(t,p) = Hx EGF(p)* | p(1-x?%) = +1, ¢<1—XT) = il}’, (2.4)
then
Ve (t,p) = 3 (p+ S0P 2F1 (D)~ b(~1) =265 (1)
—p(-)=2¢(t*—t) —p(1-t) = p(t - t*) = 7),
Ve (t,p) = § (= $(-D)p 2F1 (1)~ b(-1) —b(1 1)
—p(t—t?)+p(—t)+2¢p(t>—t)-3),
1 (2.5)
y-+(t,p) :Z(v—¢>(—t)p 2F1(t) +p(=1) +Pp(1-1t)
+p(t—t2)—Pp(—t) -2 (t>—1t)-3),
Y (6,p) = 3 (p+ S0P 2F (D) + S(-1) 4 b(1-D)

+P(t—t2)+Pp(—t)+2p(t2—t) —2¢p(t) —3).

PROOF. These formulae follow from four key relations. Since t # 0,1 (mod p), it
is clear that

Y++(t!p) +y——(t!p) +y+—(t!p) +y—+(t!p)

2
- erGF(p)chl)(l—xz)%O, ¢<1—XT)¢0H 2.6)
=p—4-9(1).
Similarly it is easy to see that

Yer(t,p)+y——(t,p) -y (t,p)—y-+(t,p)
2
- 3 et-xe(1-7)

XE€GF(p)* (2.7)

=-1+ > ¢(1—x2)¢(1—x—2>.

xeGF(p) t

Since x? represents each nonzero quadratic residue twice, replacing x? by x in the
above expression and then multiplying the summand by the weight (1 + ¢(x))
leads to

1 ¥ ¢(1—x)¢(1—§)(1+¢(x))
xXeGF(p)

2.8)

X

——1+ 3 p-0s(1-T)+ X ea-06(1-7)pwx.

xXeGF(p) x€GF(p)



THE NUMBER OF EDGES ON GENERALIZATIONS OF PALEY GRAPHS 115

This now reduces by Lemma 2.1 and (1.7) to be
=d(=t)p 2F1(t) —1-(t). (2.9)

Now consider

vt p)tye ) = | fx e Grp 1g1-x) =1, ¢ (1- "72) #ol|

= |{x € GF(p)* | p(1-x?) =1}] (2.10)
—erGF(p)quﬁ(l—xZ):l, ¢(1—x72) :OH.

The first term is known by Lemma 2.1, and the second is 2(1+ ¢ (t)/2)(1+¢p(1-1t)/2)
since it is 2 if £ and 1 —t are both quadratic residues and 0 otherwise. This leads to

Y++(t,p) +y+-(E,p) = (%_Q_2<1+é¢(t))<l+qsél—t)>

(2.11)
= (b b -1~ plt-12)-5).

Similarly we obtain

(p—p(t)—Pp(=t) -2 (t>—1t) - 5). (2.12)

N —

Yer(t,p)+y-+(t,p) =

Solving (2.6), (2.9), (2.11), and (2.12) for y,, (t,p), y+— (t,p), y—+(t,p), and y,, (t,p)
produces the result. O

Theorem 2.3 depends on auxiliary constants determined by the values of ¢(-1),
¢(t), and ¢ (1 —t). These constants are defined in Tables A.1, A.2, A.3, A.4, A.5, A.6,
A.7, and A.8 in the appendix.

THEOREM 2.3. If p is an odd prime, and 2 <t < p —1, then

|E(i,t,p)|
_pptF(it,p) - sEa(0)+p - 2F1 (1) -6(it,p)+p-H (it p)+ I (it p) ST
32 '
PROOF. Define x(i,t,p) by
a(i,t,p):= | {(x,y) € GF(p)*XGF(p)* | p(1 —x?) = (~1)LED/A]
(2.14)

B(1-y?%) = (DI ¢ (x? —ty?) = (D}

Thus «(i,t,p) = 4|E(i,t,p)|. The x(i,t,p) will be determined by solving eight
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equations. First,

«(l,t,

p)—a(2,t,p)—a(3,t,p) +x(4,t,p)
—x(5,t,p)+x(6,t,p) + x(7,t,p) —x(8,t,p)

D, P(1-x*)p(1-y*)p(x*~ty?)

x,YEGF(p)*

>, d((1-x*)A-2*)(x*~ty?))

x,yE€GF(p)

- > d((1-x2)(1-2%) (x> -ty?))
x,yEGF(p), xy=0

> p(1-x)A-»)(x—ty)(1+Px)(1+H()

X, YEGF(p)

+1+¢p(=1)+p(t)+Pp(=t).

(2.15)

The above sum involves the four simpler sums

By Lemma 2.1,

A= > Pp(A-x)1-y)(x—ty)),

x,YEGF(p)

B:i= >  ((1-x)1-»)(x-ty)x),

x,YEGF(p)

S p((1-x)1-»)(x-ty)y),

X, YEGF(p)

D= > ¢(Q-x)A-y)(x-ty)xy).
x,YEGF(p)

(2.16)
C:

A and B are given by
A= Y -y X (A-x)(x-ty)

1/t#yeGF(p xeGF(p)

)
1
+¢(1—?) > p((1-x)(x-1))

X€GF(p)
(t-1)+w-ve(z-1)
(F-1)r

B= >  (r-») X (A-x)(x-ty) 2.17)

1/t+y€GF(p) Xx€GF(p)
vo(1-5) T la-mx-1)

2
t t xeGF(p)

= > dy-y)(-d(-1)+(p-1p(1-1)

1/t+y€GF(p)

=1+¢p(1-)+(p-D(1-1t)

¢
¢

=¢p(1-t)p+1.
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Similarly C can easily be shown to be C = ¢p(—t)+p(1 —t)p. By (1.8), D is a simple
multiple of 3F;(t), which combined with the formulae for A, B, and C leads to

o(1,t,p) —x(2,t,p) —x(3,t,p) + x(4,t,p) — x(5,t,p)
+x(6,t,p) +x(7,t,p) —x(8,t,p)
=p(-1) sE(H)p*+p(1-1t)2p
+p(t—t2)p+2+2¢(—1) +P(—1) + P(1).

(2.18)

Each «(i,t,p) can be expressed in terms of ¢ (—1), ¢p(t), p(1—1t), 2F;(t), and 3F>(t).
Determining these expressions is no more than solving simple systems of equations.
For brevity, we only consider the case where (¢p(-1),¢(t),¢p(1—-t)) = (1,—1,-1). The
solution in this case determines the entries in Table A.5. In the remaining cases, the
tables are determined in exactly the same way.

We first derive an equation for x(1,t,p) + «(3,t,p) in the following way:

o(1,t,p)+x(3,t,p)
= [{(x,) EGF(p)*xGF(p)* | p(1-x%) =1, p(1-»*) #0, p(x* ~ty*) =1}
= |{(x,¥) € GF(p)*XGF(p)* | p(1-x2) =1, p(x*—ty?) =1}|

x2

—2|fxecrmien-x) =1, ¢(1-2) = gt - 1}
= [{x e GF(p)* | p(1-x*)=1}|- | {y € GF(p)* | p(1-ty?) = 1}| -2y, (t,p)
_ (v—5)<v—1>_p—7+v 2F1 ().

(2.19)
The following equations are determined in a similar way,
_cy\2
«(1,t,p) +a(2,t,p) = (PT5> ,
a(3,t,p) + x(4,t,p) = (L_5> (L‘l)
2 2
a(5,t,p) + x(6,t,p) = (pT_l> (PT—S)

1\2 1 Fi (1) (2.20)
0<(7,t,p)+(x(8,t,p):<p; ) _p+ —Zz 10}
a(l,t,v)+o<(5,t,10)=(p_5>(p_1>_V—3+P2F1(t),

_ 2 1
x(3,t,p)+x(7,t,p) = (7”2 1) _p-1 ngl(t).

The solution to the system (2.18), (2.19), and (2.20) for x(i,t,p) for 1 <i < 8 yields
the entries in Table A.5. O

As an immediate consequence of (1.11), Theorems 1.3 and 1.4 we obtain the follow-
ing result.
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COROLLARY 2.4. Ifp isan odd prime,2 <t <p—-1,and 6 := (4t —4)/t (mod p), then

2
|E(i,t,p)| = 5—2(¢(1—t)@(i,t,p)+1)

+ B (— 180, p) + 3Gt )

—2¢p(1-1)F(i,t,p) 3N2(8,p) — p(1 - )F(i,t,p)) (2.21)

+ 3%(¢<1—t)%<i,t,p> sN2(8,p)?
+p(—=1)%(I,t,p) 2N1 (t,p) + $(i,t,p)).

EXAMPLE 2.5. Consider the graph G(7,4,13). By Corollary 2.4 we find that § = 3
(mod 13), and by (1.9) we are lead to consider the GF(13) points of the curves

2E1(4):y? =x3 —5x%+4x,  3E2(3):y?=x3-9x2+27x—243. (2.22)
Both curves have »N;(4,13) = 3N»(3,13) = 15 points over GF(13), and so by Corollary
2.4 (using Table A.1 since ¢p(—1) = ¢p(4) = ¢p(-3) = 1) we find that |E(7,4,13)| =4. It
is easy to verify that this is indeed true, since the edge set is

E(7,4,13) ={3 —3,9— 3,9 — 9,12 — 12}. (2.23)

If t = -1 (mod p), then formulae like (1.1) follow from evaluations proved in [4]

0, if p =3 (mod4);
Fi(-1) = _
e 2x( 1)(xp+y+l)/2, if p=1 (mod4), x2+y%=p, x odd.
(2.24)
—M, if p =5,7 (mod8);
F(-1) = P
3F2(-1) = -
7(]5(2)(2? p)’ if p=1,3 (mod8), x2+2y? =p.

COROLLARY 2.6. Let p be prime, and define integers u, v, x, and y by

p=x%+y% ifp=1 (mod4) with x odd,

s (2.25)
p=u-+2v° ifp=1,3 (mod8).
If p =1 (mod 8), then
p2—12p—12x(-1)X*¥+D/2 1 442+ 91, ifi=1;
' 1 | p?-12p+4x(-1)*x*+¥+D/2 4942 +19, ifi=1,3 or5;
|E(i,-1,p)| = o5 - , (2.26)
32 | p2—4p+4x(—1)+¥+D/2 4 442 4 3, ifi=4,6o0r7,

p?—4p —12x(—1)x+y+D/2 492 5, ifi=8.
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If p =3 (mod 8), then

p?2—-10p+4u+17, ifi=1or7;

) 1 |p?-2p—-4u®+1, ifi=2ors§;
|EGL,-Lp)| =259, ) o (2.27)

32 [p?2-6p—-4u®+13, ifi=3or5;

p?—6p +4u?+5, ifi=4 or6.
Ifp =5 (mod 8), then

. p2—16p —12x(—1)X*>+D/2 167  ifi=1;
|E(i,—1,p) | =35" p2—8p +4x(—1)x+¥y+Di2 4 17, if2<i<7; (2.28)
p?—12x(=1)x+y+D/2 419, ifi=S8.

If p =7 (mod 8), then

p2—-6p+25, ifi=1or7,

. 1 |p?>-6p-7, ifi=2or8;
|EG,-Lp)| =251, o (2.29)

32 [p2-10p+21, ifi=3ors5;

p2-2p-3, ifi=4 or6.

Even though the only t for which ,F;(t) and 3F>(t) are known to simultaneously
have explicit evaluations are t = 0 and +1, we can still obtain simple formulae using
the fact that 4(i,t,p) is often zero in Tables A.3, A.5, A.7, and A.8. If p > 3 is prime,
then the following formulae were obtained in [4]:

’—%, if p =3 (mod4);
3F2(—8) = 1 dx? —
= p’ if p=1 (mod4), x2+y? =p, x odd.
(2.30)

(_P2) if p =3 (mod4);

3F2(_?1) - q§(2r;(4x2—P)

= , if p=1(mod4), x2+y?=p, x odd.

Now as an immediate consequence we obtain the following result.

COROLLARY 2.7. Suppose thatp =5 or7 (mod 8) is prime, and thatt = -8 or —1/8
(mod p).Ifp=5 (mod 8) andt =-8 (mod p), then

_ 1 |p?-6p—-4x%+9, ifi=3or5;
|E(i,t,p)| = o - o (2.31)
32 |p2—6p+4x2+1, ifi=4 or6.

Ifp=5 (mod 8) andt =-1/8 (mod p), then

2_6p+4x2+9, ifi=3o0r5;
: 1’7 P ! 2.32)

EGi,t,p)| =55
[EGLP)] =35 p?—6p—4x?+1, ifi=4or6.
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Ifp=7 (mod 8) andt = -8 or —1/8, then

) 1 |p?-6p+25, ifi=1o0r7;
|EG,tp) | =251, o (2.33)
32 |p2-6p-7, ifi=2or8.

EXAMPLE 2.8. Consider the graph G(8,-1,17). Since 17 = 12 + 42 = 32 42 .22,
Corollary 2.6 with x =1, ¥y =4, u = 3, and v = 2 also shows |E(8,-1,17)| = 6. It
is easy to check that the 6 edges are

E(8,-1,17)={4—8,8—4, 15— 13,15 — 8, 13 — 15, 8 — 15}. (2.34)

EXAMPLE 2.9. Consider the graph G(2,15,23). Since 23 =7 (mod 8) and 15 = -8
(mod 23), Corollary 2.7 implies that |E(2,—8,23)| = 12. It is easy to check that these
12 edges are

E(2,15,23) = {16 — 8, 16 — 12, 18 — 6, 18 — 12, 16 — 18, 12 — 6,

(2.35)
12—8,8—6,8—18,8— 16,6 — 12, 6 — 16}.

Now we state the result when t = 1. Since the proof in this case follows the same type
of argument leading to Theorem 2.3, we omit it for brevity.

THEOREM 2.10. If p is an odd prime, then the number of edges of G(i,1,p) is

p2+pid(=1) 3F2(1)-15p—d(~1)5p+d(-1)30+51, ifi=1;
p?-p*P(-1) 3F2(1)-9p+p(-1)p—p(-1)6+15,  ifi=2,50r8;
IE(i,Lv>I=%- p?—p?p(=1) 3F2(1) =5p—p(-1)3p+p(-1)6+3, ifi=3;
P2+p2p(—1) 3F(1)-7p+p(-1)3p—p(-1)10+11, ifi=4or7,
p2+pidp(=1) 3F(1)-3p—p(-Dp+d(-1)2—-1,  ifi=6.
(2.36)

Since Evans (see [1]) proved that 3F>(1) = (4x? -2p)p? if p = x% + y? where x is
odd, and is zero otherwise, we obtain the following corollary.

COROLLARY 2.11. If p = x°? + y? is prime where x is odd, then

p2—-22p+4x2+81, ifi=1;
1 . .
|E(i,1,p)| = 3 p2—6p—4x2+9, ifi=2,3,5, or§; (2.37)
p?—6p+4x%+1, ifi=4,6, or7.

If p =3 (mod 4) is prime, then

2_10p+21, ifi=1,2,4,5,7, or8;
IEG,Lp)| = =17 7P i (2.38)
32 [p2-2p-3, ifi=3 or6.

Since E(1,1,p) is a double cover of G*(p) when p =1 (mod 4), the formula for
|E(1,1,p)]| in the above corollary is equivalent to (1.1).
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Appendix

TABLE A.1l. (p(—1),¢(8),p(1-1)) = (1,1,1).

i F(,t,p)  4G,tp)  HGtp)  $tp)
1 1 -6 ~11 91
2 -1 2 -13 19
3 -1 2 -13 19
4 1 2 -3 3

5 -1 2 -13 19
6 1 2 -3 3

7 1 2 -3 3

8 -1 -6 -5 -5

TABLE A.2. (p(=1),p(t),p(1-1t)) =(-1,1,1).

i F(,t,p) 4(i,t,p) J(i,t,p) $,t,p)
1 -1 2 -5 27
2 1 2 -11 19
3 1 -6 -11 19
4 -1 2 -5 27
5 1 2 -11 19
6 -1 -6 -5 -5
7 -1 2 -5 27
8 1 2 -11 19

TABLE A.3. (¢p(=1),¢(t),p(1-t)) = (1,-1,1).

i F(,t,p) 4(i,t,p) J(i,t,p) $,t,p)
1 1 —4 -9 29
2 -1 4 -11 21
3 -1 0 -7 9
4 1 0 -5 1
5 -1 0 -7 9
6 1 0 -5 1
7 1 4 -1 5
8 -1 —4 -3 -3




122 LAWRENCE SZE

TABLE A4. (Pp(—1),¢(t),p(1-1t)) =(1,1,-1).

i F(,t,p)  4,t,p) (i, t,p)  $3,t,p)
1 1 -6 -17 67
2 -1 2 -7 11
3 -1 2 -7 11
4 1 2 -9 11
5 -1 2 -7 11
6 1 2 -9 11
7 1 2 -9 11
8 -1 -6 1 19
TABLE A.5. (p(—1),¢(t),p(1-1)) = (1,-1,-1).
i F(,t,p)  4(,t,p) ¥(i,t,p)  $3,t,p)
1 1 —4 -11 21
2 -1 4 -9 29
3 -1 0 -5 1
4 1 0 -7
5 -1 0 -5 1
6 1 0 -7 9
7 1 4 -3 -3
8 -1 —4 -1 5

TABLE A.6. (p(=1),p(t),p(1-1t)) =(-1,1,-1).

i F(,t,p) 4Gtp) HGtp)  F3Gtp)
1 -1 2 -11 19
2 1 2 -5 27
3 1 -6 -5 -5
4 -1 2 -11 19
5 1 2 -5 27
6 -1 -6 -11 19
7 -1 2 -11 19
8 1 2 -5 27
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TABLE A.7. (p(—-1),¢(t),p(1—-t)) = (-1,-1,1).

i FG,tp)  SGGtp)  HGtp)  $30tLp)
1 -1 0 -7 25
2 1 0 -5 -7
3 1 -4 -9 21
4 -1 4 -3 -3
5 1 4 -9 21
6 -1 -4 -3 -3
7 -1 0 -7 25
8 1 0 -5 -7
TABLE A.8. (p(—1),¢(t),p(1-1t)) = (-1,-1,-1).
i F,tp) GG tp) #(i,t,p)  P3,t,p)
1 -1 0 -9 17
2 1 0 -3 1
3 1 -4 -7 13
4 -1 4 -5 5
5 1 4 -7 13
6 -1 -4 -5 5
7 -1 0 -9 17
8 1 0 -3 1
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