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The main aim of the relativistic heavy-ion experiment is to create extremely hot and dense matter and study the QCD phase
structure. With this motivation, experimental program started in the early 1990s at the Brookhaven Alternating Gradient
Synchrotron (AGS) and the CERN Super Proton Synchrotron (SPS) followed by Relativistic Heavy Ion Collider (RHIC) at
Brookhaven and recently at Large Hadron Collider (LHC) at CERN.These experiments allowed us to study the QCDmatter from
center-of-mass energies (√𝑠𝑁𝑁) 4.75GeV to 2.76 TeV. The 𝜙 meson, due to its unique properties, is considered as a good probe
to study the QCD matter created in relativistic collisions. In this paper we present a review on the measurements of 𝜙 meson
production in heavy-ion experiments. Mainly, we discuss the energy dependence of 𝜙 meson invariant yield and the production
mechanism, strangeness enhancement, parton energy loss, and partonic collectivity in nucleus-nucleus collisions. Effect of later
stage hadronic rescattering on elliptic flow (V

2
) of proton is also discussed relative to corresponding effect on 𝜙meson V

2
.

1. Introduction

According to quantum chromodynamics (QCD) [1–4], at
very high temperature (𝑇) and/or at high density, a decon-
fined phase of quarks and gluons is expected to be present,
while at low 𝑇 and low density the quarks and gluons
are known to be confined inside hadrons. The heavy-ion
collisions (A + A) provide a unique opportunity to study
QCD matter in the laboratory experiments. The medium
created in the heavy-ion collision is very hot and dense
and also extremely short-lived (∼5–10 fm/c). In experiments,
we are only able to detect the freely streaming final state
particles emerging from the collisions. Using the information
carried by these particles as probes, we try to understand the
properties of the medium created in the collision.

The 𝜙 vector meson, which is the lightest bound state
of 𝑠 and 𝑠 quarks, is considered as a good probe for the
study of QCD matter formed in heavy-ion collisions. It
was discovered at Brookhaven National Laboratory in 1962
through the reaction 𝐾 + 𝑝 → Λ + 𝐾 + 𝐾 as shown in

Figure 1 [5]. It has a mass of 1.019445 ± 0.000020GeV/c2
which is comparable to the masses of the lightest baryons
such as proton (0.938GeV/c2) and Λ (1.115 GeV/c2). The
interaction cross-section (𝜎) of the 𝜙meson with nonstrange
hadrons is expected to have a small value [6]. The data
on coherent 𝜙 photo-production shows that 𝜎

𝜙𝑁
∼ 10mb

[7]. This is about a factor of 3 times lower than 𝜎
𝜌𝑁

and
𝜎
𝜋𝑁

, about a factor of 4 times lower than 𝜎
Λ𝑁

and 𝜎
𝑁𝑁

,
and about a factor of 2 times lower than 𝜎

𝐾𝑁
. Therefore its

production is expected to be less affected by the later stage
hadronic interactions in the evolution of the system formed
in heavy-ion collisions. A hydrodynamical inspired study of
transverse momentum (𝑝

𝑇
) distribution of 𝜙meson seems to

suggest that it freezes out early compared to other hadrons
[8]. The life time of the 𝜙 meson is ∼42 fm/c. Because of
longer life time the 𝜙 meson will mostly decay outside the
fireball and therefore its daughters will not have much time
to rescatter in the hadronic phase. Therefore, properties of 𝜙
meson are primarily controlled by the conditions in the early
partonic phase and those can be considered as a clean probe
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Figure 1: Number of events versus square of invariant mass of 𝐾𝐾
pairs from the reaction 𝐾 + 𝑝 → Λ + 𝐾 + 𝐾 in bubble chamber
experiments at Brookhaven National Laboratory (BNL) [5].

to investigate the properties of matter created in heavy-ion
collisions.

Strange particle production is one of the observables that
is expected to deliver detailed information on the reaction
dynamics of relativistic nucleus-nucleus collisions [9]. In
experiments at the CERN SPS accelerator it was found
that the ratio of the number of produced kaons to that
of pions is higher by a factor of about two compared to
that in proton-proton reactions at the same energy [10–
13]. In the past, several possible reasons for this strangeness
enhancement have been discussed. Firstly, if nucleus-nucleus
reactions proceed through a deconfined stage, then strange-
quark production should be enhanced relative to a no QGP
scenario [14]. Alternative ideas of Canonical suppression of
strangeness in small systems (proton-proton) as a source
of strangeness enhancement in high energy nucleus-nucleus
collisions have been proposed [15]. This led to a lot of
ambiguity in understanding the true physical origin of the
observed enhancement in the strange particle production
in high energy heavy-ion collisions. The 𝜙(𝑠𝑠) meson due
to its zero net strangeness is not subjected to Canonical
suppression effects.Therefore measurement of 𝜙meson yield
in both nucleus-nucleus and proton-proton would provide
the true answer for observed strangeness enhancement.

Experimentally measured results on V
2
(= ⟨cos 2(𝜑 −

Ψ)⟩, a measure of the azimuthal angle (𝜑) anisotropy of
the produced particles, and Ψ is the reaction plane angle)
of identified hadrons as a function of 𝑝

𝑇
show that at low

𝑝
𝑇
(<2GeV/c) elliptic flow follows a pattern ordered by

mass of the hadron (the V
2
values are smaller for heavier

hadrons than that of lighter hadrons). At the intermediate
𝑝
𝑇
(2GeV/c to 6GeV/c) all mesons and all baryons form

two different groups [35]. When V
2
and 𝑝

𝑇
are scaled by

the number of constituent quarks (𝑛
𝑞
) of the hadrons, the

magnitude of the scaled V
2
is observed to be the same for all

the hadrons at the intermediate𝑝
𝑇
.This observation is known

as number-of-constituent quark scaling (NCQ scaling). This
effect has been interpreted as collectivity being developed at
the partonic stage of the evolution of the system in heavy-
ion collision [36, 37]. Since 𝜙meson hasmass (1.0194GeV/c2)
comparable to the masses of the lightest baryons such as pro-
ton and at the same time it is a meson, the study of 𝜙meson
V
2
would be more appropriate to understand the mass type

and/or particle type (baryon-meson) dependence of V
2
(𝑝
𝑇
).

In this review we have compiled all the available experi-
mental measurements on 𝜙meson production in high energy
heavy-ion collisions as a function of 𝑝

𝑇
, azimuthal angle (𝜑),

and rapidity (𝑦). This paper is organised in the following
manner. In Section 2, measurement of 𝜙 meson invariant
yield has been presented from SPS to LHC energy. Section 3
describes the compilation of the azimuthal anisotropy mea-
surements in 𝜙 meson production from all the available
experimental results. Finally, the summary and conclusion
have been discussed in Section 4.

2. Invariant Yield of 𝜙Meson

2.1. Invariant Transverse Momentum Spectra. We have com-
piled the data on the invariant 𝑝

𝑇
spectra of the 𝜙 meson

measured in 𝑝 + 𝑝, 𝑑 + A, and A + A systems for differ-
ent collision centralities at various centre-of-mass energies
(√𝑠𝑁𝑁 = 17.3GeV–7TeV) [16–22] and those are shown in
Figure 2. Only the statistical errors are indicated as error bars.
Measurement of 𝜙 meson invariant yield in 𝑝 + 𝑝 collisions
at √𝑠 = 7TeV by the ATLAS collaboration [38] is consistent
with that from theALICE experiment and hence is not shown
in Figure 2. The dashed black lines in Figure 2 are fits to the
experimental data using an exponential function of the form

1

2𝜋𝑝
𝑇

𝑑2𝑁

𝑑𝑦𝑑𝑝
𝑇

=
𝑑𝑁/𝑑𝑦

2𝜋𝑇 (𝑚
0
+ 𝑇)

exp[[

[

−
√𝑚2
0
+ 𝑝2
𝑇
− 𝑚
0

𝑇

]
]

]

.

(1)

The blue solid lines in Figure 2 are the fits to the data with
Levy function of the form given by

1

2𝜋𝑝
𝑇

𝑑2𝑁

𝑑𝑦𝑑𝑝
𝑇

=
𝑑𝑁

𝑑𝑦

(𝑛 − 1) (𝑛 − 2)

2𝜋𝑛𝑇 (𝑛𝑇 + 𝑚
0 (𝑛 − 2))

× (1 +
√𝑝2
𝑇
+ 𝑚2
0
− 𝑚
0

𝑛𝑇
)

−𝑛

.

(2)

𝑇 is known as the inverse slope parameter, 𝑑𝑁/𝑑𝑦 is the 𝜙
meson yield per unit rapidity,𝑚

0
is the rest mass of 𝜙meson,

and 𝑛 is the Levy function parameter. Levy function is similar
in shape to an exponential function at low 𝑝

𝑇
and has a

power-law-like shape at higher 𝑝
𝑇
. In fact, the exponential

function is the limit of the Levy function as 𝑛 approaches
infinity. From Figure 2, it can be seen that the exponential
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Figure 2:The invariant yield of 𝜙mesons as a function of𝑝
𝑇
measured for different system and different centralities at various centre-of-mass

energies [16–21]. The black dashed (blue solid) line represents an exponential (Levy) function fit to the data.

and Levy functions both fit the central collision data equally
well. However, with decreasing centrality, the exponential fits
diverge from the data at higher transverse momentum and
the Levy function fits the data better. The 𝜒2/ndf values are
larger for exponential function fits in peripheral collisions

compared to Levy function fits (see Tables 1 and 2). This
indicates a change in shape of the 𝑝

𝑇
spectra (deviations

from exponential distribution and more towards a power
law distribution) at high 𝑝

𝑇
for peripheral collisions. Tsal-

lis function also describes the measured identified spectra
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Figure 3:The 𝜙meson midrapidity yield (𝑑𝑁/𝑑𝑦) as a function of√𝑠𝑁𝑁 for A + A [16–18, 21] and 𝑝 + 𝑝 collisions [18–20, 22, 23]. For RHIC
BES energies (√𝑠𝑁𝑁 = 7.7–39GeV) only statistical errors are shown whereas for other energies systematic errors are added in quadrature
with statistical errors.

equally well as Levy, which is shown in [39, 40]. Like Levy,
Tsallis function describes both the low 𝑝

𝑇
exponential and

the high 𝑝
𝑇
power law behaviors. The Tsallis function has

two parameters while number of parameters for Levy is three.
The exponential function fails to explain data at high 𝑝

𝑇
for

𝑝 + 𝑝 and 𝑑 + Au collisions whereas Levy function describes
data for all 𝑝

𝑇
.This evolution in the shape of the spectra from

exponential-like in central collisions to more power-law-like
in peripheral collisions reflects the increasing contribution
from pQCD (hard) processes to 𝜙meson production inmore
peripheral collisions at higher 𝑝

𝑇
. Particle production at low

𝑝
𝑇
is expected to be due to nonperturbative soft processes and

with sufficient interactions the system could be thermalized,
and that is why both exponential and Levy functions fit the
data for all centralities at low𝑝

𝑇
. All the Levy and exponential

fit parameters for A + A collisions are given in Tables 1
and 2. One can see that the values of parameter 𝑛 are large
in the case central A + A collisions where both Levy and
exponential functions fit the data well. The 𝑑𝑁/𝑑𝑦 values
increase from peripheral to central collisions, indicating
increasing production of 𝜙 meson with increase in collision
centrality.

2.2. 𝜙 Meson Yield per Unit Rapidity. In Figure 3 we present
all available measurements of 𝑝

𝑇
integrated 𝜙 meson yield

(𝑑𝑁/𝑑𝑦) at midrapidity as a function of centre-of-mass
energy in both nucleus-nucleus [16–18, 21] and proton-
proton collisions [18–20, 22, 23]. For A + A collisions,
different centralities are shown by different marker styles in
Figure 3(a). The measured midrapidity yield increases with
centrality and for the same centrality it increases with the
collision energy for both A + A and 𝑝 + 𝑝 collisions. The
rate of increases with √𝑠𝑁𝑁 is higher in A + A collisions

compared to 𝑝 + 𝑝 collisions. We have observed that the
measured midrapidity yield per participant (𝑁part) pair,
(𝑑𝑁/𝑑𝑦)/(0.5𝑁part), increases nonlinearlywith centrality and
for the same 𝑁part(𝑑𝑁/𝑑𝑦)/(0.5𝑁part) increases with the
collision energy of the A + A collisions. The former suggests
that particle production does not scale with 𝑁part and the
latter is expected because of the increase of energy available
to produce the 𝜙mesons.

2.3. Strangeness Enhancement. The ratio of strange hadron
production normalised to ⟨𝑁part⟩ in nucleus-nucleus colli-
sions relative to corresponding results from 𝑝+𝑝 collisions at
200GeV [24] is shown in the left upper panel of Figure 4.The
results are plotted as a function of ⟨𝑁part⟩. 𝐾

−, Λ, and Ξ are
found to exhibit an enhancement (value > 1) that increases
with the number of strange valence quarks. Furthermore,
the observed enhancement in these open-strange hadrons
increases with collision centrality, reaching a maximum for
the most central collisions. However, the enhancement of 𝜙
meson production from Cu + Cu and Au + Au collisions
shows a deviation in ordering in terms of the number of
strange constituent quarks. Such deviation is also observed
in central Pb + Pb collisions at SPS energy (as shown in the
right bottompanel of Figure 4).Thedifference in the ordering
does not seem to be a baryon-meson effect, since 𝐾− and Λ
have similar enhancement, or a mass effect, since Λ and 𝜙
have similar mass but different enhancement factors.

In heavy-ion collisions, the production of 𝜙 mesons is
not Canonically suppressed due to its 𝑠𝑠 structure. The 𝑝 + 𝑝
collisions at RHIC are at an energy which is ∼25 times higher
than energies where violations of the Okubo-Zweig-Iizuka
(OZI) rule were reported [41, 42].The observed enhancement
of 𝜙 meson production then is a clear indication for the
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Table 1: Results from Levy fits to the transverse mass distributions of the 𝜙meson. All values are for midrapidity (|𝑦| < 0.5).

Centrality 𝜒2/ndf 𝑇 (GeV) 𝑛 𝑑𝑁/𝑑𝑦

Pb + Pb (2.76 TeV)

0–10% 4.282/5 0.5005 ± 0.0128 1.121𝑒06 ± 1.414𝑒06 12.41 ± 0.796
10–20% 4.793/5 0.5131 ± 0.0132 4.969𝑒05 ± 2.6𝑒05 8.978 ± 0.553
20–30% 3.976/5 0.4926 ± 0.0429 162 ± 681.2 6.870 ± 0.415
30–40% 1.796/5 0.4897 ± 0.0454 129.6 ± 436.7 4.190 ± 0.262
40–50% 2.25/5 0.4401 ± 0.0424 28.34 ± 21 2.605 ± 0.162
50–60% 3.177/5 0.3946 ± 0.042 15.41 ± 6.68 1.457 ± 0.094
60–70% 0.551/5 0.3801 ± 0.0432 14.68 ± 6.23 0.7157 ± 0.050
70–80% 0.910/5 0.3401 ± 0.04351 10.41 ± 3.32 0.297 ± 0.022

Au + Au (200GeV)

0–10% 9.4/11 0.3572 ± 0.002331 102.9 ± 116 7.421 ± 0.106
10–20% 19.2/11 0.3529 ± 0.002514 93.2 ± 101 5.142 ± 0.108
20–30% 15.2/11 0.3591 ± 0.002343 41.6 ± 5.6 3.442 ± 0.071
30–40% 16.2/11 0.3595 ± 0.002448 38.9 ± 20 2.189 ± 0.045
40–50% 21.4/11 0.3153 ± 0.003802 22.7 ± 4.3 1.392 ± 0.033
50–60% 6.9/11 0.2905 ± 0.003404 0.0138 ± 1.9 0.806 ± 0.023
60–70% 7.4/11 0.2916 ± 0.002911 0.0186 ± 3.6 0.419 ± 0.014
70–80% 5.5/11 0.2430 ± 0.002543 0.0130 ± 2.3 0.202 ± 0.009

Au + Au (62.4GeV)

0–20% 9.2/8 0.3211 ± 0.00624 9.993𝑒06 ± 6.39𝑒06 3.693 ± 0.353
20–40% 8.8/8 0.3217 ± 0.00353 4.24𝑒08 ± 7.41𝑒06 1.590 ± 0.142
40–60% 14.5/8 0.2910 ± 0.00644 9.409𝑒07 ± 𝑒10 0.580 ± 0.071
60–80% 6.78/6 0.2681 ± 0.001426 21.45 ± 17.89 0.151 ± 0.020

Au + Au (39GeV)

0–10% 1.645/9 0.2995 ± 0.01611 6.619𝑒10 ± 8.931𝑒05 3.402 ± 0.812
10–20% 1.046/9 0.3131 ± 0.03514 1.108𝑒07 ± 1.414𝑒04 2.216 ± 0.278
20–30% 1.55/8 0.2996 ± 0.01301 1.532𝑒08 ± 6.651𝑒05 1.597 ± 0.150
30–40% 1.047/9 0.2957 ± 0.04906 945 ± 356 1.019 ± 0.0773
40–60% 1.6383/9 0.2363 ± 0.03561 24.47 ± 14.96 0.456 ± 0.057
60–80% 1.705/9 0.2110 ± 0.03410 20.2 ± 10.72 0.128 ± 0.018

Au + Au (27GeV)

0–10% 3.719/9 0.2861 ± 0.007709 89.17 ± 78.22 3.051 ± 0.178
10–20% 10.05/9 0.2851 ± 0.0039 56.62 ± 38.42 2.004 ± 0.0278
20–30% 12.85/9 0.2747 ± 0.01754 46.3 ± 32.98 1.345 ± 0.082
30–40% 14.06/9 0.2574 ± 0.01741 40.36 ± 30.44 0.846 ± 0.053
40–60% 2.573/9 0.2114 ± 0.01696 19.3 ± 6.155 0.404 ± 0.026
60–80% 15.946/9 0.1901 ± 0.01368 23.34 ± 7.753 0.107 ± 0.007

Au + Au (19.6GeV)

0–10% 10.28/8 0.2803 ± 0.00466 87.17 ± 69.63 2.603 ± 0.051
10–20% 10.96/8 0.2676 ± 0.01202 59.38 ± 47.27 1.786 ± 0.037
20–30% 9.75/8 0.2367 ± 0.01038 32.32 ± 13.11 1.263 ± 0.029
30–40% 8.804/8 0.2397 ± 0.01144 33.25 ± 26.33 0.759 ± 0.018
40–60% 14.31/8 0.1947 ± 0.00865 15.19 ± 2.743 0.336 ± 0.007
60–80% 7.346/8 0.1913 ± 0.00553 15.76 ± 2.849 0.080 ± 0.001

Pb + Pb (17.3 GeV) 0–4% 1.329/2 0.1746 ± 0.01043 1000 ± 1.175𝑒05 0.00227 ± 0.0013

Au + Au (11.5 GeV)

0–10% 6.694/7 0.2662 ± 0.009276 100.73 ± 75.39 1.733 ± 0.112
10–20% 8.171/7 0.2653 ± 0.01187 60.29 ± 42.09 1.121 ± 0.076
20–30% 4.599/7 0.2282 ± 0.02887 37.3 ± 32.05 0.772 ± 0.054
30–40% 10.18/7 0.2353 ± 0.03014 34.36 ± 30.39 0.467 ± 0.034
40–60% 2.898/7 0.1846 ± 0.02255 18.9 ± 10.09 0.205 ± 0.015
60–80% 1.034/7 0.1438 ± 0.01981 11.31 ± 3.681 0.056 ± 0.005

Au+Au (7.7GeV)

0–10% 1.5978/4 0.3082 ± 0.03636 90.33 ± 79.97 1.21 ± 0.098
10–20% 2.8/4 0.2419 ± 0.02615 64.29 ± 40.33 0.719 ± 0.061
20–30% 2.946/4 0.1639 ± 0.07128 50.19 ± 35.39 0.518 ± 0.091
30–40% 1.299/4 0.2039 ± 0.02201 63.3 ± 39.39 0.275 ± 0.024
40–60% 1.833/4 0.1562 ± 0.04774 7.10 ± 6.67 0.139 ± 0.015
60–80% 2.816/4 0.1423 ± 0.0842 15.02 ± 52.03 0.033 ± 0.007
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Table 2: Results from exponential fits to the transverse mass distributions of the 𝜙meson. All values are for midrapidity (|𝑦| < 0.5).

Centrality 𝜒2/ndf 𝑇 (GeV) 𝑑𝑁/𝑑𝑦

Pb + Pb (2.76 TeV)

0–10% 4.28/6 0.5005 ± 0.0128 12.41 ± 0.795
10–20% 4.793/6 0.5131 ± 0.013 8.973 ± 0.502
20–30% 4.032/6 0.5024 ± 0.0127 4.032 ± 0.412
30–40% 1.88/6 0.5027 ± 0.0130 4.171 ± 0.013
40–50% 4.036/6 0.4961 ± 0.0137 2.550 ± 0.0162
50–60% 8.356/6 0.4901 ± 0.0146 1.408 ± 0.014
60–70% 5.937/6 0.4891 ± 0.0156 0.679 ± 0.047
70–80% 10.12/6 0.4815 ± 0.0182 0.271 ± 0.024

Au + Au (200GeV)

0–10% 11.2/12 0.3562 ± 0.002431 7.440 ± 0.106
10–20% 9.7/12 0.3522 ± 0.002614 5.371 ± 0.108
20–30% 26.7/12 0.3731 ± 0.002413 3.435 ± 0.071
30–40% 21.1/12 0.3873 ± 0.002548 2.291 ± 0.045
40–50% 26.4/12 0.3671 ± 0.00307 1.342 ± 0.033
50–60% 70/12 0.3605 ± 0.003604 0.727 ± 0.023
60–70% 54.4/12 0.3516 ± 0.003911 0.380 ± 0.014
70–80% 31.7/12 0.3330 ± 0.004543 0.170 ± 0.009

Au + Au (62.4GeV)

0–20% 8.4/9 0.328 ± 0.00624 3.523 ± 0.353
20–40% 8.4/9 0.324 ± 0.00353 1.590 ± 0.140
40–60% 14.5/9 0.308 ± 0.00644 0.584 ± 0.072
60–80% 13.3/9 0.2791 ± 0.01426 0.152 ± 0.022

Au + Au (39GeV)

0–10% 10.36/10 0.3015 ± 0.0052 3.549 ± 0.070
10–20% 15.54/10 0.3019 ± 0.00522 2.347 ± 0.045
20–30% 3.946/9 0.3004 ± 0.005711 1.618 ± 0.030
30–40% 12.57/10 0.2826 ± 0.00398 1.067 ± 0.019
40–60% 20.62/10 0.267 ± 0.00362 0.498 ± 0.006
60–80% 21.08/10 0.2371 ± 0.00501 0.124 ± 0.002

Au + Au (27GeV)

0–10% 26.13/10 0.29 ± 0.00245 3.46 ± 0.036
10–20% 32.3/10 0.2873 ± 0.00227 2.152 ± 0.023
20–30% 24.93/10 0.2766 ± 0.00236 1.471 ± 0.016
30–40% 13.57/10 0.2645 ± 0.00225 0.926 ± 0.010
40–60% 25.19/10 0.2601 ± 0.00217 0.422 ± 0.004
60–80% 71.08/10 0.2296 ± 0.00250 0.100 ± 0.001

Au + Au (19.6GeV)

0–10% 28.87/9 0.2805 ± 0.003265 2.609 ± 0.038
10–20% 15.28/9 0.2788 ± 0.003722 1.817 ± 0.026
20–30% 13.63/9 0.2608 ± 0.003246 1.187 ± 0.017
30–40% 7.811/9 0.2652 ± 0.003917 0.763 ± 0.011
40–60% 17.78/9 0.2404 ± 0.003352 0.345 ± 0.004
60–80% 10.06/9 0.2142 ± 0.003558 0.072 ± 0.001

Pb + Pb (17.3 GeV) 0–4% 1.337/3 0.1748 ± 0.01043 0.0022 ± 0.0012

Au + Au (11.5 GeV)

0–10% 11.5/8 0.2621 ± 0.006674 1.754 ± 0.047
10–20% 9.638/8 0.265 ± 0.006731 1.281 ± 0.033
20–30% 6.885/8 0.2359 ± 0.006009 0.843 ± 0.022
30–40% 1.946/8 0.2453 ± 0.005765 0.506 ± 0.013
40–60% 2.862/8 0.2071 ± 0.00545 0.235 ± 0.005
60–80% 11.12/8 0.1947 ± 0.00888 0.051 ± 0.001

Au + Au (7.7GeV)

0–10% 3.36/5 0.3082 ± 0.03087 1.207 ± 0.069
10–20% 10.46/5 0.2553 ± 0.01811 0.783 ± 0.036
20–30% 9.767/5 0.2207 ± 0.0141 0.471 ± 0.023
30–40% 4.177/5 0.2375 ± 0.01926 0.329 ± 0.017
40–60% 0.4763/5 0.2195 ± 0.01467 0.147 ± 0.007
60–80% 3.958/5 0.1992 ± 0.02282 0.035 ± 0.002
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Figure 4: (a) The ratio of the yields of 𝐾−, 𝜙, Λ, and Ξ + Ξ normalised to ⟨𝑁part⟩ nucleus-nucleus collisions and to corresponding yields
in proton-proton collisions as a function of ⟨𝑁part⟩ at 62.4 and 200GeV [24]. Error bars are quadrature sum of statistical and systematic
uncertainties. (b) The ratio of ⟨𝑁part⟩ normalised yield of 𝜙, Λ, Λ, Ξ−, and Ω− + Ω+ in Pb + Pb collisions to the corresponding yield in 𝑝 + 𝑝
(𝑝 + Be) collisions at 17.3 GeV (NA57 & NA49) [25, 26] and 2.76 TeV (ALICE) [21]. Only statistical uncertainties are shown.

formation of a dense partonic medium being responsible
for the strangeness enhancement in Au + Au collisions at
200GeV. Furthermore, 𝜙 mesons do not follow the strange
quark ordering as expected in the Canonical picture for the
production of other strange hadrons. The observed enhance-
ment in𝜙meson production being related tomediumdensity
is further supported by the energy dependence shown in the
lower panel of Figure 4. The 𝜙 meson production relative
to 𝑝 + 𝑝 collisions is larger at higher beam energy, a trend
opposite to that predicted in Canonical models for other
strange hadrons.

The right upper panel of Figure 4 shows the enhancement
in Pb + Pb with respect to 𝑝 + 𝑝 reference yields for 𝜙, Λ, Ξ−,
and Ω− + Ω+ at √𝑠𝑁𝑁 = 2.76TeV [21]. The 𝜙, Ξ, and Ω yield
in 𝑝 + 𝑝 collisions at √𝑠 = 2.76TeV have been estimated by
interpolating between the measured yields at √𝑠 = 0.9TeV

and √𝑠 = 7TeV. The reference Λ yield in 𝑝 + 𝑝 collisions
at √𝑠𝑁𝑁 = 2.76TeV is estimated by extrapolating from the
measured yield in (inelastic) 𝑝 + 𝑝 collisions available up to
√𝑠 = 0.9TeV. Details can be found in [21]. Enhancement
factor increases linearly with𝑁part until𝑁part ≈ 100; then the
enhancement values seem to be saturated for higher values
of 𝑁part. Unlike SPS and RHIC, the order of 𝜙 enhancement
is the same as Ξ− at LHC energy. We have observed that
the 𝜙 enhancement at central collisions increases from SPS
to RHIC energy but the enhancement factor is comparable,
within errors, to the values at RHIC and LHC.

These findings tell us that the observed 𝜙meson enhance-
ment is not due to the Canonical suppression effects. There-
fore this enhancement is very likely due to the formation of a
deconfinedmedium. Since other strange hadrons also emerge
from the same system, their enhancement is most likely also
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Figure 5:The𝜙meson𝑅CP as a function of𝑝𝑇 inAu+Au [17, 18] and
Pb + Pb [21] collisions at various beam energies. Error bars are only
statistical uncertainties. Bands represent normalisation error from
𝑁bin which is approximately 20% for √𝑠𝑁𝑁 = 7.7–39 GeV, ∼10% for
200GeV, and ∼7% for 2.76 TeV.

due to formation of deconfinedmatter or quark-gluon plasma
(QGP) in heavy-ion collisions.

2.4. Nuclear Modification Factor. In order to understand par-
ton energy loss in the medium created in high energy heavy-
ion collisions for different centralities in A + A collisions,
the nuclear modification factor (𝑅CP) is measured which is
defined as follows:

𝑅CP =
Yieldcentral
Yieldperipheral

×
⟨𝑁bin⟩peripheral

⟨𝑁bin⟩central
, (3)

where ⟨𝑁bin⟩ is the average number of binary collisions
for the corresponding centrality. The value of 𝑁bin was
calculated from the Monte Carlo Glauber simulation [43].
𝑅CP value is equal to one when the nucleus-nucleus collisions
are simply the superposition of nucleon-nucleon collisions.
Therefore deviation of 𝑅CP from the unity would imply
contribution from the nuclear medium effects, specifically
jet-quenching [44]. Nuclear modification factors (𝑅CP) of 𝜙
mesons at midrapidity in Au + Au collisions at √𝑠𝑁𝑁 =
7.7, 11.5, 19.6, 27, 39, and 200GeV [17, 18] and in Pb + Pb
collisions at√𝑠𝑁𝑁 = 2.76TeV [21] are shown in Figure 5. We
can see that the 𝑅CP of 𝜙mesons goes below unity at 200GeV
and 2.76 TeV in nucleus-nucleus collisions. The most feasible
explanation of this observation to date is due to the energy
loss of the partons traversing the high density QCDmedium.
This implies that a deconfined medium of quarks and gluons
was formed at 200GeV and 2.76 TeV [18, 21]. For √𝑠𝑁𝑁 ≤
39GeV, 𝜙 meson 𝑅CP is greater than or equal to unity at
the intermediate 𝑝

𝑇
, which indicates that at low energy the

parton energy loss contribution to 𝑅CP measurement could
be less important. In order to confirm that the 𝑅CP < 1 is
due to parton energy loss or jet-quenching phenomenon, it is

Au + Au 200GeV (0–10%) d + Au 200GeV (0–20%)
𝜙 𝜙𝜋+ + 𝜋− p + p

R
A

B

3

1
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Figure 6: The nuclear modification factor 𝑅AB as a function of
𝑝
𝑇

in Au + Au and d + Au [18, 27] collisions at √𝑠𝑁𝑁 =
200GeV. Rectangular bands show the uncertainties associated with
estimation of number of binary collisions. Error bars are quadrature
sum of statistical and systematic uncertainties for 𝜙 in d + Au and
only statistical for three other cases.

important to study 𝑅CP in 𝑝 + A or d + A collisions. Nuclear
modifications in such systems are expected to be effected by
the Cronin effect [45] and not by QGP effect. Due to the
Cronin effect the value of 𝑅CP at high 𝑝

𝑇
is expected to be

greater than one.
Figure 6 presents the𝑝

𝑇
dependence of the nuclearmodi-

fication factor𝑅AB inAu+Auand d+Au collisions at√𝑠𝑁𝑁 =
200GeV [18, 27]. The definition of 𝑅AB is the ratio of the
yields of the hadron produced in the nucleus (A) + nucleus
(B) collisions to the corresponding yields in the inelastic
𝑝 + 𝑝 collisions normalised by 𝑁bin. The 𝑅AB of 𝜙 mesons
for d + Au collisions show a similar enhancement trend as
those for 𝜋+ + 𝜋− and 𝑝 + 𝑝 at the intermediate 𝑝

𝑇
. This

enhancement in d + Au collisions was attributed to be due to
the Cronin effect [45]. The Cronin enhancement may result
either frommomentum broadening due to multiple soft [46]
(or semihard [47, 48]) scattering in the initial state or from
final state interactions as suggested in the recombination
model. These mechanisms lead to different particle type
and/or mass dependence in the nuclear modification factors
as a function of 𝑝

𝑇
. Current experimental measurements on

𝜙meson 𝑅AB in d + Au do not seem to have the precision to
differentiate between particle type dependence types [49, 50].
On the other hand, the 𝑅AB in Au + Au (i.e., 𝑅AA) at 200GeV
is lower than that in d + Au at 200GeV and is less than unity
[27].These features are consistent with the scenario of energy
loss of the partons in a QGPmedium formed in central Au +
Au collisions.

2.5. Mean Transverse Mass. Figure 7 shows the difference in
mean transverse mass (𝑚

𝑇
= √𝑝2
𝑇
+ 𝑚2
0
) and rest mass (𝑚

0
),

that is, ⟨𝑚
𝑇
⟩−𝑚
0
for𝜙meson, as a function of centre-of-mass

energy for 𝑝 + 𝑝 [18, 20, 22], Au + Au [17, 18], and Pb + Pb
[16, 21] collisions. Due to limited statistics, result for 𝑝 + 𝑝 at
√𝑠 = 900GeV is not shown. The data points in Figure 7 are
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𝑇
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0
as a function centre-of-mass energies in central

A + A and 𝑝 + 𝑝 collisions. Only statistical errors are shown. The
dashed and solid lines are the straight lines connected to the data to
guide the eye of the reader.

connected by the lines to guide the eye of the reader. One can
see that ⟨𝑚

𝑇
⟩−𝑚
0
increasesmonotonicallywith√𝑠𝑁𝑁 in𝑝+𝑝

collisions whereas the corresponding data in A + A collisions
changes slope twice as a function of center-of-mass energy.
In A + A collisions, ⟨𝑚

𝑇
⟩ − 𝑚
0
first increases with√𝑠𝑁𝑁 and

then stays independent of energy from approximately 17GeV
to 39GeV, followed by again an increase with √𝑠𝑁𝑁. For a
thermodynamic system, the ⟨𝑚

𝑇
⟩ − 𝑚

0
can be interpreted

as a measure of temperature of the system, and 𝑑𝑁/𝑑𝑦 ∝
ln(√𝑠𝑁𝑁) may represent its entropy. In such a scenario, this
observation could reflect the characteristic signature of a first
order phase transition [51].Then the constant value of ⟨𝑚

𝑇
⟩−

𝑚
0
for 𝜙meson from 17GeV to 39GeV could be interpreted

as a formation of amixed phase of a QGP and hadrons during
the evolution of the heavy-ion system.

2.6. Particle Ratios

2.6.1. 𝜙/𝐾−. The mechanism for 𝜙 meson production in
high energy collisions has remained an open issue. In an
environment with many strange quarks, 𝜙 mesons can be
produced readily through coalescence, bypassing the OZI
rule [52]. On the other hand, a naive interpretation of 𝜙
meson production in heavy-ion collisions would be the
𝜙 production via kaon coalescence. In the latter case one
could expect an increasing trend of 𝜙/𝐾 ratio as function of
collision centrality and centre-of-mass energy. Models that
include hadronic rescatterings such as UrQMD [53, 54] have
predicted an increase of the 𝜙/𝐾− ratio at midrapidity as a
function of centrality [18]. Therefore, the ratio of 𝜙 meson
yield to that of the kaons can be used to shed light on 𝜙meson
production mechanism. Figure 8 shows the 𝜙/𝐾− ratio as a
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Figure 8: 𝜙/𝐾− ratio as a function of number of participants in Au
+ Au [18] and Pb + Pb [21] collision at various beam energies.

function of number of participants for different centre-of-
mass energies [18]. The UrQMD model prediction for 𝜙/𝐾−
in Au + Au 200GeV collisions is shown by red dashed line.
However, this prediction was disproved from experimental
data. It is clear from Figure 8 that 𝜙/𝐾− is independent of
centrality and also centre-of-mass energy. In addition, if 𝜙
production is dominantly from𝐾𝐾 coalescence, one expects
the width of the rapidity distribution of 𝜙 mesons to be
related to those for charged kaons as 1/𝜎2

𝜙
= 1/𝜎2

𝐾
−

+

1/𝜎2
𝐾
+

. Measurements at SPS energies show a clear deviation
of the data from the above expectation [55]. Finally, if 𝜙
production is dominantly from 𝐾𝐾 coalescence it would
be reflected in elliptic flow (V

2
) measurements. We observe

at intermediate 𝑝
𝑇
that the V

2
of 𝜙 mesons and kaons are

comparable (discussed in Section 3). All these measurements
effectively rule out kaon coalescence as the dominant produc-
tion mechanism for the 𝜙meson for this energy region.

2.6.2. Ω/𝜙. The production mechanism of multistrange
hadrons (e.g., 𝜙 and Ω) is predicted to be very sensitive
to the early phase of nuclear collisions [56], because both
𝜙 and Ω freeze out early, have low hadronic interaction
cross-section, and are purely made of strange and antistrange
quarks. Therefore the ratio𝑁(Ω)/𝑁(𝜙) is expected to reflect
the information of strange quark dynamics in the early stage
of the system created in the nucleus-nucleus collision [57].
Figure 9 shows the baryon-to-meson ratio in strangeness
sector, 𝑁(Ω− + Ω+)/2𝑁(𝜙), as a function of 𝑝

𝑇
in Au + Au

collisions at √𝑠𝑁𝑁 = 11.5GeV to 2760GeV [17, 18, 21]. The
dashed lines are the results from the recombination model
calculation by Hwa and Yang for √𝑠𝑁𝑁 = 200GeV [57]. In
this model the 𝜙 and Ω yields in the measured 𝑝

𝑇
region are

mostly from the recombination of thermal strange quarks,
whichwere assumed to follow an exponential𝑝

𝑇
distribution.
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Gray bands denote systematical errors.

The thermal 𝑠 quark distribution was determined by fitting
the low 𝑝

𝑇
data of kaon production. The contribution from

hard parton scattering was assumed to be negligible unless
𝑝
𝑇
is large. Details of this recombination model have been

given in [57]. We can see from Figure 9 that, in central A
+ A collisions at √𝑠𝑁𝑁 ≥ 19.6GeV, the ratios of 𝑁(Ω− +
Ω
+

)/2𝑁(𝜙) in the intermediate 𝑝
𝑇
range are explained by

the recombination model with thermal strange quarks and
show a similar trend. The model agrees well with the trend
of the data up to 𝑝

𝑇
∼ 4GeV/c which covers ∼95% of the

total yields for the 𝜙 and Ω. The observations imply that
the production of 𝜙 and Ω in central Au + Au collisions
is predominantly through the recombination of thermal 𝑠
quarks for √𝑠𝑁𝑁 ≥ 19.6GeV. But at √𝑠𝑁𝑁 = 11.5GeV,
the ratio at the highest measured 𝑝

𝑇
shows a deviation from

the trend of other energies. This may indicate a change in Ω
and/or 𝜙 production mechanism at√𝑠𝑁𝑁 = 11.5 GeV.

3. Azimuthal Anisotropy in
𝜙Meson Production

In noncentral nucleus-nucleus collisions, the initial spatial
anisotropy is transformed into a final state momentum
anisotropy in the produced particle distributions because of
pressure gradient developed due to the interactions among
the systems constituents [58–62]. The elliptic flow (V

2
) [63–

65] is a measure of the second order azimuthal anisotropy
of the produced particles in the momentum space. It can be
used as probe for the properties of the medium created in the
heavy-ion collisions. Because of its self-quenching nature, it
carries information from the early phase. Although elliptic
flow is an early time phenomenon, its magnitude might still
be affected by the later stage hadronic interactions. Since the

hadronic interaction cross-section of 𝜙meson is smaller than
the other hadrons [6] and freezes out relatively early [8], its
V
2
remain almost unaffected by the later stage interaction.

Therefore 𝜙 meson V
2
can be considered as good and clean

probe for early system created in nucleus-nucleus collisions.
Further the 𝜙 mesons seem to be formed by coalescence of
strange quarks and antiquarks in a deconfined medium of
quarks and gluons; hence themeasurement of collectivity in𝜙
mesons would reflect the collectivity in the partonic phase. In
addition, its mass is comparable to the masses of the lightest
baryon (𝑝 and Λ); therefore comparison of 𝜙 meson V

2
with

that of proton and Λ will be helpful to distinguish the mass
effect and/or baryon-meson effect in V

2
(𝑝
𝑇
).

3.1. Differential 𝜙 Meson V
2
. Elliptic flow of 𝜙 meson as a

function of 𝑝
𝑇
measured at midrapidity [28–31] is shown

in Figure 10. The shape of 𝜙 V
2
(𝑝
𝑇
) is similar for √𝑠𝑁𝑁 =

19.6GeV to 2760GeV. But at 7.7 and 11.5 GeV, the 𝜙 V
2

values at the highest measured 𝑝
𝑇
bins are observed to be

smaller than other energies. Various model studies predicted
that 𝜙 meson V

2
will be small for a system with hadronic

interactions [66, 67]. Small interaction cross-section of 𝜙
meson in hadronic phase suggests that 𝜙 meson V

2
mostly

reflects collectivity from the partonic phase; hence small
𝜙 meson V

2
indicates less contribution to the collectivity

from partonic phase. So the large 𝜙 meson V
2
at √𝑠𝑁𝑁 ≥

15GeV indicates the formation of partonic matter and small
V
2
at √𝑠𝑁𝑁 ≤ 11.5 could indicate dominance of hadron

interactions.

3.2. Number-of-Constituent Quark Scaling. In Figure 11, the
V
2
scaled by number-of-constituent quarks (𝑛

𝑞
) as a function

(𝑚
𝑇
− 𝑚
0
)/𝑛
𝑞
for identified hadrons in Au + Au collisions

at √𝑠𝑁𝑁 = 7.7–200GeV are presented. We can see from
Figure 11 that for √𝑠𝑁𝑁 = 19.6–200GeV the V

2
values

follow a universal scaling for all the measured hadrons. This
observation is known as theNCQ scaling.The observedNCQ
scaling at RHIC can be explained by considering particle
production mechanism via the quark recombination model
and can be considered as a good signature of partonic
collectivity [36, 37]. Therefore, such a scaling should vanish
for a purely hadronic system if formed in the heavy-ion
collisions at the lower energies. At the same time the study
of NCQ scaling of identified hadrons from UrQMD model
shows that the pure hadronic medium can also reproduce
such scaling in V

2
[68–70]. This is due to modification of

initially developed V
2
by later stage hadronic interactions and

the production mechanism as implemented in the model
[69]. Hence to avoid these ambiguities, the V

2
of those

particles which do not interact with hadronic interaction will
be the clean and good probe for early dynamics in heavy-ion
collisions. Due to small hadronic interaction cross-section, 𝜙
mesons V

2
are almost unaffected by later stage interaction and

it will have negligible value if 𝜙mesons are not produced via
𝑠 and 𝑠 quark coalescence [66, 67]. Therefore, NCQ scaling
of 𝜙 mesons V

2
can be considered as the key observables for

the partonic collectivity in heavy-ion collisions. Aswe can see
from Figure 11, at √𝑠𝑁𝑁 = 7.7 and 11.5 GeV, the 𝜙 meson V

2
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Figure 10:The 𝜙meson V
2
(𝑝
𝑇
) at midrapidity in Au+Au collisions at√𝑠𝑁𝑁 = 7.7–62.4GeV for 0–80% centrality [28] and at√𝑠𝑁𝑁 = 200GeV

for 0–80%, 0–30%, and 30–80% centralities [29, 30] and in Pb + Pb collisions at√𝑠𝑁𝑁 = 2.76TeV [31] for different collisions centralities. The
vertical lines are statistical uncertainties.
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for 0–80% central Au + Au collisions for selected identified particles

[28–30]. Only statistical error bars are shown.
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for 10–20% and 40–50% central Pb + Pb collisions for selected identified

particles [31]. Only statistical error bars are shown. The figure has been taken from the presentation at Quark Matter 2014 by ALICE
collaboration.

deviates from the trend of the other hadrons at the highest
measured 𝑝

𝑇
values by 1.8𝜎 and 2.3𝜎, respectively. This could

be the effect for a system, where hadronic interactions are
more important.

Figure 12 presents the (𝑚
𝑇
−𝑚
0
)/𝑛
𝑞
dependence of V

2
/𝑛
𝑞

for 10–20% and 40–50% central Pb +Pb collisions for selected
identified particles [31]. It can be seen that, at higher value
of (𝑚

𝑇
− 𝑚
0
)/𝑛
𝑞
, the scaling is not good compared to that

observed at RHIC energies.There are deviations at the level of
±20%with respect to the reference ratio as shown in [31].This
larger deviation at LHC energy could be related to observed
large radial flow at LHC compared to RHIC.

3.3. 𝑝
𝑇
Integrated 𝜙Meson V

2
. The 𝑝

𝑇
integrated elliptic flow

(⟨V
2
⟩) can be calculated as

⟨V
2
⟩ =
∫ V
2
(𝑝
𝑇
) (𝑑𝑁/𝑑𝑝

𝑇
) 𝑑𝑝
𝑇

∫ (𝑑𝑁/𝑑𝑝
𝑇
) 𝑑𝑝
𝑇

. (4)

Figure 13 shows 𝑝
𝑇
integrated 𝜙meson (red star) and proton

(blue circle) V
2
as a function of centre-of-mass energy for

0–80% centrality [32]. One can see that for both particle
species the ⟨V

2
⟩ increases with increasing beam energy. 𝜙

meson ⟨V
2
⟩ from a multiphase transport (AMPT) model for

three different scenarios is shown by shaded bands. Green
band corresponds to AMPT default model which includes
only hadronic interaction whereas black and yellow bands
correspond to AMPT with string melting scenario with
parton-parton cross-sections of 3mb and 10mb, respectively.
In contrast to observations from the data, the ⟨V

2
⟩ values from

model remain constant for all the energies. This is because
they have been obtained for a fixed parton-parton interaction
cross-section.The ⟨V

2
⟩ of 𝜙mesons for√𝑠𝑁𝑁 ≥ 19.6GeV can

be explained by the AMPT with string melting (SM) version,
by varying the parton-parton cross-section. On the other
hand, both the AMPT-SM and the AMPT default models
overpredict data at √𝑠𝑁𝑁 = 11.5GeV. The comparison to
AMPT model results indicates negligible contribution of the
partonic interactions to the final measured collectivity for
√𝑠𝑁𝑁 = 11.5GeV. For √𝑠𝑁𝑁 > 19.6GeV, proton and
𝜙 meson show similar magnitude of ⟨V

2
⟩. The proton is a

baryon and 𝜙 is a meson; in addition they are composed
of different quark flavours, yet they have similar ⟨V

2
⟩; this

is a strong indication of large fraction of the collectivity
being developed in the partonic phase. However at √𝑠𝑁𝑁 ≤
19.6GeV, 𝜙 meson ⟨V

2
⟩ values show deviation from that

for proton and at √𝑠𝑁𝑁 = 11.5 GeV 𝜙 meson ⟨V
2
⟩ becomes

small (∼1.5%). This tells us that due to the lack of enough
partonic interactions at lower beam energies a larger ⟨V

2
⟩

could not be generated for 𝜙 mesons. The contribution to
𝜙 ⟨V
2
⟩ from hadronic interactions is small because of small

𝜙-hadron interaction cross-sections. However the observed
higher collectivity of protons compared to 𝜙 mesons at the
lower beam energies could be due to the protons having larger
hadronic interaction cross-section.

3.4. Hadronic Rescattering Effect on V
2
. Recent phenomeno-

logical calculation based on ideal hydrodynamical model
together with the later stage hadron cascade (hydro + JAM)
shows that the mass ordering of V

2
could be broken between

that of𝜙meson and that of proton at low𝑝
𝑇
(𝑝
𝑇
< 1.5GeV/c)

[71]. This is because of late stage hadronic rescattering effects
on proton V

2
.Themodel calculation was done by considering

low hadronic interaction cross-section for 𝜙 meson and
larger hadronic interaction cross-section for proton. The
ratio between 𝜙 V

2
and proton V

2
is shown in Figure 14 for
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𝑇
integrated proton and 𝜙 meson V

2
for various

centre-of-mass energies for 0–80% centrality in Au + Au collisions
[32]. Vertical lines are the statistical error and systematic errors are
shown by cap symbol. For lower RHIC energies, STAR preliminary
𝑝
𝑇
spectra were used for 𝜙 and proton ⟨V

2
⟩ calculation [17, 33, 34].

The red and blue lines are the fit to the 𝜙 and proton V
2
by empirical

function just to guide the eye of the reader.

minimum bias Au + Au collisions at √𝑠𝑁𝑁 = 200GeV.
The data from the STAR experiment are shown by solid red
square and blue solid circle [29, 30]. Solid red square and blue
solid circle correspond to 0–30% and 30–80% centralities,
respectively. The ratios are larger than unity at low 𝑝

𝑇
region

(𝑝
𝑇
< 0.7GeV/c) for 0–30% centrality although mass of the

𝜙 meson (1.019GeV/c2) is greater than mass of the proton
(0.938GeV/c2).This is qualitatively consistentwith themodel
calculation using hydro+ JAMshownby red bands.Therefore
this observation is consistent with the physical scenario of
larger effect of hadronic rescattering on proton V

2
which

reduces its value, as predicted in the theoretical model [67,
71]. Due to small hadronic interaction cross-section 𝜙meson
V
2
remains unaffected by later stage hadronic rescattering.

4. Summary

We have presented a review on the experimentally measured
data on 𝜙 production (specifically the transverse momentum
distributions and azimuthal anisotropy measurements) in
high energy heavy-ion collisions. The differential (𝑝

𝑇
, 𝜑, 𝑦)

measurements of 𝜙 meson production have been compared
from heavy-ion collisions at the SPS, RHIC, and LHC ener-
gies. Transverse momentum spectra of 𝜙meson for different
centralities, different energies, and different collision systems
are presented. The shape of the transverse momentum dis-
tribution changes from exponential to Levy functional form
as one goes from central to peripheral collisions at a given
beam energy. This indicates an increasing contribution of

Models
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2

� 2
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)/
� 2
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Figure 14: Ratio between 𝜙 and 𝑝 V
2
for 0–30% and 30–80%

centrality in Au + Au collisions√𝑠𝑁𝑁 = 200GeV [29, 30].

hard processes in the peripheral collisions. The centrality
and energy dependence of the enhancement in 𝜙 meson
production support the physical origin to be due to the
enhanced production of 𝑠(𝑠)-quarks in a dense partonic
medium formed in high energy heavy-ion collisions.We have
discussed beam energy dependence of the nuclear modifica-
tion factors of 𝜙 meson. The values of nuclear modification
factors are less than unity for beam energies of 200GeV
and 2.76 TeV, indicating formation of a dense medium with
color degrees of freedom. The nuclear modification factor
values at the intermediate 𝑝

𝑇
are observed to be equal to

or higher than unity at √𝑠𝑁𝑁 ≤ 39GeV. This indicates
that parton energy loss effect became less important and
suggests dominance of hadronic interactions at the lower
beam energies. The ratio 𝑁(𝜙)/𝑁(𝐾−) is observed to be
almost constant as a function of centrality and centre-of-
mass energy, disfavouring 𝜙meson production through kaon
coalescence.The ratio of𝑁(Ω−+Ω+)/2𝑁(𝜙) versus 𝑝

𝑇
shows

a similar trend for √𝑠𝑁𝑁 ≥ 19.6GeV, but at √𝑠𝑁𝑁 =
11.5GeV the ratio at the highest measured 𝑝

𝑇
shows a

deviation from the trend at other higher energies. This may
suggest a change in Ω and/or 𝜙 production mechanism and
strange quark dynamics in general at√𝑠𝑁𝑁 = 11.5GeV.

The measurement of 𝜙 meson V
2
as a function of 𝑝

𝑇
and

collision centrality are discussed. We observe that 𝜙 meson
V
2
(𝑝
𝑇
) has similar values for √𝑠𝑁𝑁 ≥ 19.6GeV and NCQ

scaling also holds for √𝑠𝑁𝑁 ≥ 19.6GeV. But at √𝑠𝑁𝑁 =
7.7 and 11.5 GeV, the 𝜙 meson V

2
shows deviation from the

other hadrons at the highest measured 𝑝
𝑇
values by 1.8𝜎 and

2.3𝜎, respectively. Since the V
2
of 𝜙 mesons mostly reflect

collectivity from partonic phase, therefore the small 𝜙 V
2

observed at √𝑠𝑁𝑁 = 7.7 and 11.5 GeV indicates a smaller
contribution to the collectivity from partonic phase. We
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find that the 𝜙 ⟨V
2
⟩ can be explained by AMPT model with

partonic interactions having cross-section values between
3mb and 10mb for √𝑠𝑁𝑁 ≥ 19.6GeV, but the model with
and without partonic interactions overpredicts the data at
√𝑠𝑁𝑁 = 7.7 and 11.5 GeV. Also at √𝑠𝑁𝑁 > 19.6GeV, proton
and 𝜙 meson show similar magnitude of ⟨V

2
⟩; however, at

√𝑠𝑁𝑁 ≤ 19.6GeV, 𝜙 meson ⟨V
2
⟩ shows deviation from

corresponding proton values. At √𝑠𝑁𝑁 = 11.5GeV𝜙 meson
⟨V
2
⟩ value is small and is about 1.5%.This further emphasises

our conclusion that at lower beam energies the hadronic
interactions are dominating. In addition, we observe that the
mass ordering between 𝜙 and proton V

2
breaks down in the

lower momentum range at √𝑠𝑁𝑁 = 200GeV. This could be
because of the larger effect of hadronic rescattering on proton
V
2
, which reduces the proton V

2
values.

The main conclusions of the review are the following.
(a) The coalescence of 𝐾+ and 𝐾− is not the dominant
production mechanism for 𝜙 meson in high energy heavy-
ion collisions. (b)The study ofΩ/𝜙 and comparison to quark
recombination model calculations indicate that 𝜙 mesons
are produced via coalescence of thermalized 𝑠 quarks for
√𝑠𝑁𝑁 ≥ 19.6GeV. (c) The observed 𝜙 meson enhancement
(unaffected by Canonical suppression effects) in heavy-ion
collisions suggests that strangeness enhancement is due to
the formation of a dense partonic medium. (d) The nuclear
modification factormeasurements for𝜙mesons and themea-
surements of 𝜙 meson V

2
indicate the formation of partonic

media in heavy-ion collisions at √𝑠𝑁𝑁 ≥ 19.6GeV, while
for √𝑠𝑁𝑁 ≤ 11.5GeV hadronic interactions dominate. (e)
Finally 𝜙 meson production provided us with a benchmark
to study the rescattering effect. The comparison of 𝜙 and
proton V

2
shows thatmass ordering in V

2
(𝑝
𝑇
) could be broken

due to effect of later stage rescattering effects on the proton
distributions.
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