
Research Article
A Novel Fractional Filter Design and Cross-Term
Elimination in Wigner Distribution

Jiexiao Yu,1 Kaihua Liu,1 Liang Zhang,1 and Peng Luo2

1School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China
2Hebei Electric Power Institute, Shijiazhuang 050021, China

Correspondence should be addressed to Liang Zhang; vfleon@163.com

Received 28 November 2014; Accepted 13 January 2015

Academic Editor: Qilian Liang

Copyright © 2015 Jiexiao Yu et al.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The second and the third sentences of the abstract are changed and the shorter abstract is given as follows. To recover the
nonstationary signal in complicated noise environment without distortion, a novel general design of fractional filter is proposed and
applied to eliminate theWigner cross-term. A time-frequency binary image is obtained from the time-frequency distribution of the
observed signal and the optimal separating lines are determined by the support vector machine (SVM) classifier where the image
boundary extraction algorithms are used to construct the training set of SVM. After that, the parameters and transfer function of
filter can be determined by the parameters of the separating lines directly in the case of linear separability or line segments after
the piecewise linear fitting of the separating curves in the case of nonlinear separability. Without any prior knowledge of signal and
noise, this method can meet the reliability and universality simultaneously for filter design and realize the global optimization
of filter parameters by machine learning even in the case of strong coupling between signal and noise. Furthermore, it could
completely eliminate the cross-term in Wigner-Ville distribution (WVD) and the time-frequency distribution we get in the end
has high resolution and good readability even when autoterms and cross-terms overlap. Simulation results verified the efficiency
of this method.

1. Introduction

With the flourishing development of time-frequency (𝑡-𝑓)
analysis theory, nonstationary signal analysis and process
technology have stepped into a new stage [1–3]. In particular,
the emergence of fractional Fourier transform (FrFT) and the
unified understanding of the 𝑡-𝑓 domain provide a novel idea
for 𝑡-𝑓 filter design [4, 5].

In 1980,Namias first introduced the concept of fractional-
order Fourier transforms from a mathematical point of view
in [6]. Then, Almeida discussed the FrFT’s relationships
with the Wigner-Ville distribution (WVD) and other 𝑡-𝑓
representations, which make a very simple and natural form
and further enhance its interpretation as a rotation operator
[7]. Using the above properties, FrFT could be adopted in 𝑡-𝑓
filter design in order to achieve the optimal detection and
parameter estimation of nonstationary signals and filtering
of some forms of interferences and noises [8–10]. Some
fractional Fourier domain optimal filtering algorithms based

on the minimum mean-square error were presented in [11,
12], and Lin et al. proposed a discrete algorithm of theWiener
filtering operator on the fractional Fourier domain [13].
However, all the above algorithms are just the generalized
forms of filter in the time (frequency) domain that need the
prior statistical knowledge of observing signals and noises
and simply be limited to a single rotation angle. Erden et al.
designed a multi-iterative filtering on different order based
on the additivity of rotations of FrFT [14], whose complexity
is very high and the iterative process cannot guarantee
convergence to the global optimal solution. The work in [15]
determined optimal order and the transfer function of the
𝑡-𝑓 filter by using 𝑡-𝑓 transform and converted the fractional
filter to a separating line in the 𝑡-𝑓 plane. This method
provided a useful solution in 𝑡-𝑓 filter design, though no
specific design is proposed.

In this paper, a novel fractional filter design is proposed
and applied to eliminate the Wigner cross-term. According
to the similarity between the 𝑡-𝑓 plane and 2D image,
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the edges of signals and noises could be obtained and are
used to acquire the parameters of optimal separating lines
between different components by support vector machine
(SVM), which is the key of the Fourier filter design. This
method realizes the global optimization of filter parameters
bymachine learning and needs no prior knowledge of signals
and noises, which can meet the reliability and universality
simultaneously for filter design. The remainder of this paper
is organized as follows. In Section 2, the principle of FrFT
and fractional filter design is introduced. In Section 3, the
details of the determination of separating lines on 𝑡-𝑓 plane
are given. For the case of linearly inseparable signal and noise,
a piecewise linear fitting algorithm is used and themultiorder
filter bank is designedwith the parameters of each segment in
Section 4. After that, Section 5 presents amethod to eliminate
the cross-term effect in WVD based on the above design of
fractional filter. Finally, simulation results are explicated in
Section 6 and the conclusion is stated in Section 7.

2. Principle of Fractional Filter Design

2.1. Fractional Fourier Transform. The𝑝th FrFT of signal 𝑥(𝑡)

is defined as a linear integral transform with kernel 𝐾𝑝(𝑢, 𝑡):

𝑋𝑝 (𝑢) = ∫

∞

−∞

𝐾𝑝 (𝑢, 𝑡) 𝑥 (𝑡) 𝑑𝑡, (1)

where

𝐾𝑝 (𝑢, 𝑡)

=

{{{{

{{{{

{

√1 − 𝑗cot𝛼
⋅ exp [𝑗𝜋 (𝑡

2cot𝛼 − 2𝑡𝑢csc𝛼 + 𝑢
2cot𝛼)] , 𝑝 ̸= 2𝑛,

𝛿 (𝑡 − 𝑢) , 𝑝 = 4𝑛,

𝛿 (𝑡 + 𝑢) , 𝑝 = 4𝑛 ± 2.

(2)

Note that the 𝑢 domain is generally known as the frac-
tional Fourier domain which makes the angle 𝛼 = 𝑝𝜋/2 with
the time domain and it is just the time (frequency) domain
when 𝛼 = 0 (𝛼 = 𝜋/2). The discrete fractional Fourier
transform (DFrFT) adopted in this paper is Pei sampling fast
algorithm which has the closed-form analytic expression and
can be efficiently calculated by fast Fourier transform (FFT)
[16].

2.2. Fractional Filter Design. It is known that we can use FrFT
for filter design, as follows:

𝑟 (𝑡) = 𝐹
−𝑝

{𝐹
𝑝

[𝑥 (𝑡)] 𝐻 (𝑢)} , (3)

where 𝑥(𝑡) is the input signal, 𝑟(𝑡) is the output signal, and
𝐻(𝑢) is the 𝑡-𝑓 filter transfer function. Here, the selections
of transformation order and cutoff criteria are two important
issues regarding the filter design in the 𝑢 domain.

As a fact, the FrFT filter as shown in (3) is equivalent to a
separating line 𝑙sep in the time-frequency plane, which could
remove the 𝑡-𝑓 components on one side of 𝑙sep and those on

the other side are preserved [15]. Assume that the separating
line is

𝑙sep : 𝑦𝑙 (𝑡) = 𝑘𝑡 + 𝑏0. (4)

Then, the transformation order 𝑝 could be determined by
the slope 𝑘 and the cutoff frequency 𝑢0 equal to the distance
from the origin of the separating line where the coordinate
transformation formulas are

𝑝 = −
2

𝜋
arc cot (𝑘) ; 𝑢0 = 2𝜋𝑏0 sin(

𝜋

2
𝑝) . (5)

Here, 𝐻(𝑢) = 0 for 𝑢 > 𝑢0, 𝐻(𝑢) = 1 for 𝑢 < 𝑢0 or
𝐻(𝑢) = 1 for 𝑢 > 𝑢0, 𝐻(𝑢) = 0 for 𝑢 < 𝑢0, depending on
which part the noise is.

For more conventional signal distribution, the noise and
the desired signal are in such a shape that we cannot find a
single rotated coordinate system where we can completely
eliminate the noise term from the signal. Thus, series of
rotation of the coordinate system are needed and (3) may
be generalized into a filter bank with consecutively changing
orders:

𝑥1 (𝑡) = 𝐹
−𝑝
1
{𝐹
𝑝
1
[𝑥 (𝑡)] 𝐻1 (𝑢)} ,

𝑥2 (𝑡) = 𝐹
−𝑝
2
{𝐹
𝑝
2
[𝑥1 (𝑡)] 𝐻2 (𝑢)} ,

.

.

.

𝑟 (𝑡) = 𝐹
−𝑝
𝑁

{𝐹
𝑝
𝑁

[𝑥𝑁−1 (𝑡) 𝐻𝑁 (𝑢)]} .

(6)

Furthermore, in the case where the 𝑡-𝑓 distributions of
noises and signals do not overlap in the 𝑡-𝑓 plane, noises
will be eliminated successfully by the filter designed by
(6) as long as the transformation orders 𝑝1, 𝑝2, . . . , 𝑝𝑛 are
chosen properly. However, in the case of 𝑡-𝑓 distributions
overlapping, the filters may be selected in order to minimize
the mean-square error.

3. The Determination of
the Optimal Separating Lines on
the Time-Frequency Plane

From the above analysis, it can be seen that the option of
the separating line is nonuniqueness. Hence, how to find
an optimal solution is the key to the filter design. In this
paper, SVM classifiers, which often have superior recognition
rates in comparison to other classification methods, are
used to solve the parameters of the optimal separating lines
in the 𝑡-𝑓 plane. At first, the data model of the optimal
classification problem is built by 𝑡-𝑓 transformation. Then,
in order to construct the training set, an image boundary
extraction algorithm is adopted. After that, the parameters of
the optimal separating line could be obtained by using SVM
either in linear separability or in nonlinear separability.

3.1. Time-Frequency Image Representations. In order to locate
signal and noise components in the 𝑡-𝑓 plane accurately, the
𝑡-𝑓 distribution of the observed signals should be achieved
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at first. The 𝑡-𝑓 transformation in this paper should have a
rotation relation with the FrFT, which is the essential foun-
dation of the filter design in the 𝑢 domain. It is known that
the classical 𝑡-𝑓 transformation such as the Gabor transform
(GT), the WVD, and the ones derived from them such as the
smoothing pseudo WVD (SPWVD) and the Gabor-Wigner
transform (GWT) all satisfied the above property and their
expressions are shown as follows:

GT: 𝐺𝑠 (𝑡, 𝑓) = ∫

∞

−∞

𝑒
−(𝜏−𝑡)

2
/2

𝑒
−𝑗2𝜋𝑓𝜏

𝑠 (𝜏) 𝑑𝜏,

WVD: 𝑊𝑠 (𝑡, 𝑓) = ∫

+∞

−∞

𝑥 (𝑡 +
𝜏

2
) 𝑥
∗

(𝑡 −
𝜏

2
) 𝑒
−𝑗2𝜋𝑓𝜏

𝑑𝜏,

SPWVD: 𝑆𝑃𝑊𝑠 (𝑡, 𝑓)

= ∬

+∞

−∞

ℎ (𝜏) 𝑔 (𝑢) 𝑥 (𝑡 − 𝑢 +
𝜏

2
) 𝑥
∗

⋅ (𝑡 − 𝑢 +
𝜏

2
)

−𝑗2𝜋𝑓𝜏

𝑑𝑢 𝑑𝜏,

GWT: 𝐶𝑠 (𝑡, 𝑓) = 𝐺
2.6

𝑠
(𝑡, 𝑓) 𝑊

0.6

𝑠
(𝑡, 𝑓) .

(7)

The GT is considered as an example here to interpret
the similarity between the 𝑡-𝑓 plane and the 2D image.
In the practical applications, the 𝑡-𝑓 plane is represented
in a Gabor coefficient matrix 𝑋 = (𝑎𝑚𝑛)𝑀×𝑁 which is
obtained by the discrete GT for the samples of limited length
signal and the element 𝑎𝑚𝑛 (|𝑎𝑚𝑛|) in the 𝑚th row and the
𝑛th column shows the distribution strengthen of observed
signal at the point in the 𝑡-𝑓 plane whose coordinates are
(𝑡𝑚, 𝑓𝑛). Obviously, the 𝑡-𝑓 plane is similar to a gray image
so that each 𝑡-𝑓 point corresponds to a pixel in the image
and an 𝑡-𝑓 image, which consists of three parts: signal
areas, noise areas, and background, is obtained.Multidiscrete
highlight energy concentration areas represent several signal
and noises components that exist simultaneously and one
of the most direct and effective way of separating these
components is according to the edge of these highlight areas.
As a result, the edges of these signals and noises, which
could be detected by the boundary extraction technology,
are suitable for the construction of the training set of SVM
classifier.

3.2. Image Boundary Extraction in Time-Frequency Domain.
As mentioned above, as a plain gray image, there are only
several discrete highlight areas in the 𝑡-𝑓 image and their
edges are just some closed curves. Hence, by selecting the
threshold reasonably, we can convert the gray image to its
binary counterpart without losing useful information and the
image boundaries could be obtained by edge extraction and
thinning and smoothing algorithms, as shown in Figure 1(a).
Then, all the edge pixels are coded in the binary image with
integer numbers in sequence, from left to right, and then
from top to bottom, so that pixel with small coordinate
values could corresponds to a sole small integer number, as
presented in Figure 1(b). After that, the given label number

of each edge pixel with the numbers of the pixels in their
eight neighborhoods is compared (the default label numbers
of pixels which are not on the edge is zero) and the minimum
value of these nine pixels is selected as the label number of the
edge pixel, which is shown in Figure 1(c). However, though
the label numbers of pixels that belong to the same edge
are the same, there is no consequence among these labels
of different edges. Hence, arrange these labels in sequential
order and replace them by the sequence number in order to
facilitate the edge selection. As can be seen, the edge labels
are the numbers in the bracket of Figure 1(c).

Considering the presence of false edges, sort all edges
in descending order according to their length and select the
first 𝑛 edges where 𝑛 is the total number of the noise and
signal components because the false edges are always much
shorter than actual edges.Then, themiddle-value 𝑡center of the
abscissa intersection of arbitrary two mutually coupled edges
is calculated and the corresponding average𝑓-values of these
edges are obtained where the larger 𝑓-value corresponds to
the larger label edge, as shown in Figure 2(a). The above
operation is repeated until all edges are placed in order where
an example is presented in Figure 2(b). Now, the adjacency of
all 𝑛 edges is obtained and there should exist separating lines
between each two adjacent edges so that the edges on both
sides of the separating line are constructed, the training set of
the SVM classifier.

3.3. The Parameters Determination of the Separating Line by
SVM. The training set of SVM classifier is the following set
of 𝑄 points:

𝐸 = {(x𝑞, 𝑐𝑞) | x𝑞 ∈ R2, 𝑐𝑞 ∈ {1, −1}} , 𝑞 = 1, 2, . . . , 𝑄,

(8)

where x𝑞 is a 2D position vector representing the edge
pixels in 𝑡-𝑓 image obtained from the boundary extraction
algorithm and 𝑐𝑞 indicates that the vector belongs to the
different edges.

Hence, the training goal of the SVM classifier is to find an
optimal separating line as in (9) so that the training set could
satisfy the condition of correct classification as in (10) and the
normalized margin 2/‖w‖ is maximized. Consider

𝑓 (𝑥)opt = w𝑇x𝑞 + 𝑤


0
, (9)

𝑐𝑞 (w
𝑇x𝑞 + 𝑤



0
) − 1 ≥ 0, 𝑞 = 1, 2, . . . , 𝑄. (10)

The above problem is actually a convex quadratic pro-
gramming which can be converted into its dual problem and
be solved. 𝑁 support vector {𝑑𝑞} and coefficients {𝑎𝑞} can be
obtained from the SVM training and then we can use them
to build the optimal support vector separating line equation.

In the case of linear separability, the optimal separating
line is straight and defined by the following equation:

𝑓𝑙 (𝑥) =

𝑄

∑

𝑞=1

𝑐𝑞𝑎𝑞 (𝑥𝑞 ⋅ 𝑥) + 𝑤


0
, (11)
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Figure 1: The diagram of edge labeling (a) the binary image; (b) the label numbers of pixels; (c) the edge labels.
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Figure 2: The diagram of adjacent edge selection. (a) the comparison between two coupled edges: because 𝑓𝑎 is larger than 𝑓𝑏, the label of
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𝑎
(𝐿𝑎) is larger than label of Edge
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2
> 𝑓


1
, so 𝐿1 > 𝐿3, 𝐿2 > 𝐿1, and the final order is

𝐿2 > 𝐿1 > 𝐿3 and there are two separating lines, one is between 𝐿2 and 𝐿1 and the other one is between 𝐿3 and 𝐿1.

where (𝑥𝑞 ⋅ 𝑥) is the dot product operation and the separating
threshold 𝑤



0
is the midvalue of any pair of support vector in

different edges.
In the case of nonlinear separability, the inner production

𝐾(𝑥𝑞, 𝑥) of the support vector machine is needed instead of
the dot product and Gaussian radial basis function is selected
as the inner production in this paper so that the optimal
separating line is a curve and the equation is

𝑓𝑐 (𝑥) =

𝑄

∑

𝑞=1

𝑐𝑞𝑎𝑞𝐾 (𝑥𝑞, 𝑥) + 𝑤


0
. (12)

4. The Multiorder Fractional Filter Bank for
Nonlinear Separability

It is obvious that, in the case of linear separability, the
fractional filter as in (3) could be used directly so that, after

getting the optimal separating line parameters by considering
(4) and (11), the fractional filter can be constructed directly
according to (5).

However, in the case of nonlinear separability, with the
proper choice of SVM kernel function, an optimal separating
curve is obtained which cannot assist FrFT filter design
immediately. For this reason, a piecewise linear fitting algo-
rithm may be used under a total least-square-error criterion
where the curve is fitted to a set of linear segments connected
end to end.

Provided that all𝑀data points (𝑡, 𝑦𝑐(𝑡)) that belong to the
separating curve 𝑙sep 𝑐 have been known, the job is to solve the
fitting function 𝑓:

𝑓 =
𝑓𝑛+1 − 𝑓𝑛

𝑡𝑛+1 − 𝑡𝑛

(𝑡 − 𝑡𝑛) + 𝑓𝑛, 𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛+1, 𝑛 = 1, 2, . . . , 𝑁,

(13)
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Figure 3: The flowchart of the WD cross-term elimination algorithm.

which satisfies

‖𝛿‖
2

=

𝑀

∑

𝑚=1

[𝑓(𝑚)(𝑡) − 𝑦𝑐(𝑚)(𝑡)]
2

= min, (14)

where 𝑡𝑛 and𝑓𝑛 are the starting point and the inflection point
of the 𝑛th segment and 𝑁 is the segment number.

It is evident that 𝑓 is more close to 𝑓𝑐(𝑥) and the
separation effect of signal and noise is better with the
increasing 𝑁. However, with the continuous increase of 𝑁,
the order of filter bank and the degree of operation of FrFT
also increase that would lead to high algorithm complexity.
Furthermore, the discretization errors are accumulated in
the repeated applications of DFrFT. As a consequence, the
reasonable selection of 𝑁 is an important impact on the
performance of the filter and after that the parameters
𝑡𝑛 and 𝑓𝑛 could be determined by (14) and the filter
of noise could be achieved by (𝑁 + 1) times FrFT and
𝑁 times multiplicative filter by the serial filter bank in
(6).

A more efficient parallel filter bank is proposed in this
paper. At first, according to the fitting result, divide the
observed signals in the time domain which may be divided

into 𝑁 parts where each part is corresponding to a segment
of the fitted polyline; that is,

𝑥 (𝑡) =

𝑁

∑

𝑛=1

𝑥𝑛 (𝑡) ,

𝑥𝑛 (𝑡) = 𝑥 (𝑡) , 𝑡𝑛 ≤ 𝑡 < 𝑡𝑛+1, 𝑥𝑛 (𝑡) = 0, others.

(15)

Then, after determination of the transformation order
and transfer function of each sub-filter, each fitting segment
𝑥𝑛(𝑡) may be filtered separately and the output is superim-
posed as the ultimate recovered signal 𝑟(𝑡); that is,

𝑟 (𝑡) =

𝑁

∑

𝑛=1

𝐹
−𝑝
𝑛
{𝐹
−𝑝
𝑛
[𝑥𝑛 (𝑡)] 𝐻𝑛 (𝑢)} . (16)

5. Application: Cross-Term Elimination in
Wigner Distribution

The Wigner distribution function is succinct which satisfies
many good mathematics properties and one of which is
the excellence of 𝑡-𝑓 focusing property, whereas, there is a
problem for the WD; that is, “the cross-term problem.” This
problemmakes it difficult to distinguish between signal parts,
noise parts, and the cross-term part of the WD so that WD
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Figure 4: The time-frequency distribution of the observed signal. (a) WD; (b) GT; (c) SPWVD; (d) GWT.

is improper for the cases where the signal consists of several
𝑡-𝑓 components.

Pei and Ding presented a method to detect and eliminate
the WD cross-term based on the 𝑡-𝑓 rotation characteristic
of FrFT which could obtain the optimal autoterm resolution
even that there are overlapping areas between the autoterms
and the cross-terms [15]. However, it is an iteration-search
algorithm which has a complexity computation and the
inherent serial structure is hard to hardware implementation.
Here, an algorithm based on this factional filter is proposed
and the flowchart is shown as Figure 3. This method could
completely eliminate the cross-term in WD and the time-
frequency distribution that we get in the end high reso-
lution and good readability which could also work well
when autoterms and cross-terms overlap. Furthermore, the
lower computation and more efficient parallel structure may
be more easily implemented at engineering. The detailed
procedure is as follows.

(1) The observed signal is transformed by GT and a blur
𝑡-𝑓 image without cross-terms is shown in the 𝑡-𝑓

plane containing multidiscrete highlight energy con-
centration areas which represent signal or noise com-
ponents.

(2) The obtained GT gray image is converted to its
binary counterpart by the efficient threshold selection
method and then the image boundary extraction
technology is used to select the edges of signal and
noise areas which construct the training set of SVM
classifier.

(3) The different areas in the 𝑡-𝑓 image are classified
and the parameters of optimal separating lines are
determined by SVM. If there are more than two
components in the observed signal, that is,𝑀 > 2, the
one-versus-rest SVMs should be constructed and the
areas of different components are separated gradually.

(4) According to the optimal transformation order and
the transfer function of the filter (bank) which are
determined by the parameters of the optimal classi-
fied line function (or functions), each signal (or noise)
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Figure 5: The filtering process: (a) optimal separating line and support vector; (b) filtering in fractional domain; (c) recovered signal and
recovered error.

component in 𝑡-𝑓 plane and then in 𝑡 domain could
be obtained.

(5) Each filtered component is individually transformed
in the 𝑡-𝑓 plane again.

(6) All these 𝑡-𝑓 distribution outputs are added together
in the 𝑡-𝑓 plane, and a high-clarity 𝑡-𝑓 image without
cross-terms is obtained.

Furthermore, the proposed fractional filter could be used
in many other applications besides cross-term elimination in
Wigner distribution. For example, it can be also applied in
the research on the moving targets detection and imaging
by airborne synthetic aperture radar which needs further
research.

6. Simulation

6.1. The Selection of Time-Frequency Distribution. An
observed signal 𝑥(𝑡) as in (17) is considered as follows:

𝑥 (𝑡) = 𝑠 (𝑡) + 𝑛 (𝑡) = 𝑒
−𝑡
2
/4

𝑒
𝑗𝜋(8𝑡
2
+70𝑡)

+ 𝑒
−𝑡
2
/4

𝑒
𝑗𝜋(8𝑡
2
+40𝑡)

,

(17)

where 𝑠(𝑡) is a Gaussian amplitude modulated linear fre-
quency modulated (LFM) signal with the additive noise 𝑛(𝑡).
The observation time is from −2 s to 2 s and the sampling rate
𝑓𝑠 is 100Hz.WVD, GT, SPWVD, andGWT of 𝑥(𝑡) are shown
separately in Figures 4(a)–4(d). It is obvious that the signal
and noise present coupling either in the time domain or the
frequency domain, though they have different 𝑡-𝑓 focusing
properties under different 𝑡-𝑓 transforms.
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The comparison of fractional filter performance under
different 𝑡-𝑓 transforms is shown in Table 1, where IF is the
SNR improvement factor and MSE is the mean square error
of recovered signal; that is,

IF =
SNRout
SNRIN

,

MSE =

∫ |𝑟 (𝑡) − 𝑠 (𝑡)|
2

𝑑𝑡

∫ |𝑠 (𝑡)|
2

𝑑𝑡

.

(18)

Under these four classic 𝑡-𝑓 transforms, it can be seen
that, though the 𝑡-𝑓 images and the boundaries of compo-
nents are different, all the filters are able to recovery the
signal successfully so that the fractional filter design method
proposed in this paper is not limited to any particular 𝑡-𝑓
transformation. When WVD or GWT is adopted, the fewer
training sample number of SVM and a little better filtering
effect are obtained. However, the cross-term in WVD could
be avoided by using the method proposed in Section 5 but
may increase the calculation. Hence, GWT will be adopted
in the following experiments.

6.2. In the Case of Linear Separability. The input signal 𝑥(𝑡)

and the GWT of 𝑥(𝑡) are shown in (17) and Figure 4(d).
Through the boundary extraction algorithm, the edges of
signal and noise can be selected as the SVM training set
which are dashed lines in Figure 5(a). Based on these edges,
the support vector and optimal separating line are obtained,
which are shown in Figure 5(a) with black dots and solid line,
and the separating line equation is 𝑙:𝑓(𝑥) = 0.0795𝑥+0.2765.
Figure 5(b) shows the process of filter in the 𝑢 domain where
parameters of the fractional filter are 𝑝 = 0.012736 and 𝑢0 =

−3.455, and the recovered signal and residual error are shown
in Figure 5(c). As can be seen from the above results, the noise

Table 1: 𝑡-𝑓 filter performances versus different 𝑡-𝑓 transforms.

MSE (%) IF (dB) Training sample
number of SVM

WVD 0.1083 29.6528 334
GT 0.1087 29.6382 394
SPWVD 0.1084 29.6496 396
GWT 0.1083 29.6531 327

Table 2: 𝑡-𝑓 filter performances versus different separating lines.

Operating line 𝑙 𝑙1 𝑙2 𝑙3 𝑙4

MSE (%) 0.1083 0.1403 0.1715 0.1724 0.2158
IF (dB) 29.6531 28.5298 27.6558 27.6362 26.6720

can be filtered effectively by using our design method in the
case of linear separability.

In order to evaluate the influence of the filter performance
from the optimal characteristic of separating line, four typical
nonoptimal separating lines are constructed as shown in
Figure 6 and the equations are

𝑙1: 𝑓 (𝑥) = 0.0795𝑥 + 0.2240,

𝑙2: 𝑓 (𝑥) = 0.0554𝑥 + 0.2765,

𝑙3: 𝑓 (𝑥) = 0.1047𝑥 + 0.2765,

𝑙4: 𝑓 (𝑥) = 0.0795𝑥 + 0.3290.

(19)

According to these four separating lines, fractional filters
are constructed and the filter performances are shown in
Table 2. It can be seen that the performance of the filter
designed by SVM is better than that based on other separating
lines because the truncation of the observed signal in the time
domain and the picket fence effect of discrete spectral analysis
cause the energy leakage of signals and noises to the entire
𝑡-𝑓 plane, while the SVM classifier maximizes the margin in
order to separate the signals and noises in the 𝑡-𝑓 domain to
the most degree.

6.3. In the Case of Nonlinear Separability. In this case, the
observed signal 𝑥(𝑡) consisted of a quadratic frequency
modulated signal 𝑠(𝑡) with noise 𝑛(𝑡):

𝑥 (𝑡) = 𝑠 (𝑡) + 𝑛 (𝑡) = 𝑒
−𝑡
2
/100

𝑒
𝑗⋅2𝜋(0.023𝑡

3
+4.5𝑡)

+ 𝑒
−𝑡
2
/100

𝑒
𝑗⋅2𝜋(0.01𝑡

3
+2𝑡)

.

(20)

The observation time is from −10 s to 10 s and the
sampling rate 𝑓𝑠 is 30Hz. Figure 7(a) shows the GWT of 𝑥(𝑡)

where the two components in the 𝑡-𝑓 plane could not be
separated by a straight line and the optimal separating curve
is shown in Figure 7(b). As mentioned in Section 4, the curve
should be fitted to a set of linear segments and the segment
number 𝑁 is a key to design the fractional filter bank.
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Figure 7: Filtering experiments in the case of nonlinear separability. (a) GWT of 𝑥(𝑡); (b) the optimal classification curve and support vector;
(c) 4th-order fitting of SVM separating line; (d) recovered signal and recovered error.

The value of coefficient of determination 𝑅
2 is adopted to

measure the goodness of fit which is defined as follows:

𝑅
2

= 1 −
𝑆𝑆err
𝑆𝑆tot

= 1 −

∑
𝑀

𝑚=1
[𝑦𝑐(𝑚) − 𝑓(𝑚)]

2

∑
𝑀

𝑚=1
[𝑦𝑐(𝑚) − 𝑦

𝑐(𝑚)
]
2
, (21)

where 𝑆𝑆err is the residual sum of squares (RSS), 𝑆𝑆err is the
total sum of squares (TSS), and 𝑦𝑐(𝑚), 𝑓(𝑚), and 𝑦

𝑐(𝑚)
are the

data of the optimal separating curve, the fitting data, and the
average of 𝑦𝑐(𝑚), respectively.

Table 3 shows the value of 𝑅
2 versus different segment

number 𝑁. It can be seen that when 𝑁 = 4, the fitting linear

segments have a very high fitting precision, while 𝑁 = 3

already satisfies most practical cases. The 4th-order fitting of
SVM separating line is shown in Figure 7(c) and the fitting
equation is

𝑓 (𝑥) =

{{{{

{{{{

{

−0.0218𝑥 + 0.0277, −10 ≤ 𝑥 < −5.2069,

−0.0071𝑥 + 0.1041, −5.2069 ≤ 𝑥 < 0.0577,

0.0073𝑥 + 0.1032, 0.0577 ≤ 𝑥 < 5.4024,

0.0223𝑥 − 0.0222, 5.4024 ≤ 𝑥 ≤ 10.

(22)
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Figure 8: (a) The time domain waveform of 𝑥(𝑡); (b) the WVD of 𝑥(𝑡); (c) Gabor of 𝑥(𝑡); (d) the binary image of 𝑥(𝑡).

Table 3: The value of 𝑅
2 versus different segment number 𝑁.

𝑁 1 2 3 4 5 6 7
𝑅
2 0.0001 0.9301 0.9872 0.9958 0.9975 0.9981 0.9987

Calculate IF and MSE with 𝑁 = 4, and the result is
IF = 25.5421 dB, MSE = 0.1828%. The recovered signal and
residual error are shown in Figure 7(d). As can be observed
in the above results, the proposed algorithm still achieves an
effective noise filtering in the case of nonlinear separability,
while the performance degradation caused by the errors of
piecewise linear fitting and the discrete multiorder filter bank
cannot be helped.

6.4. Cross-Term Elimination in Wigner Distribution. The
observed signal 𝑥(𝑡) is the digitized echolocation pulse
emitted by the large brown bat, Eptesicus fuscus. There are
400 samples and the sampling period is 7ms [14]. The time
domain waveform is given in Figure 8(a).

As can be seen from Figure 8(b), there are many cross-
terms in the WVD of 𝑥(𝑡) and the difference between

the intensity of each component is large where the weak
components are submerged by the strong components and
cross-terms so that the readability of the 𝑡-𝑓 image is poor.
The Gabor of 𝑥(𝑡) has no cross-term though the image is
blurring, which is shown in Figure 8(c). The threshold is
determined by the characteristics of the 𝑡-𝑓 image and the
binary image is shown in Figure 8(d). It is obvious that there
are four different components in the binary image so that
they could be separated individually by our fractional filter
bank. The optimal separating lines and the filtering process
are shown in Figure 9.

The GWT of all single components, which is obtained
from filtering one by one, is calculated and superimposed
so that a clear image without cross-term is achieved as
shown in Figure 10. It can be seen that our design method
can avoid the cross-term completely and not affect the
quality of the autoterms. Meanwhile, it is effective even in
the case of overlap between the autoterms and the cross-
terms. Furthermore, the 𝑡-𝑓 image is more readable because
the weak components are strengthened in the conversion
process from the gray image to the binary image.
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Figure 9: The support vector and the optimal separating line. (a) 𝑓(𝑥) = −92.214𝑥 + 0.2094; (b) 𝑓(𝑥) = −146.07𝑥 + 0.4701; (c) 𝑓(𝑥) =

−128.89𝑥 + 0.3558.
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Figure 10: The clear 𝑡-𝑓 image of 𝑥(𝑡) without cross-term.

7. Conclusion

Anovel general design of fractional filter is proposed in order
to realize the lossless recovery of nonstationary signal in
complicated noise environment. The estimation procedures
for the parameters of the optimal separating lines in the case
of linear separability and those of the optimal separating
curves in the case of nonlinear separability in the 𝑡-𝑓 plane
are given in detail and the specific design methods in both
of these two cases are presented. This design is versatility
and can ensure the optimal performance of the filter without
any statistic priori knowledge. Simulation results show that it
still works well even in the case of strong coupling between
the signal and noise and do not depend on the selected 𝑡-𝑓
transformation. Furthermore, our fractional filter can realize
the effective elimination of the cross-term in WD and 𝑡-𝑓
image rich in detail can be achieved.
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