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Feasibility of rock dynamic properties by split-Hopkinson pressure bar (SHPB) was experimentally and numerically evaluated with
ANSYS/LS-DYNA.The effects of different diameters, different loading rates, and different propagation distances onwave dispersion
of input bars in SHPB with rectangle and half-sine wave loadings were analyzed. The results show that the dispersion effect on the
diameter of input bar, loading rate, and propagation distance under half-sine waveform loading is ignorable comparedwith the rect-
angle wave loading. Moreover, the degrees of stress uniformity under rectangle and half-sine input wave loadings are compared in
SHPB tests, and the time required for stress uniformity is calculated under different above-mentioned loadings. It is confirmed that
the stress uniformity can be realized more easily using the half-sine pulse loading compared to the rectangle pulse loading, and this
has significant advantages in the dynamic test of rock-likematerials. Finally, theHolmquist-Johnson-Concrete constitutivemodel is
introduced to simulate the failuremechanism and failure and fragmentation characteristics of rock under different strain rates. And
the numerical results agree with that obtained from the experiment, which confirms the effectiveness of the model and the method.

1. Introduction

Understanding the dynamic characteristics of rocks under
higher strain rate is significant for either engineering sta-
bility or rock fragmentation efficiency. Since the first use
of split-Hopkinson pressure bar (SHPB) system by Kolsky
(1949), extensive studies have been performed to investigate
dynamic mechanical properties of different materials. So
far, SHPB experimental technique has been widely used in
geotechnical evaluations and substantial efforts have been
made to study dynamic mechanical properties of rocks [1–
9]. The result shows that the dynamic compressive strength
and dynamic tensile strength of lands measurement using
SHPB are valid and reliable by Dai et al. [10]. Currently, there
is an increasing demand for better experimental equipment
and higher experimental accuracy on this aspect. Numerical

simulation is an important way to improve and optimize the
SHPB experimental technique. Firstly, the SHPB experiment
technology can be perfected and supplemented by using
numerical simulation. The sensitivity coefficient of the strain
gauge attached to SHPB bars needs to be statically calibrated
prior to relevant tests. By comparing the accurate numerical
result with the experimental waveform, the coefficient can be
obtained to reduce the number of errors. Xu et al. confirmed
the validity of this DEM model to reproduce the dynamic
fracturing and the feasibility to simultaneously measure
key dynamic rock fracture parameters, including initiation
fracture toughness, fracture energy, and propagation fracture
toughness [11]. The damage and rupture process of coal-rock
is accompanied by acoustic emission (AE) by Wen et al. [12];
the results show that coal-rock’s size influences the uniaxial
compressive strength, peak strain, and elastic modulus of
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Figure 1: Striker of SHPB measurement equipment (𝜑, 50mm).
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Figure 2: Typical SHPB testing device.

itself. Assessing via discrete element method shows that
the loading-rate-dependent cracking profiles of chevron-
notched specimens cannot be ignored in order to determine
accurately the fracture toughness of rock in dynamic mode I
[13]. The bedding effect on the coal behavior at static strain
rate is more prominent than that at dynamic strain rate
[14]. A two-dimensional axisymmetric numerical analysis is
used to compute all components of the stress, strain, and
strain rate tensors at each mesh point within the specimen
and the elastic bars by Bertholf and Karnes [15]. The result
shows that inertia and friction between the specimen and
the elastic bars affected the response of specimen differently
because of different length-to-diameter ratios, and serious
stress and strain nonuniformity exists when the ends are not
lubricated. To efficiently study and analyze the mechanism
behind major stope disasters, a method based on monitoring
the stress and displacement of stopes was adopted, and a
method of ascertaining stope stability based on qualitative
identification of the dynamics was further proposed. At the
same time, the relations and differences between rockburst
in the coal mine and rockburst in the metal mine were
studied. Coal mine rockburst is divided into two types: static
loading type during roadway excavation process and dynamic
loading type duringmining face advancing [16–18]. Secondly,
the shape of the pulse and the materials of the bars have
attracted attention recently [19, 20]. The result shows that, by
virtue of the ramped wave loading, the force equilibrium of
the specimen can be effectively achieved and the rupture is
precisely measured to synchronize with the peak force, both
of which guarantee the quasi-static data reduction method
employed to determine the dynamic flexural strength by Xu
et al. [21]. A series of rock cutting tests were performed to
investigate the influence of back rake angle on the critical
failure mode transition depth by Zhou et al. [22]. It is found
that the critical failure mode transition depth increases with
the back rake angle. This suggests that the brittle fracture
failure induced at large depth of cut can be inhibited by
increasing the back rake angle. Cutting at a small back rake

angle, on the other hand, is desirable if minimization of the
cutting energy is required in the application.

Although the results of numerical simulation demon-
strate that rectangular wave and trapezoidal wave applied
performed perfectly, simulation analysis was still compli-
cated. It barely takes action to load with sine wave. In this
study, the dynamic compressive properties of rocks were
experimentally and numerically evaluated using ANSYS/LS-
DYNA. And for numerical simulation analysis, an approach,
which uses sine wave, was put into use.

2. Experimental Apparatus

2.1. Impact Ram. The rectangular waveform loading was
adopted in the conventional SHPB experiment on rocks,
and the obtained curves were smoothly processed. However,
large experimental errors exist for rock-like materials [7].
In order to eliminate this error, Li et al. [23, 24] proposed
a half-sine waveform loading instead of the conventional
rectangular waveform loading in SHPB tests. The novel
striker (Figure 1) was designed by back-design method and
Numerical Simulation Software [8, 25–28], whose material is
the same as the bars.

2.2. Experimental Apparatus and Principle. A typical test
system consists of a gas gun, an input bar, an output bar, and
the specimen as shown in Figure 2. Figure 3 shows the sketch
of the experiment devices.

When the striker impacts the free end of the input bar, an
elastic compressive stress pulse is produced which propagates
in the input bar toward the specimen.When the pulse reaches
the specimen, it is partially reflected, with one part back into
the input bar and the rest transmitted into the output bar
through the specimen.

3. Computational Model and Method

3.1. FEM Model. In the SHPB apparatus, the bars and
specimens are designed into cylinders, and they are coaxial.
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Figure 3: The sketch of the experiment devices (1, stress transfer
device, 2, axial compression load outreach framework, 3, axial
compression loading device, and 4, bearing of the axial compression
loading outreach framework).
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Figure 4: Modeling of the SHPB apparatus.

The input and output bars are made by 40 Cr alloy and the
length is 200mm and 150mm, respectively.The diameter and
the length of the specimens can be changed according to
different needs. Surface contacts are adopted between bars
and specimens on condition that the effect of friction is
neglected.

3.2. Numerical Modeling Development. The model is dis-
cretized by three-dimensional 8-node elements with reduced
integration and hourglass control (SOLID164). Totally, 37042
elements and 46293 nodes are constructed in the model
(Figure 4), 21600 elements for the input bar, 16200 elements
for the output bar, and 1080 elements for the specimen.

3.3. Computational Method. Because the yield strength of
the Hopkinson bars outclasses that of specimen, the finite
element models of the Hopkinson bars are assumed to be
a linear elastic material. Poisson ratio, density, and elastic
modulus for the bars are 0.30, 7795 kg/m3, and 210GPa,
respectively.

Rock is a typical quasi-brittle, flaws-embedded material.
The deformation failure of rock is usually accompanied with
nonuniform, noncontinuous, and large deformation which
makes it a very complex highly nonlinear problem because
of the particularity and complexity of the rock material.

The Holmquist-Johnson-Concrete constitutive equation
is used to model rock-like material in the finite element
simulation, which makes it possible to simulate large strains,

0 50 100 150 200

Time (us)

Calculated curve
Tested curve

−80

−60

−40

−20

0

St
re

ss
 (M

Pa
)

Figure 5: The incident pulse.

Table 1: Mechanical properties of the rock.

Properties value
Type of rock Sandstone
𝜌 (kg/m3) 2630
𝐺/GPa 6.00
𝐴 0.71
𝐵 1.84
𝐶 0.007
𝑁 1.00
̇𝜀0/s−1 2.9 × 10−5

𝜀𝑓min 0.01
𝑆max 5.0
𝑃cr/GPa 0.035
𝜇cr 8.0 × 10−4
𝑃lock/GPa 1.035
𝜇lock 0.100
𝐷1 0.045
𝐷2 1.00
Tensile strength/MPa 13.8
𝑓𝑐/MPa 91.36
𝐾1/GPa 85
𝐾2/GPa −171
𝐾3/GPa 208
𝐴: standard cohesion strength;𝐵: standard pressure hardening coefficient;𝐶:
the coefficient of strain rate; 𝑁: pressure hardening index; 𝐷1/𝐷2: damage
constant; 𝑃cr/𝑃lock : Elastic peak point/the pressure of crack compaction
point; 𝜇cr/𝜇lock : bulk strain; 𝐾1, 𝐾2, and 𝐾3: rock constant; 𝑓𝑐: compressive
strength; 𝑆max: ultimate strength; 𝜀𝑓min: the minimum tensile strain at break;
̇𝜀0: reference rate of strain.

high strain rates, and high pressure in rock-like materials.
Mechanical properties used for the specimens are listed in
Table 1 [29].
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(a) Rectangular waveform pulse loading
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Figure 6: Time-history of stress pulses at different propagation distances (𝐿) away from the impact end of the input bar.
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(b) Half-sine waveform pulse loading

Figure 7: Time-history of stress pulses at different diameters (𝐿 = 100mm).

3.4. Loading and Constraint. The constraint is applied on the
symmetrical surfaces. The axial constraint is applied on the
center nodes of the bars and specimens. Other surfaces of the
coaxial system of the model are all stress-free.

In the SHPB test, the incident pulse is normally provided
by the effect of a striker on the incident bar. The incident
wave is determined by the shape of the striker. While the
length of the striker can change that of the incident pulse, it
has limited impact on the incident wave. In order to easily
control the waveform and facilitate the analysis, the direct

stress loading mode, pulse duration, and stress amplitude are
designed for different needs (Figure 5). In this study, two
waveforms, rectangular waveform and half-sine waveform,
are used for analogy calculation.

4. Results and Analysis

4.1. The Choice of the Rational Waveform Loading of Rock
with SHPB. In order to investigate the rational waveform
loading of rock with SHPB, both rectangle and half-sine
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(a) Rectangular waveform pulse loading
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(b) Half-sine waveform pulse loading

Figure 8: Time-history of stress pulses at different loading rates.
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Figure 9: Variation curve of stress equilibrium equations factor (the diameter is 50mm, and the length-diameter ratio of specimen is 1).

waveform loadings are chosen. The wave dispersion and the
stress uniformity process under two input wave loadings are
analyzed by conducting large-diameter SHPB test.

4.1.1. Numerical Analysis of Wave Dispersion. It is shown
that the dispersion phenomenon occurs when the stress
pulse transmits along the input bar in conventional SHPB,
which can cause severe oscillation of the ultimate dynamic
constitutive response of materials [7, 15, 30, 31]. Merle and
Zhao suggest a correct method, which can find potential
error of frequency components [32]. Zhao and Gary pro-
posed a direct calculation of dispersion relations, which can

accurately analyze the dispersion effect and not consider
the stress uniformity [33]. To study the influence of wave
dispersion on the stress distribution across the bar section
at different radii (10mm, 20mm, 30mm, 40mm, 50mm,
75mm, and 100mm), the stress distribution in input bar
(2.0m in length) under different loadings was numerically
analyzed. The material parameters used in the finite element
model (Figure 4) for the bar are listed in Table 1. The time-
stress curves are recorded at two positions which are 50 cm
and 100 cm from the loading interface, respectively.

Figure 6 shows typical stress pulses recorded under both
rectangle and half-sine waveform loadings. It is apparent
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(a) Half-sine waveform pulse loading
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(b) Rectangular waveform pulse loading

Figure 10: Stress pulses and stress equilibrium equations factor.

that both the rise time of the stress front and oscillation
amplitude increased with the wave propagation distance as
shown in Figure 6(a), and the high frequency oscillations
and oscillation amplitude of wave became stronger with the
increase of bar diameter.

It is also shown in Figure 7 that the higher the loading
rate is, the more serious the P-C oscillation is, thus making it
impossible to obtain proper dynamic mechanical properties.
However, the oscillation can be eliminated when the half-
sine waveform pulse is loaded (see Figure 8), and there was
absence of oscillation in the incident wave with the range of
loading rate.

The reason of the dispersion phenomenon is that rect-
angle wave is of many different frequencies and harmonics.

Supposing that the time period is 𝜏, which denotes the rect-
angular wave, the formula can be expanded to the following
equation according to Fourier class [34]:

𝜎𝜏 (𝑡) = 4
𝜋
𝑛

∑
𝑖=1

sin [2𝑖 − 1
𝜏 𝜋𝑡] 𝑖 = 1, 2, . . . , 𝑛

𝑤𝑖 = (2𝑖 − 1)
𝜏 𝜋 ∝ 𝑓( 1

𝜆𝑖) .
(1)

For this waveform, even the front main harmonic can
guarantee that 𝑟/𝜆 ⩽ 1 (𝑖 = 1, 2, . . . , 𝑘); there will always
be numerous high-harmonic items behind, where velocity
𝑐𝑃 < 𝑐0 will occur at the time of high-frequency items; then
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Figure 11: Numerical fracture process (the average strain rate is 52 s−1).

during the rod transmission process, it will certainly lead to
the high-frequency dispersion at the first part of the wave.
Meanwhile the single-frequency half-sine waves, as long as
the bar radius meets the one-dimensional stress conditions
(when 𝑟/𝜆 ≪ 1, 𝑐𝑃 ≈ 𝑐0, that is, to meet the one-dimensional
stress conditions), will not produce geometric dispersion
during the wave propagation.

4.1.2. Correlation between the Stress Uniformity and the
Incident Pulse. Accuracy of the SHPB test is based on
the assumption of stress and strain uniformity within the
specimen, which, however, is not always satisfied in an actual

SHPB test due to the existence of some unavoidable negative
factors, for example, friction and specimen size effects.

To quantify the stress uniformity process, the coefficient
of the axial stress uniformity, whichwas proposed by Zencker
and Clos [35], is defined as

𝐷 = 2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜎(𝑎)𝑧 − 𝜎(𝑏)𝑧
𝜎(𝑎)𝑧 + 𝜎(𝑏)𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, (2)

where 𝜎(𝑎)𝑧 and 𝜎(𝑏)𝑧 describe the stress at𝑋1-interface and𝑋2-
interface of specimen, respectively.
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Figure 12: Numerical fracture process (the average strain rate is 52 s−1).

Figure 9 presents a typical curve of stress equilibrium
equations factor versus loading time received in this study by
using pulse shaping technique. If 𝐷 ≤ 0.05, as can be seen
from Figure 9, the stress within the specimen is uniform at
50 us when the half-sine waveform loading is adopted. When
it is assumed that the failure strain is 5000 us at 100/s for
rock, the total loading time before the failure is 100 us. It is
clear that the stress distribution along the radius is uniform
during the loading period, which is very important for
SHPB experiment. While the rectangular waveform loading
is adopted, good equilibrium effect is achieved when the
time is above 125 us after the stress reaches its maximum
(Figure 10).

4.2. Numerical Analysis on the Failure Process of Rock. The
mechanical behavior of rock, including its fracture character-
istics, has become more and more important in recent years
[36].

The pressure loading shape is half-sine. The stress level is
150MPa and 250MPa, respectively. The rising is 125 𝜇s, and
the duration is 250 𝜇s. The tensile stress of 13.8MPa is set as
failure point of the element in numerical simulation.The rock
is gripped between incident bar and transmission bar, and
the process of damage of the specimen is shown in Figures
11, 12, 13, and 14. It is clear that its main damage is mostly in
the form of tensile splitting failure along the axial direction.
There was no damage in the front-end unit of specimen in
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Figure 13: Numerical fracture process (the average strain rate is 130 s−1).

the initial loading stage, while some cracks developed at some
certain locations, such as the sides, finally leading to specimen
collapse. This is because the lateral face is free; when the
compression wave converts into tensile wave after reflection,
it easily leads to tensile failure for rock-like material, even if
the tension is not so strong.

It is also observed from numerical results that the failure
modes transformed from fragmentation to pulverization.
With the increase of strain rate, the number of broken pieces
increased, as shown in Figure 13. Figure 14 summarizes the
process of damage in high-speed photographs for SHPB
experiments, and it is evident that the main crack orientation
is axial, that is, parallel to the direction of wave propagation.

Figures 15 and 16 show the photos of failure modes
of specimens, which are similar to the simulation results
(Figures 11 and 13). The failure strength (as can be seen
from the stress versus strain profiles in Figure 17) of rock is
shown to have positive strain rate sensitivity.These results are
satisfactory, showing the strain rate’s effect on the degree of
fragmentation accurately.

5. Conclusions

Feasibility of rock dynamic properties by split-Hopkinson
pressure bar (SHPB) was experimentally and numerically
evaluated with ANSYS/LS-DYNA.

It is found that the time required to achieve a uniform
stress state in a specimen for the half-sine incident pulse
is noticeably shorter than that for the perfectly rectangular
incident pulse. Therefore, the half-sine wave is an optimum
incident pulse shape that canmake themeasured data reliable
and valid.

The numerical modeling indicates the existence of some
relationship between compressive fracture process and strain
rate of rock material. This is similar to experimental investi-
gation. It is also found that there is a good agreement between
numerical stress-strain curves and experimental stress-strain
curves. This study provides evidence that half-sine pulse
decreases dispersion in wave propagation.
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Figure 14: Photograph of fracture process from tests (the length-diameter ratio of specimen is 0.5, and the average strain rate is 119 s−1).

Figure 15: Failure modes of specimens in the SHPB test (the length-diameter ratio of specimen is 0.5, and the average strain rate is 75.3 s−1).
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Figure 16: Failure modes of specimens in the SHPB test (the length-diameter ratio of specimen is 0.5, and the average strain rate is 162 s−1).
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Figure 17: Stress-strain curves.
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