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One-dimensional optimal systems for nonhomogeneous discrete heat equation with different source terms are calculated. By
utilizing these optimal systems invariant solutions are found. Also generating solutions are calculated, using the elements of the
symmetry algebra.

1. Introduction

Mathematics provides models, for real life phenomena, to
precisely understand the underlying laws governing them.
Dynamic changes in a physical phenomenon are usually
modeled by differential equations.This means that it is supp-
osed that the changes are continuous and these are taking
place in a continuous domain. But there are many real life
situations where either the domain or the phenomenon itself
or the both are not continuous. These situations occur but
are not limited to the fields of biology, physics (classical and
quantum), geometry, mathematical design, finance and so
forth. Discrete situations are better modeled by difference
equations, in contrast with the differential equations. There-
fore, difference equations make their appearance in almost
every branch of mathematics and their importance cannot be
overemphasized.

Differences and their calculus are as old as is the differen-
tial calculus, but apart from its importance and usefulness the
theory andmethods of solving difference equations are not as
developed as those of differential equations. Since differential
equation is a limiting case of difference equation; therefore, it
is natural to extend methods available for solving differential
equations to the respective difference equations, and the same
is done most of the times [1–3].

Solving differential equations by exploiting symmetry
properties of their solution spaces is one of the standard
methods, introduced by the Norwegian mathematician

Sophus Lie (1842–1899). In contrast with adhoc techniques
this method provides an algorithmic and unified procedure
to solve almost all types of differential equations, linear or
nonlinear [4, 5].

At present, the theory of difference equations is at the
same stage as was the theory of differential equations at the
time of S. Lie. A number of adhoc approaches are available
to solve difference equations, for example, substitution, non-
linear functional relation, Schroder’s generation function,
Maeda’s method, or the theory of integrable maps. But a
number of authors have attempted, following Lie’smethod for
differential equations, to develop a unified integration pro-
cedure based on invariance properties of difference equation
[6, 7]. It is worth noting that the symmetry properties are
not only helpful to find solution but play an important role
to understand the physical phenomenon more deeply. In this
direction, a number of researchers have attempted to apply
symmetries to analyze different discrete physical phenomena
[6–19].

The discrete diffusion equation is widely used in many
contexts [20, 21]. For instance, it has been applied to the area
of population growth where one wishes to model geographic
spread in addition to growth in number. In the area of physics
it is used to model ionic diffusion on a lattice. It has also
been used in digital filtering in the form of diffusion filtering
[10]. Due to its wide utility, a number of researchers have
analyzed different aspects of the discrete diffusion process.
Recently, in [6], Levi et al. have attempted to generalize the
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Lie infinitesimal formulism for calculation of symmetries of
difference equations and calculated generalized symmetries
of diffusion type difference equations. The symmetry group,
which they have found for the discrete equation, is a minimal
extension of the Lie point symmetries of the corresponding
differential equation.They also found that in the case of linear
discrete equation the symmetry algebra is isomorphic to the
continuous limit.

Symmetries are used not only to integrate but also to
analyze the solution space for more insight into the physical
system at hand. So, once symmetries are given it is natural
to ask for further analysis and find solutions of the equation.
There is limited literature on the analysis of solutions of
diffusion type difference equations via symmetries. In this
paper one-dimensional optimal systems are obtained for
the symmetry algebra of diffusion difference equations with
different source terms found in [6]. We have also calculated
invariant solutions corresponding to each representative of
the one-dimensional optimal system, wherever they exist.
Using elements of the symmetry algebra generating solutions
are also obtained.Moreover, all those cases in which no group
invariant solution exist are mentioned.

The rest of the paper is arranged as follows. In the next
two sections we give some preliminaries and summarize the
results of [6], for completeness. In Section 3 one-dimensional
optimal systems are obtained for all cases and corresponding
group invariant solutions are given. Section 4 is devoted to
obtain generating solutions corresponding to each symmetry
generator. A brief conclusion is given in Section 5.

2. Preliminaries

Let 𝑢(𝑥) be a continuous scalar function of 𝑝 independent
variables 𝑥 = (𝑥
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, . . . , 𝑥

𝑖
, . . . , 𝑥

𝑝
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𝑖
> 0. Then partial finite differences are defined by
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} .

(1)

It is sometimes convenient to express finite difference opera-
tor in terms of shift operator defined as follows:

𝑇
𝑥𝑖
𝑢 (𝑥) = 𝑢 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑖−1
, 𝑥
𝑖
+ 𝜎
𝑖
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, . . . , 𝑥
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) . (2)

Consequently,

Δ
𝑥𝑖
𝑢 (𝑥) =

1

𝜎
𝑖

(𝑇
𝑥𝑖
− 1) 𝑢 (𝑥) . (3)

For example, for the factorial function 𝑥(𝑛) = 𝑥(𝑥 − ℎ)(𝑥 −

2ℎ)(𝑥 − 3ℎ) ⋅ ⋅ ⋅ [𝑥 − (𝑛 − 1)ℎ] (2) gives

𝑇
𝑥𝑖
𝑥
(𝑛)
= 𝜎
𝑖
𝑛𝑥
(𝑛−1)

+ 𝑥
(𝑛)
. (4)

Also the action of 𝑇−1
𝑥𝑖

on 𝑥(𝑛) is given by

𝑇
−1

𝑥𝑖
𝑥

(𝑛)

= −𝜎
𝑖
𝑛𝑥
(𝑛−1)

+ 𝑥
(𝑛)
. (5)

Consider a partial difference equation in the following
form:

𝐸(𝑥, 𝑇
𝛼
𝑢 (𝑥) , 𝑇

𝛽𝑖
Δ
𝑥𝑖
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𝛾𝑖𝑗
Δ
𝑥𝑖
Δ
𝑥𝑗
𝑢 (𝑥) , . . .) = 0, (6)

where the operator 𝑇𝛼 operates on a function 𝑢(𝑥) as follows:
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, 𝑖 = 1, 2, . . . , 𝑝, and 𝑚

𝑖
, 𝑛
𝑖
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integers. The shift operators 𝑇𝛽𝑖 , 𝑇𝛾𝑖𝑗 are defined likewise.
A discrete vector field in its evolutionary form, 𝑋

𝑄
=

𝑄(𝜕/𝜕𝑢) with characteristic 𝑄 given by
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𝑏
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is an infinitesimal generalized symmetry generator of the dif-
ference equation (6) if it satisfies the infinitesimal symmetry
criterion:
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Here, 𝑋
𝑄

(𝑛) is the discrete analog of the 𝑛𝑡ℎ prolongation
of the vector field 𝑋

𝑄
. Prolonged vector field acts on

the 𝑛th extended lattice and therefore has the following
form:
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Here, the coefficient functions 𝑄𝑥𝑖 , 𝑄𝑥𝑖𝑥𝑗 , . . . are the discrete
total variations of 𝑄 given by
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3. Symmetry Algebra of Nonhomogeneous
Discrete Heat Equation

In this section we summarize the results of [6].The difference
equation

Δ
𝑡
𝑢 − Δ

𝑥𝑥
𝑢 + 𝑔 (𝑥, 𝑡, 𝑇

𝑥
, 𝑇
𝑡
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is a discrete heat or diffusion equation. Here 𝑢 is a function
of space variable 𝑥, time 𝑡 and partial shifts 𝑇

𝑥
and 𝑇

𝑡
with

respect to 𝑥 and 𝑡, respectively. Let the following be the
generalized symmetry generator in the evolutionary form:

𝑋
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where
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(16)

is the second prolongation of 𝑋
𝑄
. Using (16) in (15) one gets

the following set of determining equations:
Δ
𝑥
(𝜏) = 0, (17)

− Δ
𝑡
(𝜏) 𝑇
𝑡
+ 2Δ
𝑥
(𝜉) 𝑇
𝑥
+ [𝜏, 𝑔] = 0, (18)

−Δ
𝑡
(𝜉) 𝑇
𝑡
+ Δ
𝑥𝑥
(𝜉) 𝑇
2

𝑥
+ 2Δ
𝑥
(𝑓) 𝑇
𝑥
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− Δ
𝑡
(𝑓) 𝑇
𝑡
+ Δ
𝑥𝑥
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2

𝑥
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𝑥
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𝑥
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𝑥
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𝑡
(𝑔) 𝑇
𝑡
+ [𝑓, 𝑔] = 0.

(20)

To obtain the symmetry generator (14) one needs to solve
the set of equations (17) to (20) for unknown functions 𝜉, 𝜏,
and𝑓. In [6] these functions have been found for three special
source terms 𝑔(𝑥, 𝑡, 𝑇

𝑥
, 𝑇
𝑡
). Here, we give the infinitesimal

symmetry generators obtained in [6] and refer to the paper
for details.

3.1. Free Heat Equation. In this case 𝑔(𝑥, 𝑡, 𝑇
𝑥
, 𝑇
𝑡
) = 0 and

(13) takes the form

Δ
𝑡
𝑢 − Δ

𝑥𝑥
𝑢 = 0. (21)

The set of equations (17) to (20) are then solved to obtain
the following symmetry algebra:
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.

(22)

3.2. Nonzero Potential. In this case the potential 𝑔 is taken
to be a nonzero function 𝑔 = 𝑔(𝑥, 𝑇

𝑥
). Plugging in this

assumption on 𝑔 in the set of equations (17) to (20) one gets
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𝑡
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where 𝛼(𝑡, 𝑇
𝑡
) is an arbitrary function to be known. And
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+
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−
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𝑡
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(24)

where 𝛽(𝑡, 𝑇
𝑡
) is an arbitrary function to be known. To

find the unknown functions 𝑓 and 𝜉 one puts a condition
on the potential function 𝑔 such that the commutator
[𝑥
(1)
Δ
𝑡
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𝑡
𝑇
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𝑥
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Using (25) in (20) and simplifying one gets
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8
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The authors then consider the following two particular
physically important models that obey the assumptions
imposed on the function 𝑔.
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3.2.1. Discrete Harmonic Oscillator. The discrete harmonic
oscillator follows the discrete heat equation with the follow-
ing potential function:

𝑔 (𝑥, 𝑇
𝑥
) = 𝑘
2
𝑥
(2)
𝑇
−2

𝑥
, 𝑘 ∈ 𝑅

>0
. (27)

Solving the set of determining equations (17) to (20) for above
value of 𝑔 one gets the following symmetry algebra:

𝑋
1𝑒
= Δ
𝑡
𝑢

𝜕

𝜕𝑢

, 𝑋
2𝑒
= 𝑢

𝜕

𝜕𝑢
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𝑥
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𝑥
𝑢)

𝜕

𝜕𝑢

,

𝑋
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𝑥
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3.2.2. Discrete Centrifugal Barrier. Likewise, the discrete
centrifugal barrier with potential function

𝑔 (𝑥, 𝑇
𝑥
) = 𝑇
𝑥
𝑥
(−2)

𝑇
𝑥

(30)

has the following symmetry algebra:

𝑋
1𝑒
= Δ
𝑡
𝑢

𝜕

𝜕𝑢

, 𝑋
2𝑒
= 𝑢

𝜕

𝜕𝑢

,

𝑋
3𝑒
= (𝑡
(1)
𝑇
−1

𝑡
Δ
𝑡
𝑢 +

1

2

𝑥
(1)
𝑇
−1

𝑥
Δ
𝑥
𝑢)

𝜕

𝜕𝑢

,

𝑋
4𝑒
= (𝑥
(1)
𝑡
(1)
𝑇
−1

𝑥
𝑇
−1

𝑡
Δ
𝑥
𝑢 + 𝑡
(2)
𝑇
−2

𝑡
Δ
𝑡
𝑢 +

1

4

𝑥
(2)
𝑇
−2

𝑥
𝑢

+

1

2

𝑇
−1

𝑡
𝑡
(1)
𝜏
2
𝑢)

𝜕

𝜕𝑢

.

(31)

We consider the following case where the potential
function also depends on the variables 𝑡, 𝑇

𝑡
and yet satisfies

the required condition.

3.2.3. Time-Dependent Discrete Harmonic Oscillator. Now, if
the potential function considered in (27) depends on all the
four variables 𝑥, 𝑡, 𝑇

𝑥
, and 𝑇

𝑡
and is given by the following

𝑔 (𝑥, 𝑡, 𝑇
𝑥
, 𝑇
𝑡
) = 𝑘
2
𝑥
(2)
𝑇
−2

𝑥
+ 𝑘
2
𝑡
(2)
𝑇
−2

𝑡
, (32)

Table 1: Optimal systems for free heat equation and respective
invariant solutions.

Optimal
systems Invariant solutions

𝑋
1𝑒

𝑢 (𝑥, 𝑡) = 𝑐
1
+ 𝑥
(1)
𝑐
2

𝑋
2𝑒

𝑢 (𝑥, 𝑡) = 𝑐

𝑋
3𝑒

No invariant solution
𝑋
2𝑒
− 𝑋
1𝑒

𝑢 (𝑥, 𝑡) = 𝑐
1
+ 𝑐
2
2
𝑥−𝑡

𝑋
4𝑒

𝑤 (𝑦 + 1) +

1

2

𝑦𝑤 (𝑦) = 0 (reduced form)

𝑢 = 𝑐∫

0

−∞

𝑡
((𝑥
(2)
−𝑥
(1)
𝜎𝑥)𝑡
(−1)
−1)

ln 𝑡(1)
(2𝑥
(1)
− 𝜎
𝑥
)𝑡
(−1)
𝑒

2𝑡

𝑑𝑡

𝑋
4𝑒
+ 𝑋
1𝑒

𝑢 (𝑥, 𝑡) = 𝑐
1
+ 𝑐
2
(𝑥
(2)
+ 𝑥
(1)
𝜎
𝑥
)

Table 2: The optimal systems for discrete harmonic oscillator and
respective invariant solutions.

Optimal
systems Invariant solutions

𝑋
1𝑒

𝑢 (𝑥, 𝑡) = 𝑐
1
+ 𝑥
(1)
𝑐
2
− 𝑘
2
𝑇
−2

𝑥
(𝑥
(2)
+ 6𝑥
(1)
+ 6)

𝑋
2𝑒

No invariant solution

𝑋
3𝑒

𝑢 (𝑥, 𝑡) = 𝑐(𝑘 + 1)
2
−

𝑘
2
𝑇
−2

𝑥

𝑘 + 1

(𝑥
(2)
+

2𝑥
(1)

𝐾 + 1

+

2

(𝑘 + 1)
2
)

𝑋
4𝑒

𝑢 (𝑥, 𝑡) = 𝑐 + 𝑘
2
𝑇
−2

𝑥
(𝑥
(2)
+ 2𝑥
(1)
− 1)

𝑋
5𝑒

𝑢 (𝑥, 𝑡) = 𝑐
1
+ 𝑥
(1)
𝑐
2
+ 4𝑡
(1)
+ (2 + 𝑘

2
𝑇
−2

𝑥
) 𝑥
(2)

+ (8 + 4𝑘
2
𝑇
−2

𝑥
) 𝑥
(1)
+ (2𝜎

𝑥
− 1 + 6𝑘

2
𝑇
−2

𝑥
)

Table 3: The optimal systems for discrete centrifugal barrier and
respective invariant solutions.

Optimal systems Invariant solutions
𝑋
1𝑒

𝑢 (𝑥, 𝑡) = 𝑐
1
+ 𝑥
(1)
𝑐
2
+ 𝑇
2

𝑥
(4𝑥
(−1)

− 𝑥
(−2)

− 6)

𝑋
2𝑒

No invariant solution

𝑋
3𝑒

Δ
𝑦
𝑤 +

1

2

𝑦𝑤(𝑦) = 𝑇
𝑥
𝑥
(−2)
𝑇
𝑥
(reduced form)

𝑢 (𝑥, 𝑡) = 𝑐 ∫

0

−∞

𝑒
((𝑡
(2)
/𝑥
(2)
)−1)
𝑑𝑡 +

2𝑡
(1)

𝑥
(2)
𝑇
−2

𝑥
𝑥
(−2)

𝑋
2𝑒
+ 𝑋
3𝑒

Δ
𝑦
V − 𝐻 (𝑥, 𝑡) V = −𝑇2

𝑥
𝑥
(−2)

Where𝐻(𝑥, 𝑡) =

1

2

𝑥
(2)

𝑡
(2)
𝜎
𝑡
+

1

2

𝑥
(2)

𝑡
(1)

+ 1

then the values of coefficient functions of infinitesimal
generator (14) are given by:

𝜏 = 0,

𝜉 = 𝐸
2𝑘
(𝑡) 𝛼
1
+ 𝐸
−2𝑘

(𝑡) 𝛼
2
,

𝑓 = 𝑥
(1)
𝑘𝐸
2𝑘
(𝑡) 𝛼
1
𝑇
−1

𝑥
− 𝑥
(1)
𝑘𝐸
−2𝑘

(𝑡) 𝛼
2
𝑇
−1

𝑥
+ 𝛽
0
.

(33)
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Table 4: Generating solutions for free heat equation.

Generators Infinitesimal transformations Generating solution
𝑋
1𝑒

𝐺
1
(𝑥
(1)
, 𝑡
(1)
+ 𝜀, 𝑢) 𝑢 (𝑥, 𝑡) = 𝑓 (𝑥

(1)
, 𝑡
(1)
− 𝜀)

𝑋
2𝑒

𝐺
2
(𝑥
(1)
+ 𝜀, 𝑡
(1)
, 𝑢) 𝑢 (𝑥, 𝑡) = 𝑓 (𝑥

(1)
− 𝜀, 𝑡
(1)
)

𝑋
3𝑒

𝐺
3
(𝑥
(1)
, 𝑡
(1)
, 𝑢𝑒
𝜀
) 𝑢 (𝑥, 𝑡) = 𝑒

𝜀
𝑓 (𝑥
(1)
, 𝑡
(1)
)

𝑋
4𝑒

𝐺
4
(𝑥
(1)
𝑒
𝜀
, 𝑡
(1)
𝑒
2𝜀
, 𝑢) 𝑢 (𝑥, 𝑡) = 𝑓 (𝑥

(1)
𝑒
−𝜀
, 𝑡
(1)
𝑒
−2𝜀
)

𝑋
5𝑒

𝐺
5
(𝑥
(1)
+ 2𝑡
(1)
𝜀, 𝑡
(1)
, 𝑢 exp (− (𝑥(1)𝜀 + 𝜀2𝑡(1)))) 𝑢 (𝑥, 𝑡) = exp (𝜀2𝑡(1) − 𝑥(1)𝜀) 𝑓 (𝑥(1) − 2𝑡(1)𝑒𝜀, 𝑡(1))

𝑋
6𝑒

𝐺
6
(

𝑥
(1)

1 − 4𝜀𝑡
(1)
,

𝑡
(1)

1 − 4𝜀𝑡
(1)
, 𝑢√1 − 4𝜀𝑡

(1) exp(
−𝑥
(2)
𝜀 + 𝑥
(1)
𝜎
𝑥
𝜀

√1 − 4𝜀𝑡
(1)

)) 𝑢 (𝑥, 𝑡) =

1

√4𝜋𝑡
(1)

exp(
(−𝑥
(2)
− 𝑥
(1)
𝜎
𝑥
) 𝜀

4𝑡
(1)

)

And one gets 3-dimensional subalgebra of the discrete har-
monic oscillator obtained in ((28) and (29)).This is generated
by the following infinitesimal generators:

𝑋
1𝑒
= 𝑢

𝜕

𝜕𝑢

,

𝑋
2𝑒
= (𝐸
2𝑘
(𝑡) Δ
𝑥
𝑢 + 𝑥
(1)
𝑘𝐸
2𝑘
(𝑡) 𝑇
−1

𝑥
𝑢)

𝜕

𝜕𝑢

,

𝑋
3𝑒
= (𝐸
−2𝑘

(𝑡) Δ
𝑥
𝑢 − 𝑥
(1)
𝑘𝐸
−2𝑘

(𝑡) 𝑇
−1

𝑥
𝑢)

𝜕

𝜕𝑢

.

(34)

4. One-Dimensional Optimal System and
Invariant Solution

In this section one-dimensional optimal system for each of
the above cases of discrete diffusion equation is calculated. It
is done in analogy with the procedure to calculate optimal
systems for differential equation, laid down in [4]. These
optimal systems are then used to calculate invariant solutions.

4.1. Free Heat Equation. A calculation gives eight equivalence
classes of one-dimensional optimal systems represented by
the following generators: ⟨𝑋

6𝑒
⟩, ⟨𝑋
5𝑒
⟩, ⟨𝑋
1𝑒
+ 𝑋
4𝑒
⟩, ⟨𝑋
4𝑒
⟩,

⟨𝑋
3𝑒
⟩, ⟨𝑋
2𝑒
− 𝑋
1𝑒
⟩, ⟨𝑋
2𝑒
⟩, and ⟨𝑋

1𝑒
⟩.

4.1.1. Invariant Solution. Employing the method given in [4]
for calculating invariant solution for differential equations,
the invariant solution corresponding to the representatives of
the optimal systems given above are obtained below.

To obtain invariant solution corresponding to the subal-
gebra ⟨𝑋

2𝑒
−𝑋
1𝑒
⟩wefind the group invariants𝑢 = ℎ(𝑥(1)+𝑡(1))

and define new variables in terms of these invariants by 𝑦 =
𝑥
(1)
+ 𝑡
(1), 𝑢 = ℎ(𝑦). This change of variables reduces the

partial difference equation (21) to the ordinary 2nd order
difference equation Δ

𝑦𝑦
ℎ − Δ

𝑦
ℎ = 0. This equation is then

solved to get the invariant solution 𝑢 = 𝑐
1
+ 𝑐
2
2
(𝑥
(1)
+𝑡
(1)
).

Similarly, corresponding to 𝑋
4𝑒
, 𝑢 = ℎ((𝑥(2) − 𝑥(1)𝜎

𝑥
)𝑡
(−1)

) is
the group invariant. Substituting 𝑦 = (𝑥(2)−𝑥(1)𝜎

(𝑥)
)𝑡
(−1), 𝑢 =

ℎ(𝑦) (21) reduces to the ordinary difference equation Δ
𝑦𝑦
ℎ +

(1/2)𝑦Δ
𝑦
ℎ = 0. A further change of variable Δ

𝑦
ℎ = 𝑤(𝑦)

reduces the equation to the following first-order difference
equation with variable coefficient:

𝑤 (𝑦 + 1) +

1

2

𝑦𝑤 (𝑦) = 0. (35)

To solve (35) we use Laplace method given in [3]. Let
𝑤(𝑦) = ∫

𝑏

𝑎
𝑡
𝑦−1
𝑢(𝑡)𝑑𝑡, 𝑦𝑤(𝑦) = 𝑡𝑦𝑢(𝑡)|𝑏

𝑎
− ∫

𝑏

𝑎
𝑡
𝑦
𝐷𝑢(𝑡)𝑑𝑡, and

𝑤(𝑦 + 1) = ∫

𝑏

𝑎
𝑡
𝑦
𝑢(𝑡)𝑑𝑡. On substituting these values (35)

becomes

1

2

𝑡
𝑦
𝑢 (𝑡)|
𝑏

𝑎
+ ∫

𝑏

𝑎

𝑡
𝑦
(𝑢 (𝑡) −

1

2

𝐷𝑢 (𝑡)) 𝑑𝑡 = 0. (36)

Now there are two possibilities either 𝑢(𝑡) − (1/2)𝐷𝑢(𝑡) =
0 and this gives 𝑢(𝑡) = 𝑐𝑒

2𝑡 or 𝑐𝑡𝑦𝑒2𝑡 = 0; therefore, 𝑡 → 0

or 𝑡 → −∞. So, 𝑤(𝑦) = 𝑐 ∫

0

−∞
𝑡
𝑦−1
𝑒
2𝑡
𝑑𝑡, and one gets the

following invariant solution:

𝑢 = 𝑐∫

0

−∞

𝑡
((𝑥
(2)
−𝑥
(1)
𝜎𝑥)𝑡
(−1)
−1)

lnt
(2𝑥
(1)
− 𝜎
𝑥
) 𝑡
(−1)

𝑒

2𝑡

𝑑𝑡. (37)

Similar calculations give invariant solutions corresponding
to other representatives of optimal classes. The results are
summarized in Table 1.

4.2. Discrete Harmonic Oscillators and Centrifugal Barrier.
For the discrete harmonic oscillator and the discrete cen-
trifugal barrier the representatives of their one-dimensional
optimal systems and the corresponding invariant solutions
are summarized in Tables 2 and 3.

Remark 1. The solution corresponding to 𝑋
3𝑒
is obtained by

applying Laplace method in reduced form.

Since, in case of time-dependent harmonic oscillator, the
symmetry algebra is a subalgebra of the time-independent
case therefore one does not get new invariant solutions.

5. Generating Solutions

Since a symmetry of a given equation maps its solution
space onto itself, so, one can find new solutions by apply-
ing symmetry transformations to a known solution of the
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Table 5: Generating solutions for discrete harmonic oscillator.

Generators Infinitesimal transformations Generating solution
𝑋
1𝑒

𝐺
1
(𝑥
(1)
, 𝑡
(1)
+ 𝜀, 𝑢) 𝑢 (𝑥, 𝑡) = 𝑓 (𝑥

(1)
, 𝑡
(1)
− 𝜀)

𝑋
2𝑒

𝐺
2
(𝑥
(1)
, 𝑡
(1)
, 𝑢𝑒
𝜀
) 𝑢 (𝑥, 𝑡) = 𝑒

𝜀
𝑓 (𝑥
(1)
, 𝑡
(1)
)

𝑋
3𝑒

𝐺
3
(𝑥
(1)
+ 𝜀, 𝑡
(1)
, 𝑢 exp(𝑥(1)𝑘𝜀 + 𝑘𝜀

2

2

)) 𝑢 (𝑥, 𝑡) = exp(𝑥(1)𝑘𝜀 − 𝑘𝜀
2

2

)𝑓 (𝑥
(1)
− 𝜀, 𝑡
(1)
)

𝑋
4𝑒

𝐺
4
(𝑥
(1)
+ 𝜀, 𝑡
(1)
, 𝑢 exp(−𝑥(1)𝑘𝜀 − 𝑘𝜀

2

2

)) 𝑢 (𝑥, 𝑡) = exp(−𝑥(1)𝑘𝜀 + 𝑘𝜀
2

2

)𝑓 (𝑥
(1)
− 𝜀, 𝑡
(1)
)

𝑋
5𝑒

𝐺
5
(𝑥
(1)
𝑒
𝜀
, 𝑡
(1)
+ 𝜀, 𝑢 exp(exp(1

2

(𝑥
(2)
− 𝑥
(1)
𝜎
𝑥
)𝑒
4𝜀
+ 𝜀))) ,

𝑘 = 1

𝑢 (𝑥, 𝑡)

= exp(exp(1
2

(𝑥
(2)
− 𝑥
(1)
𝜎
𝑥
) + 𝜀))𝑓 (𝑥

(1)
𝑒
2𝜀
, 𝑡
(1)
− 𝜀)

𝑋
6𝑒

𝐺
5
(𝑥
(1)
𝑒
−2𝜀
, 𝑡
(1)
+ 𝜀, 𝑢 exp(exp(1

2

(𝑥
(2)
− 𝑥
(1)
𝜎
𝑥
)𝑒
4𝜀
− 𝜀))) ,

𝑘 = 1

𝑢 (𝑥, 𝑡)

= exp(exp−(1
2

(𝑥
(2)
− 𝑥
(1)
𝜎
𝑥
) 𝑒
8𝜀
− 𝜀))𝑓 (𝑥

(1)
𝑒
2𝜀
, 𝑡
(1)
− 𝜀)

Table 6: Generating solutions for discrete centrifugal barrier.

Generators Infinitesimal transformations Generating solution
𝑋
1𝑒

𝐺
1
(𝑥
(1)
, 𝑡
(1)
+ 𝜀, 𝑢) 𝑢 (𝑥, 𝑡) = 𝑓 (𝑥

(1)
, 𝑡
(1)
− 𝜀)

𝑋
2𝑒

𝐺
2
(𝑥
(1)
, 𝑡
(1)
𝑡, 𝑢𝑒
𝜀
) 𝑢 (𝑥, 𝑡) = 𝑒

𝜀
𝑓 (𝑥
(1)
, 𝑡
(1)
)

𝑋
3𝑒

𝐺
3
(𝑥
(1)
𝑒
𝜀
, 𝑡
(1)
𝑒
2𝜀
, 𝑢) 𝑢 (𝑥, 𝑡) = 𝑓 (𝑥

(1)
𝑒
−𝜀
, 𝑡
(1)
𝑒
−2𝜀
)

𝑋
4𝑒

𝐺
6
(

𝑥
(1)

1 − 4𝜀𝑡
(1)
,

𝑡
(1)

1 − 4𝜀𝑡
(1)
,

𝑢

√1 − 4𝜀𝑡
(1)

exp(
(𝑥
(2)
− 𝑥
(1)
𝜎
𝑥
) 𝜀

1 − 4𝜀𝑡
(1)

)

)

𝑢(𝑥, 𝑡) =

√1 + 4𝜀𝑡
(1) exp(

(𝑥
(2)
− 𝑥
(1)
𝜎
𝑥
) 𝜀

1 + 4𝜀𝑡
(1)

)𝑓(

𝑥

1 + 4𝜀𝑡
(1)
,

𝑡

1 + 4𝜀𝑡
(1)
)

equation. The solution thus obtained is called a generating
solution.Here, these generating solutions are obtained by first
obtaining the one parameter transformation corresponding
to each infinitesimal generators obtained in Section 2. These
solutions are obtained in analogy with the method given in
[4] for differential equations. The results are summarized in
the form of Tables 4, 5, and 6.

6. Conclusion

In this paper, in analogy with differential equations, the
symmetry analysis of a nonhomogeneous discrete heat equa-
tion (13) has been carried out. The one-dimensional optimal
systems are obtained for the equation with different source
terms by using symmetry algebra given in [6]. These optimal
systems are then used to obtain invariant solutions if they
exist. Moreover, one parameter group of transformations
corresponding to all infinitesimal generators of the symmetry
algebra has been calculated to obtain generating solutions
of the equation. Main results are summarized in Tables 1, 2,
3, 4, 5, and 6. Working on the same lines one can calculate
conservation laws which we will report soon.
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