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For decades, Mackey-Glass chaotic time series prediction has attracted more and more attention. When the multilayer perceptron
is used to predict the Mackey-Glass chaotic time series, what we should do is to minimize the loss function. As is well known,
the convergence speed of the loss function is rapid in the beginning of the learning process, while the convergence speed is very
slow when the parameter is near to the minimum point. In order to overcome these problems, we introduce the Levenberg-
Marquardt algorithm (LMA). Firstly, a rough introduction is given to the multilayer perceptron, including the structure and the
model approximation method. Secondly, we introduce the LMA and discuss how to implement the LMA. Lastly, an illustrative
example is carried out to show the prediction efficiency of the LMA. Simulations show that the LMA can give more accurate
prediction than the gradient descent method.

1. Introduction

The Mackey-Glass chaotic time series is generated by the
following nonlinear time delay differential equation:

𝑑𝑥 (𝑡)

𝑑𝑡
=

𝛽𝑥 (𝑡 − 𝜏)

1 + 𝑥𝑛 (𝑡 − 𝜏)
+ 𝛾𝑥 (𝑡) , (1)

where 𝛽, 𝛾, 𝜏, and 𝑛 are real numbers. Depending on the
values of the parameters, this equation displays a range
of periodic and chaotic dynamics. Such a series has some
short-range time coherence, but long-term prediction is very
difficult.

Originally, Mackey and Glass proposed the following
equation to illustrate the appearance of complex dynamics in
physiological control systems by way of bifurcations in the
dynamics:

𝑑𝑥

𝑑𝑡
=

𝛽𝑥
𝜏

1 + 𝑥𝑛
𝜏

− 𝛾𝑥, 𝛾, 𝛽, 𝑛 > 0. (2)

They suggested that many physiological disorders, called
dynamical diseases, were characterized by changes in qual-
itative features of dynamics. The qualitative changes of phys-
iological dynamics corresponded mathematically to bifur-
cations in the dynamics of the system. The bifurcations
in the equation dynamics could be induced by changes in
the parameters of the system, as might arise from disease
or environmental factors, such as drugs or changes in the
structure of the system [1, 2].

The Mackey-Glass equation has also had an impact
on more rigorous mathematical studies of delay-differential
equations. Methods for analysis of some of the properties
of delay differential equations, such as the existence of
solutions and stability of equilibria and periodic solutions,
had already been developed [3]. However, the existence
of chaotic dynamics in delay-differential equations was
unknown. Subsequent studies of delay differential equations
with monotonic feedback have provided significant insight
into the conditions needed for oscillation and properties
of oscillations [4–6]. For delay differential equations with
nonmonotonic feedback, mathematical analysis has proven
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Figure 1: Multilayer Perceptrons.

much more difficult. However, rigorous proofs for chaotic
dynamics have been obtained for the differential delay
equation 𝑑𝑥/𝑑𝑡 = 𝑔(𝑥(𝑡 − 1)) for special classes of the
feedback function 𝑔 [7]. Further, although a proof of chaotic
dynamics in the Mackey-Glass equation has still not been
found, advances in understanding the properties of delay
differential equations is going on, such as (2), that contain
both exponential decay and nonmonotonic delayed feedback
[8]. The study of this equation remains a topic of vigorous
research.

The Mackey-Glass chaotic time series prediction is a
very difficult task. The aim is to predict the future state
𝑥(𝑡 + Δ𝑇) using the current and the past time series 𝑥(𝑡),
𝑥(𝑡 − 1), . . . , 𝑥(𝑡 − 𝑛) (Figure 2). Until now, there are many
literatures about the Mackey-Glass chaotic time series pre-
diction [9–14]. However, as far as the prediction accuracy is
concerned, most of the results in the literature are not ideal.

In this paper, we will predict the Mackey-Glass chaotic
time series by the MLP. While minimizing the loss function,
we introduce the LMA, which can adjust the convergence
speed and obtain good convergence efficiency.

The rest of the paper is organized as follows. In Section 2,
we describe the multilayer perceptron. Section 3 introduces
the LMA and discusses how to implement the LMA. In
Section 4, we give a numerical example to demonstrate
the prediction efficiency. Section 5 is the conclusions and
discussions of the paper.

2. Preliminaries

2.1. Multilayer Perceptrons. A multilayer perceptron (MLP)
is a feedforward artificial neural network model that maps
sets of input data onto a set of appropriate outputs. A MLP
consists of multiple layers of nodes in a directed graph,
with each layer fully connected to the next one. Except
for the input nodes, each node is a neuron (or processing
element) with a nonlinear activation function.Themultilayer
perceptron with only one hidden layer is depicted as in
Figure 1 [15].

In Figure 1, x = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇

∈ 𝑅
𝑛 is the model

input, 𝑦 is the model output, 𝑊 = {𝑤
𝑖𝑗
}, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 =

1, 2, . . . , 𝑚, is the connection weight from the 𝑥
𝑖
to the 𝑗th

hidden unit, 𝑉 = {V
𝑗
} is the connection weight from the 𝑗th
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Figure 2: Mackey-Glass chaotic time series.

hidden unit to the output unit, 𝑏
𝑗
, 𝑗 = 1, 2, . . . , 𝑚, and 𝑏

󸀠 are
the bias.

The output of the multilayer perceptron described in
Figure 1 is

𝑦 =

𝑚

∑

𝑗=1

V
𝑗
ℎ
𝑗
+ 𝑏
󸀠

, (3)

and the outputs of the hidden units are

ℎ
𝑗
= 𝜑(

𝑛

∑

𝑖=1

𝑤
𝑖𝑗
𝑥
𝑖
+ 𝑏
𝑗
) , (4)

respectively, where 𝜑(⋅) is the activation function. We will
adopt the sigmoid function 𝜑(𝑥) as the activation function;
for example,

𝜑 (𝑥) =
1

1 + 𝑒−𝑥
, (5)

and the derivative of the activation function with respect to 𝑥

is

𝜑
󸀠

(𝑥) =
𝑒
−𝑥

(1 + 𝑒−𝑥)
2
, (6)

or

𝜑
󸀠

(𝑥) = 𝜑 (𝑥) (1 − 𝜑 (𝑥)) . (7)

MLP provides a universal method for function approxi-
mation and classification [16, 17]. In the case of the function
approximation, we have a number of observed data (x

1
, 𝑦
1
),

(x
2
, 𝑦
2
), . . .,(x

𝐿
, 𝑦
𝐿
), which are supposed to be generated by

𝑦 = 𝑓
0
(x) + 𝜉, (8)

where 𝜉 is noise, usually subject to Gaussian distribution
with zero mean, and 𝑓

0
(x) is the unknown true generating

function.
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Given a set of observed data, sometimes called training
examples, we search for the parameters

𝜃 = (𝑏
1
, . . . , 𝑏

𝑚
, 𝑤
11
, . . . , 𝑤

𝑛1
, 𝑤
12
, . . . , 𝑤

𝑛2
, . . . , 𝑤

1𝑚
, . . . ,

𝑤
𝑛𝑚

, 𝑏
󸀠

, V
1
, . . . , V

𝑚
) ∈ 𝑅
(𝑛+1)𝑚+𝑚+1

(9)

to approximate the teacher function 𝑓
0
(x) best, where 𝑇

denotes the matrix transposition. A satisfactory model is
often obtained by minimizing the mean square error.

One of the serious problems in minimizing the mean
square error is that the convergence speed of the loss function
is rapid in the beginning of the learning process, while
the convergence speed is very slow in the region of the
minimum [18]. In order to overcome these problems, we will
introduce the Levenberg-Marquardt algorithm (LMA) in the
next section.

2.2. The Levenberg-Marquardt Algorithm. In mathematics
and computing, the Levenberg-Marquardt algorithm (LMA)
[18–20], also known as the damped least-squares (DLS)
method, is used to solve nonlinear least squares problems.
Theseminimization problems arise especially in least squares
curve fitting.

The LMA is interpolates between the Gauss-Newton
algorithm (GNA) and the gradient descent algorithm (GDA).
As far as the robustness is concerned, the LMA performs
better than the GNA, which means that in many cases it finds
a solution even if it starts very far away from the minimum.
However, for well-behaved functions and reasonable starting
parameters, the LMA tends to be a bit slower than the GNA.

In many real applications for solving model fitting prob-
lems, we often adopt the LMA. However, like many other
fitting algorithms, the LMA finds only a local minimum,
which is always not the global minimum.

The least squares curve fitting problem is described as
follows. Instead of the unknown true model, a set of 𝑁 pairs
of independent variables (x

1
, 𝑦
1
), (x
2
, 𝑦
2
), . . . , (x

𝑁
, 𝑦
𝑁
) are

given. Suppose that 𝑓(𝑥, 𝜃) is the approximation model and
𝐿(𝜃) is a loss function, which is the sum of the squares of the
deviations:

𝐿 (𝜃) =

𝑁

∑

𝑖=1

[𝑦
𝑖
− 𝑓 (x

𝑖
, 𝜃)]
2

. (10)

The task of curve fitting problem isminimizing the above loss
function 𝐿(𝜃) [21].

The LMA is an iterative algorithm and the parameter
𝜃 is adjusted in each iteration step. Generally speaking, we
choose an initial parameter randomly, for example, 𝜃

𝑖
∼

𝑈(−1, 1), 𝑖 = 1, 2, . . . , 𝑛, where 𝑛 is the dimension of
parameter 𝜃.

The Taylor expansion of the function 𝑓(x
𝑖
, 𝜃 + Δ𝜃) is

𝑓 (x
𝑖
, 𝜃 + Δ𝜃) ≈ 𝑓 (x

𝑖
, 𝜃) +

𝜕𝑓 (x
𝑖
, 𝜃)

𝜕𝜃
Δ𝜃. (11)

As we know, at the minimum 𝜃
∗ of loss function 𝐿(𝜃), the

gradient of 𝐿(𝜃) with respect to 𝜃 will be zero. Substituting
(11) into (10), we can obtain

𝐿 (𝜃 + Δ𝜃) ≈

𝑁

∑

𝑖=1

(𝑦
𝑖
− 𝑓 (x

𝑖
, 𝜃) − J

𝑖
Δ𝜃)
2

, (12)

where 𝐽
𝑖
= 𝜕𝑓(x

𝑖
, 𝜃)/𝜕𝜃, or

𝐿 (𝜃 + Δ𝜃) ≈
󵄩󵄩󵄩󵄩y − f(𝜃) − JΔ𝜃󵄩󵄩󵄩󵄩

2

. (13)

Taking the derivative with respect toΔ𝜃 and setting the result
to zero give

(J𝑇J) Δ𝜃 = J𝑇 (y − f (𝜃)) , (14)

where J is the Jacobian matrix whose 𝑖th row equals 𝐽
𝑖
and

also y and f are vectors with 𝑖th component 𝑓(𝑥
𝑖
, 𝜃) and 𝑦

𝑖
,

respectively. This is a set of linear equations which can be
solved for Δ𝜃.

Levenberg’s contribution is to replace this equation by a
“damped version,”

(J𝑇J + 𝜆𝐼) Δ𝜃 = J𝑇 [y − f (𝜃)] , (15)

where 𝐼 is the identity matrix, giving the increment Δ𝜃 to the
estimated parameter vector 𝜃.

The damping factor 𝜆 is adjusted at each iteration step. If
the loss function 𝐿(𝜃) reduces rapidly, 𝜆 will adopt a small
value, and then the LMA is similar to the Gauss-Newton
algorithm. While the loss function 𝐿(𝜃) reduces very slowly,
𝜆 can be increased, giving a step closer to the gradient descent
direction, and

𝜕𝐿 (𝜃)

𝜕Δ𝜃
= −2J𝑇 [y − f (𝜃)]𝑇 . (16)

Therefore, for large values of 𝜆, the step will be taken
approximately in the direction of the gradient.

In the process of iteration, if either the length of the
calculated step Δ𝜃 or the reduction of 𝐿(𝜃) from the latest
parameter vector 𝜃 + Δ𝜃 falls below the predefined limits,
iteration process stops and then we take the last parameter
vector 𝜃 as the final solution.

Levenberg’s algorithm has the disadvantage that if the
value of damping factor 𝜆 is large, the inverse of J𝑇J + 𝜆𝐼

does not work at all. Marquardt provided the insight that
we can scale each component of the gradient according to
the curvature so that there is larger movement along the
directions where the gradient is smaller. This avoids slow
convergence in the direction of small gradient. Therefore,
Marquardt replaced the identity matrix 𝐼 with the diagonal
matrix consisting of the diagonal elements of J𝑇J, resulting in
the Levenberg-Marquardt algorithm [22]:

[J𝑇J + 𝜆 diag (J𝑇J)] Δ𝜃 = J𝑇 [y − f (𝜃)] , (17)

and the LMA is as follows:

𝜃
𝑡+1

= 𝜃
𝑡
+ Δ𝜃, (18)

where

Δ𝜃 = [J𝑇J + 𝜆 diag (J𝑇J) ]
−1

J𝑇 [y − f (𝜃)] . (19)
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3. Application of LMA for Mackey-Glass
Chaotic Time Series

In this section, we will derive the LMAwhen theMLP is used
for the Mackey-Glass chaotic time series prediction. Suppose
that we use the 𝑥(𝑡) − Δ𝑇

0
, 𝑥(𝑡 − Δ𝑇

1
), . . . , 𝑥(𝑡 − Δ𝑇

𝑛−1
) to

predict the future variable 𝑥(𝑡 + Δ𝑇), where Δ𝑇
0
= 0.

To implement the LMA, what we should do is calculate
the Jacobian matrix J, whose 𝑖th row equals 𝐽

𝑖
. According to

(3) and (4), function 𝑓(x, 𝜃) can be expressed as

𝑓 (x, 𝜃) =
𝑚

∑

𝑗=1

V
𝑗
𝜑(

𝑛

∑

𝑖=1

𝑤
𝑖𝑗
𝑥 (𝑡 − Δ𝑇

𝑖−1
) + 𝑏
𝑗
) + 𝑏
󸀠

. (20)

What we should do is calculate the 𝐽
𝑖
= 𝜕𝑓(x

𝑖
, 𝜃)/𝜕𝜃.

The derivatives of 𝑓(x, 𝜃) with respect to 𝜃 are

𝜕𝑓 (x, 𝜃)
𝜕𝑏
𝑗

= V
𝑗
𝜑(

𝑛

∑

𝑖=1

𝑤
𝑖𝑗
𝑥 (𝑡 − Δ𝑇

𝑖−1
) + 𝑏
𝑗
)

× [1 − 𝜑(

𝑛

∑

𝑖=1

𝑤
𝑖𝑗
𝑥 (𝑡 − Δ𝑇

𝑖−1
) + 𝑏
𝑗
)] ,

𝜕𝑓 (x, 𝜃)
𝜕𝑤
𝑖𝑗

= V
𝑗
𝜑(

𝑛

∑

𝑖=1

𝑤
𝑖𝑗
𝑥 (𝑡 − Δ𝑇

𝑖−1
) + 𝑏
𝑗
)

× [1 − 𝜑(

𝑛

∑

𝑖=1

𝑤
𝑖𝑗
𝑥 (𝑡 − Δ𝑇

𝑖−1
) + 𝑏
𝑗
)]

× 𝑥 (𝑡 − Δ𝑇
𝑖−1

) ,

𝜕𝑓 (x, 𝜃)
𝜕𝑏󸀠

= 1,

𝜕𝑓 (x, 𝜃)
𝜕V
𝑗

= 𝜑(

𝑛

∑

𝑖=1

𝑤
𝑖𝑗
𝑥 (𝑡 − Δ𝑇

𝑖−1
) + 𝑏
𝑗
) ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(21)

As we know, 𝜃 = (𝑏
1
, . . . , 𝑏

𝑚
, 𝑤
11
, . . . , 𝑤

𝑛1
, 𝑤
12
, . . .,

𝑤
𝑛2
, . . . , 𝑤

1𝑚
, . . . , 𝑤

𝑛𝑚
, 𝑏
󸀠

, V
1
, . . . , V

𝑚
) ∈ 𝑅
(𝑛+1)𝑚+𝑚+1, so 𝐽

𝑖
, the

𝑖th row of J, can be easily obtained according to (21). J is
calculated and when MLP is used for Mackey-Glass chaotic
time series prediction, the LMA can also be obtained.

4. Numerical Simulations

Example 1. We will conduct an experiment to show the
efficiency of the Levenberg-Marquardt algorithm.We choose
a chaotic time series created by the Mackey-Glass delay-
difference equation:

𝑑𝑥 (𝑡)

𝑑𝑡
=

0.2𝑥 (𝑡 − 𝜏)

1 + 𝑥10 (𝑡 − 𝜏)
− 0.1𝑥 (𝑡) , (22)

for 𝜏 = 17.
Such a series has some short-range time coherence, but

long-term prediction is very difficult. The need to predict

such a time series arises in detecting arrhythmias in heart-
beats.

The network is given no information about the generator
of the time series and is asked to predict the future of the time
series from a few samples of the history of the time series. In
our example, we trained the network to predict the value at
time 𝑇+Δ𝑇, from inputs at time 𝑇, 𝑇− 6, 𝑇− 12, and 𝑇− 18,
and we will adopt Δ𝑇 = 50 here.

In the simulation, 3000 training examples and 500 test
examples are generated by (22). We use the following mul-
tilayer perceptron for fitting the generated training examples:

𝑥 (𝑡 + 50) =

20

∑

𝑗=1

𝑉
𝑗
𝜑(

4

∑

𝑖=1

𝑥 (𝑡 − 6 (𝑖 − 1)) 𝑤
𝑖𝑗
+ 𝑏
𝑗
) + 𝑏
󸀠

; (23)

for example, the number of the hidden units is 𝑛 = 20 and the
dimension of the input is𝑚 = 4.

Let 𝑓(x, 𝜃) = ∑
20

𝑗=1
𝑉
𝑗
𝜑(∑
4

𝑖=1
𝑥(𝑡 − 6(𝑖 − 1))𝑤

𝑖𝑗
+ 𝑏
𝑗
) + 𝑏
󸀠;

then, we can obtain the following equation according to (21):

𝜕𝑓 (x, 𝜃)
𝜕𝑏
𝑗

= V
𝑗
𝜑(

20

∑

𝑖=1

𝑤
𝑖𝑗
𝑥 (𝑡 − 6 × (𝑖 − 1)) 𝑤

𝑖𝑗
+ 𝑏
𝑗
)

× [1 − 𝜑(

4

∑

𝑖=1

𝑤
𝑖𝑗
𝑥 (𝑡 − 6 × (𝑖 − 1)) 𝑤

𝑖𝑗
+ 𝑏
𝑗
)] ,

𝜕𝑓 (x, 𝜃)
𝜕𝑤
𝑖𝑗

= V
𝑗
𝜑(

20

∑

𝑖=1

𝑤
𝑖𝑗
𝑥 (𝑡 − 6 × (𝑖 − 1)) + 𝑏

𝑗
)

× [1 − 𝜑(

4

∑

𝑖=1

𝑤
𝑖𝑗
𝑥 (𝑡 − 6 × (𝑖 − 1)) 𝑤

𝑖𝑗
+ 𝑏
𝑗
)]

× 𝑥 (𝑡 − 6 × (𝑖 − 1)𝑤
𝑖𝑗
+ 𝑏
𝑗
) ,

𝜕𝑓 (x, 𝜃)
𝜕𝑏󸀠

= 1,

𝜕𝑓 (x, 𝜃)
𝜕V
𝑗

= 𝜑(

4

∑

𝑖=1

𝑤
𝑖𝑗
𝑥 (𝑡 − 6 × (𝑖 − 1)) 𝑤

𝑖𝑗
+ 𝑏
𝑗
) ,

𝑖 = 1, 2, . . . , 20, 𝑗 = 1, 2, 3, 4.

(24)

The initial values of the parameters are selected randomly:

𝑊
𝑖𝑗
∼ 𝑈 (2, 4) , 𝑉

𝑗
∼ 𝑈 (1, 2) ,

𝑖 = 1, 2, . . . , 21, 𝑗 = 1, 2, 3, 4, 5.

(25)

The learning curves of the error function and the fitting
result of LMA and GDA are shown in Figures 3, 4, 5, and 6,
respectively.

The learning curves of LMA and GNA are shown in
Figures 3 and 4, respectively. The training error ∑

3000

𝑖=1
(𝑦
𝑖
−

𝑓(x
𝑖
, 𝜃))
2 of LMA can reach 0.1, while the final training error

of GDA is more than 90. Furthermore, the final mean test
error (1/500)∑5500

𝑖=5001
(𝑦
𝑖
−𝑓(x
𝑖
, 𝜃))
2

= 0.0118 of LMA ismuch
smaller than 0.2296, which is the final test error of GDA.



Discrete Dynamics in Nature and Society 5

10 20 30 40 50 60 70 80 90 100
50

100

150

200

250

300

350

400

Training number

Tr
ai

ni
ng

 er
ro

r

Figure 3: The GDA learning curve of the error function.
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Figure 4: The LMA learning curve of the error function.

As far as the fitting effect is concerned, the performance
of LMA is much better than that of the GDA. This is very
obvious from Figures 5 and 6.

All of these suggest that when we predict the Mackey-
Glass chaotic time series, the performance of LMA is very
good. It can effectively overcome the difficulties which may
arise in the GDA.

5. Conclusions and Discussions

In this paper, we discussed the application of the Levenberg-
Marquardt algorithm for the Mackey-Glass chaotic time
series prediction. We used the multilayer perceptron with 20

hidden units to approximate and predict the Mackey-Glass
chaotic time series. In the process of minimizing the error
function, we adopted the Levenberg-Marquardt algorithm.
If reduction of 𝐿(𝜃) is rapid, a smaller value damping factor
𝜆 can be used, bringing the algorithm closer to the Gauss-
Newton algorithm, whereas if an iteration gives insufficient
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Figure 5: Fitting of Mackey-Glass chaotic time series, GDA.
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Figure 6: Fitting of Mackey-Glass chaotic time series, LMA.

reduction in the residual, 𝜆 can be increased, giving a
step closer to the gradient descent direction. In this paper,
the learning mode is batch. At last, we demonstrate the
performance of the LMA. Simulations show that the LMAcan
achieve much better prediction efficiency than the gradient
descent method.
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