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Rolling element bearings are essential components of rotating machinery. The spherical roller bearing (SRB) is one variant
witnessing increasing use because it is self-aligning and can support high loads. It is becoming increasingly important to understand
how the SRB responds dynamically under a variety of conditions.This study introduces a computationally efficient, three-degree-of-
freedom, SRB model that was developed to predict the transient dynamic behaviors of a rotor-SRB system. In the model, bearing
forces and deflections were calculated as a function of contact deformation and bearing geometry parameters according to the
nonlinear Hertzian contact theory. The results reveal how some of the more important parameters, such as diametral clearance,
the number of rollers, and osculation number, influence ultimate bearing performance. One pair of calculations looked at bearing
displacement with respect to time for two separate arrangements of the caged side-by-side roller arrays, when they are aligned
and when they are staggered. As theory suggests, significantly lower displacement variations were predicted for the staggered
arrangement. Following model verification, a numerical simulation was carried out successfully for a full rotor-bearing system
to demonstrate the application of this newly developed SRB model in a typical real world analysis.

1. Introduction

Bearings are one of themost important components inmech-
anical systems, and their reliable operation is necessary to
ensure the safe and efficient operation of rotating machinery
[1]. For this reason, a multipurpose dynamic roller bearing
model capable of predicting the dynamic vibration responses
of rotor-bearing systems is important. However, bearings
introduce nonlinearities, often leading to unexpected behav-
iors, and these behaviors are sensitive to initial conditions.
For rolling element bearings, the significant sources of non-
linearity are radial clearance between the rolling elements
and raceways and the nonlinear restoring forces between the
various curved surfaces in contact. A special type of nonlin-
earity is introduced to the system if the contact surfaces have
distributed defects, such as waviness, or localized defects,
such as inner or outer ring defects.

Goenka and Booker [2] extended the general applica-
bility of the finite element method to include spherical
roller bearings (SRBs). In their research, triangular finite
elements with linear interpolation functions were used to
model the lubricant film. Loading conditions for spherical

roller bearings with elastohydrodynamic and hydrodynamic
lubrication effects were analyzed by Kleckner and Pirvics [3].
They simulated the mechanical behavior of spherical roller
bearings in isothermal conditions.

Creju et al. [4, 5] improved the dynamic analysis of
tapered roller bearings by improving integration of the dif-
ferential equations that describe the dynamics of the rollers
and bearing cage. Their study considered the effects of cen-
trifugal forces and the gyroscopic moments of the rollers.
The effects of correction parameters for roller generatrices in
spherical roller bearings were discussed byKrzemiński-Freda
andWarda [6]. They focused in their study on determining a
proper ratio of osculation coefficients for both races to obtain
self-stabilization of the barrel shaped roller and to minimize
friction losses.

Olofsson and Björklund [7] performed 3D surface mea-
surements and analysis on spherical roller thrust bearings
that revealed the different wear mechanisms.

A theoretical model for estimating the stiffness coeffi-
cients of spherical roller bearings was developed by Royston
and Basdogan [8] showing that coefficient values are com-
plicated functions, dependent on radial and axial preloads.
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While this work is useful for qualitative analysis, it cannot
deliver the dynamic insights needed for understanding the
high performance machine systems.

Olofsson et al. [9] simulated the wear of boundary
lubricated spherical roller thrust bearings. A wear model was
developed in which the normal load distribution, tangential
tractions, and sliding distances can be calculated to simulate
the changes in surface profile due towear. Taking into account
internal geometry and preload impacts, Bercea et al. [10]
applied a vector-and-matrix method to describe total elastic
deflection between double-row bearing races. This study
focused only on static analysis. It is not capable of delivering a
detailed analysis of the complex dynamic behaviors of spher-
ical roller bearing systems involving nonlinear interactions
between rollers and inner/outer races.

Cao and Xiao [11, 12] established and applied a com-
prehensive spherical roller bearing model to provide quan-
titative performance analyses of SRBs. In addition to the
vertical and horizontal displacements considered in previous
investigations, the impacts of axial displacement and load
were addressed by introducing degrees-of-freedom in the
axial shaft direction. The point contacts between rollers and
inner/outer races were considered. These bearing models
have a large number of degrees-of-freedom since there is one
degree-of-freedom (DOF) for each roller and an additional 3
to 5DOFs for the inner race. Its high complexity makes this
bearingmodel unattractive for the analysis of complete rotor-
bearing systems. For example, a single gear-box can contain
up to ten roller bearings.

The effect of centrifugal forces on lubricant supply layer
thickness in the roller bearings was considered by van Zoelen
et al. [13]. In particular, this model is used to predict lubricant
layer thickness on the surface of the inner and outer raceways
and each of the rollers. In this extended model, it is assumed
that the lubricant layers for each of the roller raceway contacts
are divided equally between the diverging surfaces.

Although a large number of ball bearing models exist,
there has been little study of spherical roller bearing dynam-
ics. For example, Harsha et al. [14, 15] studied the rolling
element dynamics for certain imperfect configurations of
single row deep-grooved ball bearings. The study revealed
dynamic behaviors that are extremely sensitive to small
variations in system parameters, such as the number of balls
and the number of waves. A dynamic model of deep-grooved
ball bearings was proposed by Sopanen and Mikkola [16, 17].
They considered the effects of distributed defects such as
surface waviness and inner and outer imperfections.

This paper introduces a new general purpose spherical
roller bearing model developed to act as an interface ele-
ment between a spinning rotor and its supporting structure.
Spherical roller bearings experience point contact between
the inner race, rolling element, and outer race in the no-load
condition and elliptical contact when loaded. The modeling
approach presented in this paper accounts for the loaded
condition and has three degrees-of-freedom. Its simplifying
assumptions make the model computationally efficient. It is
accurate enough for an engineering analysis, since it can cap-
ture the most important dynamic properties of the bearing.

Model performance was demonstrated by comparing the
results of two basic numerical simulations to the results
obtained using both commercial bearing analysis software
and the bearing radial deflection formula proposed by
Gargiulo [18]. The simulations focused on the more impor-
tant design parameters: diametral clearance, number of
rollers, and osculation. A third numerical simulation of a full
bearing systemwas performed to demonstrate the application
of this new SRB model in a typical real world analysis.

2. Dynamic Model of the Spherical
Roller Bearing

A spherical roller bearing consists of a number of parts,
including a series of rollers, a cage, and the inner and outer
raceways. Describing each component in detail can result
in a simulation model with a large number of degrees-of-
freedom. Additionally, as with all radial rolling bearings,
spherical roller bearings are designed with clearance. This
clearance also increases the computational complexity of
the system. However, bearing analysis computation should
be efficient so it can be used to simulate the dynamics of
complete machine systems. To improve the computational
efficiency of the proposed spherical roller bearing model the
following simplifications have been introduced.

(1) Cage movement is based on the geometric dimen-
sions of the bearing; therefore, it is assumed that no
slipping or sliding occurs between the components
of the bearing and that all rollers move around the
raceways with equal velocity.

(2) The inner raceway is assumed to be fixed rigidly to the
shaft.

(3) There is no bending deformation of the raceways.
Only nonlinear Hertzian contact deformations are
considered in the area of contact between the rollers
and raceways.

(4) Thebearings are assumed to operate under isothermal
conditions.

(5) Rollers are equally distributed around the inner race,
and there is no interaction between them.

(6) The centrifugal forces acting on the rollers are neg-
lected.

The bearing stiffness matrix and bearing force calculation
routines are implemented according to the block diagrams
shown in Figure 1. The bearing geometries, material prop-
erties and the displacements between the bearing rings are
defined as inputs. For the stiffness matrix calculation routine,
the external force on the bearing is given as an input. The
bearing force calculation routine can be used as a stand-alone
program or as part of a bearing stiffness matrix calculation
routine in a multibody or rotor dynamic analysis code.

In the following sections, the theory behind the bearing
force and bearing stiffness matrix calculation is explained in
detail.
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Figure 1: Block diagram for the bearing stiffness matrix and bearing force calculation.

2.1. Geometry of Contacting Elastic Solids. Two solids that
have different radii of curvature in two directions (𝑥 and
𝑦) are in point contact when no load is applied to them.
When the two solids are pressed together by a force 𝐹, the
contact area is elliptical. For moderately loaded spherical
roller bearings, the contact conjunction can be considered
elliptical [3], as shown in Figure 2.The following analysis will
assume that the curvature is positive for convex surfaces and
negative for concave surfaces [19].

The geometry between two solids in contact (𝐴 and 𝐵)
can be expressed in terms of the curvature sum (𝑅) and the
curvature difference (𝑅𝑑) as follows [20, 21]:

1

𝑅

=

1

𝑅𝑥

+

1

𝑅𝑦

,

𝑅𝑑 = 𝑅(

1
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) .

(1)

The curvature sums in 𝑥 and 𝑦 are defined as follows:

1
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1

𝑟𝐴𝑥

+

1

𝑟𝐵𝑥

,

1
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1

𝑟𝐵𝑦

.

(2)

Variables 𝑅𝑥 and 𝑅𝑦 represent the effective radii of curvature
in the principal 𝑥- and 𝑦-planes. When the two solids have
a normal load applied to them, the point expands to an
ellipse with “𝑎𝑒” being a semimajor axis and “𝑏𝑒” being the
semiminor axis. The elliptic parameter is defined as [19]

𝑘𝑒 =

𝑎𝑒

𝑏𝑒

. (3)

The elliptic parameter can be defined as a function of the
curvature difference 𝑅𝑑 and the elliptic integrals of the first 𝜉
and second 𝜁 kinds as follows [21]:

𝑘𝑒 = [

2𝜉 − 𝜁 (1 + 𝑅𝑑)

𝜁 (1 − 𝑅𝑑)

]

1/2

. (4)
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Figure 2: Elliptical contact conjunctions.

The following (5) defines the first and second kinds 𝜉 and
𝜁:

𝜉 = ∫

𝜋/2

0

[1 − (1 −

1

𝑘
2
) sin2𝜙]

−1/2

𝑑𝜙,

𝜁 = ∫

𝜋/2

0

[1 − (1 −

1

𝑘
2
) sin2𝜙]

1/2

𝑑𝜙.

(5)

The angle 𝜙 is an auxiliary angle. Brewe and Hamrock
[20] used numerical iteration and curve fitting techniques to
find the following approximation formulas for the ellipticity
parameter 𝑘𝑒 and the elliptical integrals of the first 𝜉 and
second 𝜁 kinds as follows:

𝑘𝑒 = 1.0339(

𝑅𝑦

𝑅𝑥

)

0.6360

,

𝜉 = 1.0003 + 0.5968

𝑅𝑥

𝑅𝑦

,

𝜁 = 1.5277 + 0.6023 ln(

𝑅𝑦

𝑅𝑥

) .

(6)

2.2. Geometry of Spherical Roller Bearing. The most impor-
tant geometric dimensions of the spherical roller bearing
are shown in Figure 3. Diametral clearance is the maximum
diametral distance that one race can move freely. Osculation
is defined as the ratio between the roller contour radius and
the race contour radius as

𝐶 =

𝑟𝑟

𝑟𝑖,𝑜

. (7)

Subscripts 𝑟, 𝑖, and 𝑜 refer to roller, inner race, and outer race,
respectively. Perfect osculation is when 𝐶 is equal to 1. In
general, maximum contact pressure between the race and the
roller decreases as osculation increases. Decreasing contact
pressure reduces fatigue damage to the rolling surfaces;
however, there is more frictional heating with increasing
conformity. A reasonable value for osculation and one that
can be used in the roller contour radius definition is 0.98 [1].
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Figure 3: Dimension of spherical roller bearing.

Figure 4 illustrates the radii of curvature between roller,
outer race, and inner race of an SRB.

The figure suggests that the radii of curvature for the
roller-to-inner race contact area can be written as follows:

𝑟
in
𝐴𝑥

=

𝑑𝑟

2

,

𝑟
in
𝐴𝑦

= 𝑟𝑟,

𝑟
in
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=

𝑑𝑒 − 𝑑𝑟 cos𝜙0 − (𝑐𝑑/2) cos𝜙0
2 cos𝜙0

,

𝑟
in
𝐵𝑦

= −𝑟in.

(8)

Similarly, the equations for the radii of curvature for
roller-to-outer race contact can be written as

𝑟
out
𝐴𝑥

=

𝑑𝑟

2

,

𝑟
out
𝐴𝑦

= 𝑟𝑟,

𝑟
out
𝐵𝑥

= −

𝑑𝑒 + 𝑑𝑟 cos𝜙0 + (𝑐𝑑/2) cos𝜙0
2 cos𝜙0

,

𝑟
out
𝐵𝑦

= −𝑟out.

(9)

2.3. Contact Deformation in Spherical Roller Bearing. From
the relative displacements between the inner and outer race,
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the resultant elastic deformation can be determined of the 𝑖th
rolling element of the 𝑗th row located at angle 𝛽

𝑖

𝑗
. The initial

distance 𝐴0 between the inner and outer raceway curvature
centers (𝑂-1, 𝑂-2) can be written, again based on Figure 4
drawing, as

𝐴0 = 𝑟
out
𝐵𝑦

+ 𝑟
in
𝐵𝑦

− 𝑑𝑟 −

𝑐𝑑

2

. (10)

The corresponding loaded distance for roller 𝑖 in row 𝑗

can be written as follows:

𝐴(𝛽
𝑖

𝑗
) = √(𝛿

𝑖

𝑧𝑗
)

2

+ (𝛿
𝑖

𝑟𝑗
)

2

, (11)

where 𝛿
𝑖

𝑧𝑗
and 𝛿

𝑖

𝑟𝑗
are the displacements for roller 𝑖 in row 𝑗

in the axial and radial directions, respectively, which can be
determined using these equations:

𝛿
𝑖

𝑧𝑗
= 𝐴0 sin (𝜙0) + 𝑒𝑧,

𝛿
𝑖

𝑟𝑗
= 𝐴0 cos (𝜙0) + 𝑒𝑥 cos (𝛽

𝑖

𝑗
) + 𝑒𝑦 sin (𝛽

𝑖

𝑗
) .

(12)

The variables 𝑒𝑥, 𝑒𝑦, and 𝑒𝑧 represent displacements in the
𝑥𝑦𝑧-coordinate system, and 𝛽

𝑖

𝑗
is the attitude angle of roller 𝑖

in row 𝑗; see Figure 5. The initial contact angle 𝜙0 is negative
for the 1st row and positive for the 2nd row of the bearing.

The distance between race surfaces along the common
normal is given by

𝑑 (𝛽
𝑖

𝑗
) =

󵄨
󵄨
󵄨
󵄨
󵄨
𝑟
out
𝐵𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑟
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󵄨
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󵄨
󵄨
󵄨
− 𝐴 (𝛽

𝑖

𝑗
) . (13)

Elastic compression becomes

𝛿𝛽𝑖
𝑗

= 𝑑𝑟 − 𝑑 (𝛽
𝑖

𝑗
) . (14)

And the loaded contact angle in each roller element can
be defined as follows:

𝜙
𝑖

𝑗
= tan−1(

𝛿
𝑖

𝑧𝑗

𝛿
𝑖

𝑟𝑗

) . (15)

2.4. Elastic Deformation in Spherical Roller Bearing. In a
single rolling element, total deflection is the sum of the
contact deflections between the roller and the inner and outer
races. The deflection between the roller and the race can be
approximated as given by [19]

𝛿0 = (

𝐹

𝐾𝑐

)

2/3

. (16)

The 𝐹 denotes normal load, and𝐾𝑐 is the contact stiffness
coefficient, which can be calculated using the elliptic integral
and ellipticity parameter in this manner:

𝑘𝑐 = 𝜋𝑘𝑒𝐸
󸀠
√

𝑅𝜉

4.5𝜁

3
. (17)

The effectivemodulus of elasticity𝐸
󸀠 is defined as follows:

1

𝐸
󸀠
=

1

2

(

1 − ]2
𝑎

𝐸𝑎

+

1 − ]2
𝑏

𝐸𝑏

) , (18)

𝐸 and ] are the modulus of elasticity and Poisson’s ratio of
solids 𝑎 and 𝑏.The total stiffness coefficient for both inner and
outer race contact areas can be expressed with the following
equation:

𝑘
tot
𝑐

=

1

[(1/𝑘
in
𝑐
)
2/3

+ (1/𝑘
out
𝑐

)
2/3

]

3/2
. (19)
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Figure 5: (a) Axial and (b) transverse cross-section in the A-A plane of spherical roller bearing.

According to (14) and (19), the contact force for roller 𝑖 in
row 𝑗 can be calculated in this manner:

𝐹
𝑖

𝑗
= 𝑘

tot
𝑐

(𝛿𝛽𝑖
𝑗

)
1.5

. (20)

Finally, the total bearing force components acting upon
the shaft in the 𝑥, 𝑦, and 𝑧 directions can be written according
to these 3 equations:

𝐹𝑥 = −

2

∑

𝑗=1

𝑁

∑

𝑖=1

𝐹
𝑖

𝑗
cos𝜙𝑖
𝑗
cos𝛽𝑖
𝑗
,

𝐹𝑦 = −

2

∑

𝑗=1

𝑁
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𝑖=1

𝐹
𝑖

𝑗
cos𝜙𝑖
𝑗
sin𝛽
𝑖

𝑗
,

𝐹𝑧 = −

2

∑

𝑗=1

𝑁

∑

𝑖=1

𝐹
𝑖

𝑗
sin𝜙
𝑖

𝑗
.

(21)

The variable𝑁 is the number of rolling elements in each row.
In (21), only positive values of the contact force 𝐹

𝑖

𝑗
are taken

into account, and 𝐹
𝑖

𝑗
= 0 for the negative values.

2.5. Calculating the Stiffness Matrix of an SRB. Since it has
a significant effect in the static and dynamic analyses of
rotating mechanical systems, an accurate estimation of the
SRB stiffnessmatrix is needed. According to (21), for a known
given load, the displacements of bearing e (with components
𝑒𝑥, 𝑒𝑦, and 𝑒𝑧) are calculated using the Newton-Raphson
iteration procedure as follows:

e(𝑛+1) = e(𝑛) − (K(𝑛)
𝑇

)

−1

Q(𝑛). (22)

The displacement values can be calculated at step 𝑛 + 1.
In (22), K(𝑛)

𝑇
is the tangent stiffness matrix, and vector Q(𝑛)

includes the bearing forces and external forces at iteration
step 𝑛 as follows:

Q(𝑛) = Q(𝑛)
𝑏

−Q(𝑛)ex . (23)

The tangent stiffness matrix can be written as

K(𝑛)
𝑇

=

𝜕Q(𝑛)

𝜕e(𝑛)
. (24)

In this calculation process, the convergence criterion for
the iteration is defined as follows:

|Q| < 0.001 ⋅
󵄨
󵄨
󵄨
󵄨
Qex

󵄨
󵄨
󵄨
󵄨
. (25)

Finally, the tangent stiffness matrix, which is obtained
from the last iteration step, is chosen as a bearing stiffness
matrix.

3. Single Bearing Numerical Simulations

This study introduces a computationally efficient, three-
degree-of-freedom, SRBmodel that was developed to predict
the transient dynamic behaviors of a rotor-SRB system. To
verify the new bearing model, a series of verifying numerical
calculations were carried out for a single SRB subjected to
a simple radial load. The SRB modeled was a double-row
spherical roller bearing (FAG 21322-E1-TVPB) with 16 roller
elements in each row. Table 1 gives the relevant dimensions
and parameters of the roller bearing, which were used to
define the model. All numerical calculations were performed
using MATLAB-2011b. Some of the MATLAB results were
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Table 1: Dimensions and parameters of the spherical roller bearing.

Free contact angle 𝜑
0

7.92 degree
Roller diameter 𝑑𝑟 29 mm
Inner raceway contour radius 𝑟𝑖 106.61 mm
Outer raceway contour radius 𝑟𝑜 106.61 mm
Roller contour radius 𝑟𝑟 103.95 mm
Bearing width B 50 mm
Clearance 𝑐𝑑 41 𝜇m
Pitch diameter 𝑑𝑒 175 mm
Number of rows 𝑛𝑧 2 —
Number of rolling elements in one row 𝑁 16 —
Modulus of elasticity 𝐸 206 GPa
Poisson’s ratio ] 0.3 —

compared to results obtained by applying the formula for the
spherical roller bearing radial deflection (Gargiulo [18]) and
the commercial bearing analysis software BearinX provided
by the Schaeffler Group.

The model verification analysis series comprised six sets
of MATLAB numerical calculations, each focused on a
specific area of behavior. In the first set, roller contact forces
were calculated for four levels of radial load. The second
set explored the relationship between bearing displacement
and load. A third set of calculations established how SRB
elastic deformation changes with load as a function of
diametral clearance. The effect of osculation number on
bearing displacement for different levels of radial loading was
the area of focus of the fourth set of calculations. The fifth
set looked at changes in displacement as a function of radial
load and the number of bearing rollers. Finally, the last pair of
verification calculations looked at bearing displacement with
respect to time for two separate arrangements of the caged
side-by-side roller arrays, when they are aligned and when
they are staggered.

3.1. Single Bearing Load Analysis: Contact Forces. The first
set of calculations were performed to verify that the newly
developed SRB model would simulate correctly how roller
contact forces change with increasing load. Figure 6 shows
the calculated contact force distribution for radial loads in
the 𝑦 direction of 4, 6, 8, and 10 kN.The figure demonstrates,
as theory predicts, that at the input diametral clearance of
𝑐𝑑 = 41, fewer rollers support the lowest applied radial load,
and as the load increases, the number of supporting rollers
increases.

3.2. Single Bearing Analysis: Elastic Deformation, Clearance,
and Load. The second set of calculations explored the rela-
tionship between bearing displacement and load. Figure 7
illustrates the predicted relationship between applied radial
force and bearing displacement and show that displacement
increases with the increasing load. This eccentric displace-
ment of the rotating bearing centers is a result of bearing
radial clearance (𝑐𝑑 = 41) and the elastic deformations
occurring at the regions of roller-to-race contact. In Figure 7,
the red curve shows the behavior predicted by the BearinX

commercial bearing software, and the black one shows the
behavior predicted by the Gargiulo [18] formula for the
spherical roller bearing radial deflection.

3.3. Single Bearing Analysis: Elastic Deformation, Clearance,
and Load. The third set of calculations established how
SRB elastic deformation changes with load as a function
of diametral clearance 𝑐𝑑 Figure 8. Figure 7 shows elastic
deformation and radial loading force plotted for four different
values of clearance. The simulations demonstrate that elastic
deformation is not affected significantly by changes in 𝑐𝑑.
This conclusion is supported by the BearinX prediction and
the Gargiulo bearing radial deflection estimation. Although
elastic deformation seems to be insensitive to changes in
𝑐𝑑, diametral clearance does affect displacement between the
bearing races as expected.

3.4. Single Bearing Analysis: Osculation Number, Displace-
ment, and Load. Theeffect of osculation number on displace-
ment for different levels of radial loading was investigated
with the fourth set of calculations. Figure 9 shows a family
of displacement-to-load curves representing four different
values for osculation number. The prediction reveals that
osculation significantly affects bearing stiffness. An oscula-
tion number value of 𝐶 = 0.96 seems to correspond to the
reference solution obtained using the BearinX software.

3.5. Single Bearing Analysis: Number of Rollers, Displacement,
and Load. The fifth set of verification calculations looked at
how displacement changes with radial load and the number
of bearing rollers.The results are presented by Figure 10.They
indicate that SRB load carrying capacity increases with its
number of rolling elements. In this case, the BearinX software
predicts slightly higher displacement values.

3.6. Single Bearing Analysis: Angular Alignment of Side-by-
Side Roller Arrays. The final set of verification calculations
looked at bearing displacement with respect to time for
two separate arrangements of the caged side-by-side roller
arrays, when they are aligned and when they are staggered
as Figure 11(a) illustrates. On the left of the figure, the Type
A arrangement shows the twin roller arrays in alignment.
On the right, Type B shows an 11.25∘ angular offset between
them. For this pair of calculations, an external force of 𝐹𝑦 =

−2000N and an angular shaft velocity of 𝜔in = 100 rad/s
were applied.The outer bearing races were fixed, that is to say,
𝜔out = 0. Figure 11(b) plots the calculated 𝑦 displacements as
a function of time assuming pure rolling motion between the
bearing rollers and inner and outer raceways.

The Type A bearing shows a varying compliance (VC)
vibration at a frequency of 123.6Hz. This is equal to the
roller-pass-outer-ring frequency of the bearing. As expected,
bearing Type B vibrates at twice the roller-pass-outer-ring
frequency. In the Type A bearing, the displacement variation
due to the VC effect is 0.34%. In contrast, the displacement
variation is 0.05% for the Type B bearing. The 11.25∘ angular
shift between the roller arrays seems to reduce the VC effect
significantly.
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Figure 6: Contact forces of the rolling elements in case of different radial loads. The shaded surface represents the spherical surface of the
outer race.
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4. Dynamic Modeling a Rigid Rotor with Two
Spherical Roller Bearings

To demonstrate the application of the newly developed SRB
model in a typical real world analysis, a numerical simulation
was carried out of a full rotor-bearing system comprising
a rigid rotor supported by SRBs on either end of the rotor
axle. The rotor-bearing system, shown in Figure 12, can be
described with eight degrees-of-freedom where the four-
degree-of-freedom are defined for both bearings housing

Table 2: Dimensions of the rigid rotor.

Length L 500 mm
Distance from center of rotor to bearing𝐴 𝑑𝐴 225 mm
Distance from center of rotor to bearing 𝐵 𝑑𝐵 225 mm
End part diameter 𝑑2 110 mm
Middle part diameter 𝑑1 130 mm
Density 𝜌 7850 kg/m3

Mass of rotor 𝑚𝑅 49.138 kg
Transverse moments of inertia 𝐼𝑥 = 𝐼𝑦 0.9846 kgm2

Polar moment of inertia 𝐼𝑧 0.0993 kgm2

displacements in the 𝑥 and 𝑦 directions and the next
four-degree-of-freedom for rotor displacements that may be
selected in many ways. One possibility is to use the center
of mass translations in the 𝑥 and 𝑦 directions and the two
rotations about those axes. Another possibility, which was
selected for this work, is to use the translational coordinates
of two bearing locations as the system’s degree-of-freedom.

The bearing housings were connected to ground using
linear spring-dampers, whose stiffness and damping coeffi-
cients are 𝐾𝑠 and 𝐶𝑠, respectively. The angular velocity of the
rotor about the 𝑧-axis was assumed constant. Table 2 lists the
dimensions and mass properties for the modeled rotor-SRB
system.

Applying Newton’s second law of motion, the movement
of the rotor-SRB system can be expressed as follows:

Mq̈ (𝑡) + (C + ΩG) q̇ (𝑡) + Kq (𝑡) = F (𝑡) , (26)

where M is mass matrix, q is the displacement vector, C is
the damping matrix, Ω is rotation speed, G is the gyroscopic
matrix,K is the stiffnessmatrix, andF is a vector of forces. For
a rigid rotor, the effect of internal damping can be neglected,
so it should be equal to zero, that is, C = 0. Therefore,
the equation of motion of rigid rotor in center of mass
coordinates can be written as

M𝑅𝑐q̈𝑅𝑐 + ΩG𝑅𝑐q̇𝑅𝑐 = F𝑅𝑐, (27)

where q𝑅𝑐 = [𝑥 𝑦 𝛽𝑥 𝛽𝑦]
𝑇, showing the transversal and

tilting motions of the rotor in the 𝑥 and 𝑦 directions, and
subscripts 𝑅 and 𝑐, respectively, refer to the rotor and center
of mass of the rotor. Equation (28), which follows, presents
themassmatrixM𝑅𝑐, the gyroscopicmatrixG𝑅𝑐, and the force
vector F𝑅𝑐 in center of gravity coordinates:

M𝑅𝑐 =
[

[

[

[

𝑚𝑅 0 0 0

0 𝑚𝑅 0 0

0 0 𝐼𝑥 0

0 0 0 𝐼𝑦

]

]

]

]

,

G𝑅𝑐 =
[

[

[

[

0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

]

]

]

]

𝐼𝑧, F𝑅𝑐 =
[

[

[

[

[

𝐹𝑥

𝐹𝑦

Θ𝑥

Θ𝑦

]

]

]

]

]

.

(28)

In (28),𝑚𝑅 is the rotor mass, 𝐼𝑥 and 𝐼𝑦 are the transversal
moments of inertia about the 𝑥- and 𝑦-axes, respectively,
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Figure 11: Effect of roller position on bearing force.
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Figure 12: Rigid rotor supported with two spherical roller bearings.

and 𝐼𝑧 is the polar moment of inertia about the 𝑧-axis. 𝐹
and Θ denote force and moments on their axes. The rotor
is assumed to be axisymmetric, so 𝐼𝑥 = 𝐼𝑦. The equation of
motion of rigid rotor in bearing coordinates is as follows:

M𝑅𝑏q̈𝑅𝑏 + ΩG𝑅𝑏q̇𝑅𝑏 = F𝑅. (29)

Subscript 𝑏 refers to the bearings. In bearing coordinates,
q𝑅𝑏 = [𝑥𝐴 𝑦𝐴 𝑥𝐴 𝑦𝐵]

𝑇 showing the rotor displacements at
the SRBs in positions𝐴 and 𝐵 in the 𝑥 and 𝑦 directions.M𝑅𝑏
and G𝑅𝑏 can be calculated as

M𝑅𝑏 = T𝑇
2
M𝑅𝑐T2, G𝑅𝑏 = T𝑇

2
G𝑅𝑐T2, (30)

where T2 = T−𝑇
1
. Transformation matrix T1 can be defined as

follows:

T1 =
[

[

[

[

1 0 1 0

0 1 0 1

0 −𝑑𝐴 0 𝑑𝐵

−𝑑𝐴 0 𝑑𝐵 0

]

]

]

]

. (31)

In (29), F𝑅 includes the external forces (Fex), the bearing
forces (F𝑏), calculated from (21), the gravity forces for the
rigid rotor (F𝑔), and the unbalance forces as shown by (32)
and (33).

F𝑅 = Fex + F𝑏 + F𝑔 + Fub. (32)

In this particular case, the individual force components
can be written with these equation:

Fex =

[

[

[

[

0

−250

0

−250

]

]

]

]

, F𝑏 =
[

[

[

[

[

[

[

𝐹
𝐴

𝑥

𝐹
𝐴

𝑦

𝐹
𝐵

𝑥

𝐹
𝐵

𝑦

]

]

]

]

]

]

]

,
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Table 3: Unbalance mass parameters of the rotor and support
properties.

Unbalance mass 𝑚ub 0.005 kg
Eccentricity of the unbalance mass 𝑒ub 0.1 m
Unbalance distance to center of mass of rotor 𝑎ub 0.12 m
Phase angle of the unbalance mass 𝜃 0 rad

Table 4: The properties of the supporting structure.

Bearing mass 𝑚𝑠 11 kg
Support stiffness 𝐾𝑠 1 ⋅ 10

7 N/m
Support damper 𝐶𝑠 5 ⋅ 10

3 Ns/m

F𝑔 =

[

[

[

[

[

[

[

[

[

[

[

0

−

𝑚𝑟

2

𝑔

0

−

𝑚𝑟

2

𝑔

]

]

]

]

]

]

]

]

]

]

]

, Fub = 𝑚ub𝑒ubΩ
2
[

[

[

[

cos (Ω𝑡 + 𝜃) 𝐿ub
sin (Ω𝑡 + 𝜃) 𝐿ub
cos (Ω𝑡 + 𝜃) 𝑅ub
sin (Ω𝑡 + 𝜃) 𝑅ub

]

]

]

]

,

(33)

where 𝑚ub and 𝑒ub are the mass and eccentricity and 𝜃 is the
phase angle of the unbalanced mass, which is assumed zero.
𝐿ub and 𝑅ub are calculated as follows:

𝐿ub =

𝑑𝐵 − 𝑎ub
𝑑𝐵 + 𝑑𝐴

, 𝑅ub =

𝑑𝐴 + 𝑎ub
𝑑𝐵 + 𝑑𝐴

. (34)

The unbalance mass parameters used in the rigid rotor
model and the properties of the supporting structure are
listed in Table 3.

For the bearing housing, the equation of motion also can
be written as

M𝑆q̈𝑆 + C𝑆q̇𝑆 + K𝑆q𝑆 = 0, (35)

where subscript 𝑆 refers to the supports and q𝑆 =

[𝑥𝑆𝐴 𝑦𝑆𝐴 𝑥𝑆𝐵 𝑦𝑆𝐵]
𝑇, showing the displacements of the bear-

ings housing in the 𝑥 and 𝑦 directions. The mass matrix
M𝑆, the damper matrix C𝑆, and the stiffness matrix K𝑆 are
presented as follows:

M𝑆 = 𝑚𝑆 ⋅ I4, C𝑆 = 𝐶𝑆 ⋅ I4, K𝑆 = 𝐾𝑆 ⋅ I4, (36)

where I4 is a 4 × 4 identity matrix and the properties of the
supporting structure are listed in Table 4.

Finally, for the whole rotor-SRB system, the assembly
matrix according to (29) and (35) can be written as follows:

[

M𝑅𝑏 0

0 M𝑆
] [

q̈𝑅𝑏
q̈𝑆

] + [

ΩG𝑅𝑏 0

0 C𝑆
] [

q̇𝑅𝑏
q̇𝑆

]

+ [

0 0

0 K𝑆
] [

q𝑅𝑏
q𝑆

] = [

F𝑅
F𝑆

] .

(37)

Using MATLAB-2011b, the dynamics of the rigid rotor
and two SRBs were solved for rotation speed of 3000 rpm.

Thedifferential equations ofmotion (37) were solved using an
ode45 time integrator scheme. Figure 13 shows the predicted
horizontal and vertical translational rotor displacements at
the𝐴 and 𝐵 spherical roller bearing locations as a function of
time. After a brief initial transient vibration, the rotor settles
into steady-state harmonic vibration as a result of unbalanced
forces. The rotor axis deflects in an elliptical orbit. Because
of the positioning of the unbalanced load, the deflections for
SRB 𝐴 are greater than those for SRB 𝐵. Figure 14 illustrates
the orbital motion of the rotor axis.

Figures 13 and 14 show that total rotor displacement in
the 𝑦 direction is about 84 𝜇m on average. Much of this
displacement is due to elastic compression of the support
springs. Theory predicts a value for support compression of
about 60𝜇m. The additional 20 𝜇m displacement is bearing
clearance. Therefore, the elastic compression of the SRB
structure must be only a few micrometers in this case. How-
ever, the elliptical orbit of rotor axis displacement (Figure 14)
shows greater displacement in the 𝑥-axis direction than in
the 𝑦-axis direction, which implies differences in bearing
stiffness. This difference is the result of bearing clearance,
which is taken up in the 𝑦-axis as the 𝑦-direction radial load
acts on the bearing and not taken up in the 𝑥-axis direction.

5. Conclusion

This study introduces a comprehensive and computation-
ally efficient, three-degree-of-freedom, SRB model that was
developed to predict the transient dynamic behaviors of a
rotor-SRB system. The new SRB model can be used as an
interface element between a rotor and its supporting structure
in an analysis of rotor dynamics. The model is simple and
useable for either steady-state or transient analyses. It takes
into account the influences of roller angular position on
bearing contact forces.

To verify the new bearing model, a series of verifying
numerical calculations were carried out for a single SRB
subjected to a simple radial load. Physical parameters such
as contact force, bearing displacement, elastic deformation,
diametral clearance, osculation number, and the number and
arrangement of bearing rollers were examined to verify the
model. The verification calculations supported or revealed
the following.

(i) As theory predicts, roller contact forces change with
increasing load. Fewer rollers support lower applied
radial loads, and more rollers come into play as load
increases.

(ii) Bearing displacement increases with increasing load.
(iii) Elastic deformation is not affected significantly by

changes in 𝑐𝑑. Although elastic deformation seems to
be insensitive to changes in 𝑐𝑑, diametral clearance
does affect displacement between the bearing races.

(iv) Osculation significantly affects bearing stiffness, and
the force and displacement responses are heavily
dependent on bearing clearance and osculation num-
ber. These parameters must be considered for an
accurate assessment of system performance.
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Figure 13: Simulated horizontal and vertical displacements of the rotor.
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Figure 14: Rotor axis orbits at SRB 𝐴 and 𝐵 locations.

(v) SRB load carrying capacity increases with its number
of rolling elements.

(vi) Even an ideal spherical roller bearing experiences
varying compliance (VC) vibration with a frequency
equal to the roller-pass-outer-ring frequency of the
bearing. However, the VC effect can be reduced with
an angular offset of the side-by-side roller arrays. An
11.25∘ angular shift seems to reduce the VC effect sig-
nificantly.

To demonstrate the application of the newly developed
SRB model in a typical real world analysis, a numerical

simulationwas carried out of a full rotor-bearing system com-
prising a rigid rotor supported by SRBs on either end of the
rotor axle.The governing differential equations of motion for
this specific rigid rotor-SRB system were solved numerically.
The predicted bearing displacements are consistent with the
general theory of rotor dynamics.

After a brief initial transient vibration, the rotor settles
into steady-state harmonic vibration as a result of unbalanced
forces. The rotor axis deflects in an elliptical orbit. Because
of the positioning of the unbalanced load, the deflections for
SRB 𝐴 are greater than those for SRB 𝐵. Elastic compression
of the SRB structure seems to be only a few micrometers.
However, the elliptical orbit of rotor axis displacement shows
greater displacement in the𝑥-axis direction than in the𝑦-axis
direction. This difference is the result of bearing clearance,
which is taken up in the 𝑦-axis as the 𝑦-direction radial load
acts on the bearing and not taken up in the 𝑥-axis direction.

This work can be extended in the future to include con-
sideration of the SRBmisalignment specification. Distributed
and local defects, such as the waviness of the race surfaces or
local defects in the inner and outer races, can be included as
nonidealities. Furthermore, lubrication effects can be taken
into account, especially for high operating speeds or high
loads.

References

[1] T. A. Harris, Rolling Bearing Analysis, John Wiley & Sons, New
York, NY, USA, 2001.

[2] P. K. Goenka and J. F. Booker, “Spherical bearings: static and
dynamic analysis via the finite element method,” Journal of
Lubrication Technology, vol. 102, no. 3, pp. 308–319, 1980.

[3] R. J. Kleckner and J. Pirvics, “Spherical roller bearing analysis,”
Journal of Lubrication Technology, vol. 104, no. 1, pp. 99–108,
1982.



International Journal of Rotating Machinery 13

[4] S. Creju, I. Bercea, and N. Mitu, “A dynamic analysis of tapered
roller bearing under fully flooded conditions part 1: theoretical
formulation,”Wear, vol. 188, no. 1-2, pp. 1–10, 1995.

[5] S. Creju, I. Bercea, and N. Mitu, “A dynamic analysis of tapered
roller bearing under fully flooded conditions part 2: results,”
Wear, vol. 188, no. 1-2, pp. 11–18, 1995.
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