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Logistic systems with uncertain demand, travel time, and on-site processing time are studied here where sequential trip travel is
allowed. The relationship between three levels of decisions: facility location, demand allocation, and resource capacity (number
of service units), satisfying the response time requirement, is analysed. The problem is formulated as a stochastic mixed integer
program. A simulation-based hybrid heuristic is developed to solve the dynamic problem under different response time service
level. An initial solution is obtained from solving static location-allocation models, followed by iterative improvement of the three
levels of decisions by ejection, reinsertion procedure with memory of feasible and infeasible service regions. Results indicate that
a higher response time service level could be achieved by allocating a given resource under an appropriate decentralized policy.
Given a response time requirement, the general trend is that the minimum total capacity initially decreases with more facilities.
During this stage, variability in travel time has more impact on capacity than variability in demand arrivals. Thereafter, the total
capacity remains stable and then gradually increases. When service level requirement is high, the dynamic dispatch based on first-

come-first-serve rule requires smaller capacity than the one by nearest-neighbour rule.

1. Introduction

For many service systems in the public and private sector,
the demand sites are often divided into one or more service
regions (or zones) to reduce the problem size for service
delivery planning. Each service region is typically served by
a capacitated facility. A facility could be a physical produc-
tion/service centre or a collection/redistribution point. In
this work, the capacity refers to the number of service units
available for dispatch to serve random requests occurring
in a region represented in a network of nodes. Examples of
such service systems include express delivery, mobile repair
service, and emergency systems. This paper examines the
combination of a facility location-allocation problem and a
queuing problem on a network with response time service
level requirement. The planning model includes three types of
decisions: (1) number of facilities and locations, (2) allocation
of demand sites to each facility, and (3) capacity required at
each facility. Response time is measured by the time elapsed
between a service request and the arrival of the assigned

server. The service level requirement is imposed on the aver-
age response time and/or percentage of served requests with
response time within a predetermined limit.

The facility location-allocation problem (the first two
levels of decisions) involves finding a set of locations of
facilities and assigning demand sites to be served by one of
these facilities. It has applications in supply chain, logistics,
health service planning, and e-commerce for planning of web
services provider’s facilities and customer allocation [1]. A
review of facility location models is given by Arabani and
Farahani [2], Farahani and Hekmatfar [3], and a detailed
classification in Azarmand and Jamie [4].

Small examples can show that the relationship between
number of facilities and the minimum total capacity satisfy-
ing the response time requirement is not always a monotonic
decreasing function, like that between the number of facilities
and maximum travel distance. This is illustrated in two cases
of a small static problem with 4 nodes shown in Figures 1
and 2. Assume the travel time between every pair of nodes
is equal (15 min.) and each node generates two calls. Suppose



Number of facilities Minimum capacity

(service units)
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FIGURE 1: Case 1 (worst case) with all requests arriving at time 0.

the average response time per call should not exceed the travel
time between any two nodes. Figure 1 shows the case when
all calls arrive simultaneously at time 0 and the route for
each service unit with 1 or 2 facilities set up. The scenario
of setting up 4 facilities for 4 nodes is trivial. (The three
levels of decisions and detailed calculations are shown in
Appendix A.) The policy of centralization (1 facility) and
complete decentralization (4 facilities) both require larger
total capacity than an intermediate policy (2 facilities) that
benefits from sharing of capacity (service units) between
nodes belonging to the same facility and with appropriate
scheduling. Figure 2 shows the same problem but with calls
arriving more evenly during an hour at time 0 and the 30th
minute in an hour for each node. Again, an intermediate
policy (2 facilities) results in the minimum total capacity. If
the supplier is capacity-concerned, the intermediate policy
is the best. On comparing the total travelling time between
the two cases (Tables 6 and 7), Case 1, the more urgent
case when all requests are ready at the beginning at each
node, results in smaller or the same average travel time.
However, the total capacity required is larger than or the same

as Case 2 when requests are evenly spread out over time. In
both cases, the optimal solution occurs when an additional
facility would require a minimum total capacity greater than
current capacity in satisfying the response time requirements.
For larger problems with more nodes, it is uncertain at
what point the total capacity will (first) reach the minimum
level. Similar relationship of the three-level decisions with
uncertain parameters (arrival time, location, travel time, and
on-site processing time) will be explored.

Assumptions on arrival pattern, service time distribu-
tion, and travel distance (or time) estimation are crucial
to problem formulation and solution. Location-allocation
problem with queuing consideration often assumes Poisson
distributed demand and exponential service time as in
Aboolian et al. [5] and Syam [6]. When total cost is an
objective, distance between demand site and facility location
is often used to estimate the travelling cost. For rare events
like emergency requests, direct travel between facility and
demand node is usually assumed to enable quick response.
However in operations where servers are mobile units trav-
elling from one node to another to perform service on site,



Mathematical Problems in Engineering

Number of facilities ~ Minimum capacity

(service units)

4 4
2 2
1 3

Facility location ©
Routes of service units

1 Unitl: 1, — 1,

Unit 3 Unit 2
ni
3123, 3 ) 2 -2,
Unit4:4, — 4, 4 Unit 1:
21> 2,
21— 2,

4 — 4,

FIGURE 2: Case 2 (average case) with requests arriving at time 0 and the 30th minute in an hour.

the direct distance between demand site and facility would
likely overestimate the travelling distance (or time) per trip.
Alternative distance measure suggested by Turkensteen and
Klose [7] includes a mixed measure basically combining two
estimates: (1) the “headway length” estimates the expected
distance from demand locations to a central point (e.g.,
facility) in the area; (2) the “detour length” estimates distance
between demand points in the same delivery route. In this
work, the response distance limit is used in assigning nodes
to facilities (first two levels of decisions) initially. Instead
of assuming deterministic distance and fixed decisions, a
simulation-based hybrid heuristic (with simulated arrivals,
travel time, and on-site work time) is designed to estimate the
capacity (third level) and iteratively improve the three levels
of decisions.

A “facility” could be static or dynamic. Instead of phys-
ical buildings, facilities could be collection points, where
items picked up by service units are collected and returned
to a high-level sorting/distribution centre. Facilities could
also be cross-docking locations, where items from a high-
level distribution centre are sorted and distributed to lower

level demand sites by service units. Certain logistic systems
operate with such a multiechelon structure in which an
intermediate layer acts as a facility. Crainic et al. [8, 9]
addressed a two-echelon vehicle routing problem where the
first echelon represents shipment between a single depot
and capacitated satellite stations (or intermediate depots) for
consolidation and the second echelon for shipment between
satellite stations and customers. In the practice of some
courier service, a convenient parking spot could also serve
as an intermediate consolidation facility for sorting and
distributing mail and is less costly and more dynamic to
change location. The cross-docking operation with small
facility cost motivates this work and Type 2 experiments
(Section 5.2) are designed to model such delivery services.
The main theme of this work explores the case when
the entire territory is divided into separate service regions,
each served by a facility. The first two levels of decisions
correspond to the facility location and demand allocation
(serviceregion of facility). The third level decision determines
the capacity required for each facility. Within a service region
with one or more demand sites, capacity can be shared.



Between service regions, no sharing of capacity is consid-
ered in the planning stage to ensure self-sufficiency first in
managing demand within a region. Sharing of capacity across
service regions will be explored later by allowing a demand
site to be assigned to one or more facilities by use of a set-
covering model. The assumption of independence, adopted
by Brimberg et al. [10], is observed in operating systems
with simple management structure or when information
sharing between service regions is insufficient. Examples
could be found in military application, like field medical
units, and one-to-many distribution systems in Turkensteen
and Klose [7]. Determining the three levels of decisions helps
to answer related questions, such as the following: Given a
configuration of facility locations and assigned demand sites,
how is it to identify an appropriate response time service level
and what is the capacity requirement of a resource? With a
given capacity of a resource, how is it to allocate the units to
one or more service regions to achieve a higher response time
service level?

This paper is organized as follows. Related literature is
described in the next section. Section 3 presents the problem
statement. Section 4 introduces an initialization stage and
a simulation-based hybrid heuristic. Section 5 describes the
computational experiments and results. A discussion of the
impact of the model assumptions and methodology used
on the results is given in Section 6. A summary and final
conclusion is given in Section 7 with suggestions for future
research.

2. Related Literature

The three-level problem is a combination of well-known sin-
gle-stage problems: the p-median network location problem,
the travelling repairmen problem or minimum latency prob-
lem (MLP), and the bounded latency problem (BLP). Even
the static version of each such problem is NP-hard. Apart
from special cases, like the 1-median problem, the general
p-median network location problem which determines the
selection of p (uncapacitated) points in a graph and its
assigned demand nodes is NP-hard when the objective is
to minimize a weighted function of the assignment (Kariv
and Hakimi [11]). The k-travelling repairmen problem (k-
TRP) determines individual tours for k repairmen to serve
all customers with the objective of minimizing the total
customer waiting time (or mean arrival time at customers).
Even the I-TRP is NP-hard as shown by Sahni and Gonzalez
[12]. Another name for the 1-TRP is the minimum latency
problem (MLP) where latency of a customer is a measure
of time delay experienced (equivalent to response time here)
before his/her service starts. The bounded-latency problem
(BLP), a complementary version of MLP, is to find the
minimum number of repairmen (equivalent to minimum
capacity here) serving all customers such that no customer
will wait more than a latency bound (waiting time limit or
response time here). The static BLP is first introduced and
proved strongly NP-hard in Jothi and Raghavachari [13].
Hence the static version of the current three-level problem
is NP-hard, even if any stage has a given known solution.
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A hybrid heuristic combining optimization, simulation, and
search techniques is proposed here.

Related integrated problems include the location and
server allocation problem. Extension of median-type location
models often involves customers travelling to the closest
facility to receive service (e.g., patients to hospitals), where
travel distance is assumed deterministic. Aboolian et al.
[5] examined a model where the objective is to minimize
total system cost (comprising facility fixed cost, server cost,
customer travelling, and waiting cost) where the waiting
time (and cost) at each facility is approximated by the M/
M/k queuing model. An exact algorithm is designed to
minimize the server assignment cost for each selected set of
facility locations. Heuristics of descent approach and simu-
lated annealing are also proposed to solve larger problems.
Other related integrated problems include location-routing
problem (LRP) and travelling repairperson location problem.
Both consider the location of facilities and routing of servers
simultaneously. A common objective of LRP is to minimize
the total cost associated with depots, vehicles, and routes.
Only a few considered minimizing the total customer waiting
time as the objective, such as Averbakh and Berman [14]. The
travelling repairperson location problem has a similar objec-
tive of minimizing the average response time to an accepted
call. Jamil et al. [15] developed a heuristic for a single-
server problem in locating an optimal home base, assuming
Poisson call arrivals, first-come-first-served queue discipline,
deterministic travel times, constant on-scene service times,
and a finite capacity queue for waiting calls. The single server
can travel directly from one customer site to the next. When
no call is in the system, the server would return to the home
location and rest for a constant period of time.

Related studies of spatial allocation of resources can be
found in field services repair technicians of Hill et al. [16], Chu
and Lin [17], and Tang et al. [18]; emergency mobile repair
units of Geroliminis et al. [19]; and parcel pickup and delivery
service of Wong [20]. Poisson distribution is often assumed
to model rare events of failure or accident occurrence rates.
Methodologies employed include (state-dependent) queu-
ing model, hypercube queuing-optimization based model,
network flow algorithm, and metaheuristics. In Powell [21],
service engineers are assigned to jobs in geographical districts
represented as a square grid of cells with different given
demand. Each engineer is assigned to a cell as the home
base, implying that the number of engineers available (service
capacity) is simply the given number of cells. A deterministic
network flow model (integer variables) was proposed to
allocate jobs to engineers, such that in addition to jobs in
his own area, an engineer is also allowed to service some
requests in his adjacent areas. For a stochastic repair version,
Hill et al. [16] developed an approximate state-dependent
queuing model to analyze tradeoffs between field service
workforce size, territory size, and mean response time. With
the territory represented by a rectangular grid, the square-
root law proposed by Kolesar et al. [22] and a state-dependent
M/G/s queuing model were applied to approximate the
expected travel times and expected response times. The ana-
Iytical expected response time function developed is based
on system parameters (including the number of servers) in
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each of these stochastic problems. Hence, it can be used to
determine the minimum number of servers (service capacity)
satistying a given expected response time limit.

Another related application is in medical services. Large-
scale emergency response planning involves facility location,
assignment of households to facility, and resource allocation
of workers of different skills to be stationed at facility as
discussed by Lee et al. [23, 24]. For planning of emergency
medical systems, the hypercube queuing model by Larson
[25] and Larson and Odoni [26] was developed to calculate
the mean travel time to incidents, server workload, and
number of dispatches per server. The nearest-server dispatch-
ing policy is adopted; that is, the server dispatched to a
call is always the available unit closest to the call location.
Other assumptions of equilibrium state of system, Poisson
arrivals, and exponential service times in the M /M /s queuing
models were made. In ambulance dispatching problem when
several call requests are waiting, Lee [27] designed a centrality
policy to dispatch an idle ambulance to a call which is more
centrally located with respect to other calls. The average
and variation of response time outperformed the well-known
nearest-neighbor (NN) policy in the experiments. Beraldi
and Bruni [28] examined a location problem of emergency
service stations involving assignment of demand points and
allocation of vehicles to each station with the objective of
minimizing the expected cost. The uncertainty of demand is
modelled by a set of scenarios with different probabilities. As
an alternative to response time service level, their require-
ment is based on demand intensity. The decisions made must
ensure sufficient vehicles are allocated to a station to fulfil the
sum of required vehicles of demand points assigned to it with
a given reliability level under each scenario. A demand point
can be assigned to one or more stations under each scenario
while the location and capacity allocation decisions (number
of vehicles) remain invariant under different scenarios. The
maximum capacity allowed at each station is an input to be
provided by the system planner.

In small package pickup and delivery services, service
territory management is one of the key concerns as discussed
by Wong [20]. It refers to the territory that a single service
provider (service unit) will cover and may have to be adjusted
on a daily basis due to workload fluctuations in order to
balance workload among different service providers. In the
territory planning problem in Zhong et al. [29], the objective
is to minimize the total cost of completing the expected
workload expressed in terms of vehicle travel time and service
time. The main decision for this single-depot problem is
the allocation of service areas (“cells”) to form a “core area,”
where the number of core areas corresponds to the minimum
number of drivers used, subject to a chance constraint that
the assigned workload in the core area for a driver does
not exceed his/her maximum working duration with a given
probability level. The number of core areas is assumed fixed
and estimated by the minimum number of drivers (service
capacity) used from historical data. If response times can
be incorporated into planning, it can enable a business
to increase customer satisfaction and market share under
demand uncertainty. In emergency systems, it can reduce
casualties. Postal service is considered as a mode of service

delivery in emergency response planning as described in Lee
etal. [24]. Due to the mail carriers’ familiarity with the neigh-
bourhood, they can be used in mass dispensing medicine
responding to large-scale biological attack as discussed by
Wein [30] and Richter and Khan [31].

Various methods have been applied in solving network
design or location problems. These include integer program-
ming used in deciding locations, types of service stations,
allocation of regions to stations for emergency service system
by Coskun and Erol [32], tabu search for a multicommodity
railway network design problem by Pedersen et al. [33],
metaheuristic inspired by variable neighbourhood search for a
multiperiod, multicommodity transportation planning prob-
lem by Hoff et al. [34], genetic algorithms for a multiobjective
location problem by Li and Yeh [35] to maximize population
coverage, minimize total transportation costs, and minimize
proximity to roads, and descent and simulated annealing for
a location and server allocation problem by Aboolian et al.
[5]. This work aims at analyzing three levels of decisions:
facility location, demand allocation, and resource capacity
requirement. Hence, a hybrid approach combining some
of the above concepts will be explored (including integer
programming, neighbourhood search with a memory of
solutions to avoid recycling).

3. Problem Statement

The problem will be first described followed by a list of as-
sumptions and a mathematical formulation with notations.
The problem components consist of a set of demand sites
and candidate facility locations represented as 1 nodes in
a network. Facilities could be located at demand sites or as
separate nodes. Each facility is equipped with one or more
service units travelling to provide service to dynamic requests
originated from nodes in its service region. A response time
requirement is adopted to ensure the average response time of
served requests not to exceed a predetermined limit (R) and a
minimum percentage ( f) of requests served within the limit
(R). (If only one condition is required, the other condition
can be made redundant by choosing the right parameter
value.) The three levels of decisions are (i) determining the
number and locations of facilities, (ii) assigning each demand
site uniquely to a facility, and (iii) finding the capacity level
(number of service units) of each facility. The maximum
capacity (number of servers) is assumed unlimited here.
In express courier service (Lin et al. [36]), a fixed size of
fleet is usually available for servicing requests. However in
actual operations, additional backup contract couriers could
also be used. (The sum of the two types is considered
as the capacity decision here.) In situations when there
is a specified maximum capacity limit (like allocation of
vehicles to emergency stations in Beraldi and Bruni [28]), the
methodology proposed can be easily adapted. The objective
is to determine the minimum total capacity in the territory
for different number of facilities to fulfill the given response
time service level characterized by parameters R and f.
The curves relating number of facilities and minimum total
capacity can provide information for decision-makers in



logistic service planning. A list of assumptions made in this
research is given in the following.

(1) Each demand site generates dynamic random
requests. The mean number of requests at each site
and the coefficient of variation are known while the
actual number and arrival times are not known with
certainty.

(2) Each demand site is to be assigned to exactly one
facility.

(3) Each request demands one service unit from the
assigned facility.

(4) All requests are treated with the same priority.

(5) The number of facilities to set up is treated as
a parameter. (The smallest value is determined in
Section 4.1.1. The largest tested value depends on the
capacity results in the experiments in Section 5.3.)

(6) The capacity of a facility is expressed by the number
of service units to be made available.

(7) All service units begin at a facility with the work
duration same as the service session.

(8) The service requirement of a request comprises two
stochastic variables: travel time and on-site process-
ing time. The travel times depend on the sequential
locations on a server’s route which in turn depend on
the three levels of decisions (location, allocation, and
capacity). The on-site processing time depends on the
location and request. The mean time and coefficient
of variation of each component are known while the
actual values are unknown.

(9) The mean travel time (or distance) between every pair
of nodes is assumed symmetrical.

(10) When a service unit completes a service at a customer
site, no return to home location (facility) is necessary.
Waiting at the current location and direct travel to
the next assigned request (i.e., sequential trip travel)
is allowed.

The three-level problem with response time requirement
and all deterministic, uncertain parameters can be formu-
lated as a stochastic mixed integer program, representing a
stochastic bounded latency problem with location decisions.
To simplify presentation, it is assumed that a facility could be
located at any node i (= 1,...,m). (This can be easily adapted
to situations when only a subset of nodes can be considered.)
A network representation of the problem is presented before
the mathematical formulation. Let G = (V, A) be the directed
graph with node set V and arc set A. V' consists of an artificial
source node (s) and a sink node (e) indicating the start and
end of each route. Other nodes include location nodes and
composite nodes representing a demand site coupled with its
request number. Let L; be the number of requests occurring
at demand site i during the service session where both L;
and the actual request arrival time 7;; of the Ith request (I =
1,...,L;) are stochastic parameters that could be generated
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from the arrival distribution. While a composite node is de-
noted byil (I = 1,...,L;, i = 1,...,m), the simple location
node (i) can also be represented as a composite node, i0, by
assigning the request number / = 0. Hence, the arc set A
consists of three types of arcs: (s, jO) links the source node
(s) to a candidate facility node (j) referring to the setup
decision; (hk, il) represents two requests served successively
on a server’s route, with the kth request at node h followed by
the Ith request at node i; (il, e) indicates the end of a route on
completing a request at a demand node, say the /th request at
node i. By network construction, the last request served on
every route will be linked with the sink node (e).

Notations and Parameters. Consider the following:

T =(deterministic) session duration,

M = (deterministic) an upper limit on the maximum
capacity of a facility or a large positive value,

N = (deterministic) number of facilities to set up,

L; = (stochastic) number of requests from node i (=
1,...,m) during session [0, T,

L = (stochastic) sum of requests from all nodes during
session [0,T] =Y L;,

1y = (stochastic) arrival time of the /th request at node
i,l=1,2,...,L,i=1,...,m,

t;, = (stochastic) travel time from node i to node h,
i,h=1,...,m(assumet; = t;; =0),

Ve = (stochastic) on-site processing time of kth
requestatnode b,k =1,2,...,L,,h=1,...,m.

Decision Variables. Consider the following:

xj= (firstlevel decision) 1 if a facility is set up at node
j» 0 otherwise, j=1,...,m,

Yij = (second level decision) 1 if demand node i is
assigned to facility at node j, 0 otherwise,

iL,j=1,...,m,

Z = (third level decision) total capacity or number of
service units,

[, = flow (number of service units) on arc (u, v) € A,

T; = server arrival time at the /th request at node i,
I=1,2,...,L;;i =1,...,m (assume the start time at

a candidate facilityiis 7, = 0,i = 1,...,m),

8, = 1ifthe Ith request at node i can be served within
the response time limit R, 0 otherwise,/ = 1,2,...,L;,
i=1,...,m.

Mathematical Formulation (Stochastic Mixed Integer Pro-
gram). Consider

m
Minimize Z = Z fsjo 1)
=i
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subject to
m
Yx;=N (2)
j=1
xjsfs,jOSM'xj’ j=1...,m (3)
m
Zyijzl, i=1,...,m (4)
=1
Yij<xj bLj=Ll...,m (5)
Y fu=L l=1...,L,i=1..m ©)
(wil)eA
Z fu,il: Z fil,v’ l=0,...,Li, i=1,...,m (7)
(wil)eA (ilv)eA
th,ilSyhh’ = 1""’Li’ h,iz 1,...,m (8)
fho,ilSJ’ih’ l: 1""’Li’ h,i: 1,...,m (9)
Juit S 1+ Y=y k=1,...,Ly,
(10)
I=1,...,L, hij=1,...,m
Tkt S 1= Yni+ vy k=1...,Ly,
(11
I=1,...,L;, hi,j=1,....m
TiIZrl-l, l=1,...,Li,i=1,...,m (12)

T + (T + Y + ) fra —Tu <To (hkjil) e A (13)

1 m L;
72,2, (Tu—r) <R (14)
i=1]=1
Til_rilg6il'R+(l_6il)‘T,
(15)
l:l,...,Li, i:l)_'.,m
1&g
2202 fr (16)
i=1 =1
x,¥;=0,1, i=1...,m,
fur =01, (wv)e{Aluts},
17)

fjo 2 0 and integer, (s, jO) € A,

T,-IZO, 81-1:0,1, l:1,...,Li,i:1,...,m.

The objective in (1) determines the third level capacity
decision to enable the fulfillment of the 2-parameter response
time requirement (R and f3) from all requests. This capacity
value is represented by the total outflow (service units) from
the source node (s) to facilities in (1). The selection of N facil-
ities is expressed in (2). The facility setup decision is related
to the flow variable from the source node to the facility () in
constraint (3). Constraint (4) requires each facility/demand
site to be assigned to exactly one facility. The relationship

between the first two levels of decisions, demand assignment
and facility setup, is formulated in constraint (5). Every
request must be fulfilled exactly once by imposing a unit
inflow requirement on the composite demand node (il) in
constraint (6). The flow balance constraint for every node
(except the source and sink) is formulated in constraint
(7). Constraints (8)—(11) relate the flow variables with the
demand assignment decisions. Constraints (8) and (9) state
that if flow exists from a location node (h) to its first request,
then both nodes (h and i) are assigned to the facility at
the start location (k). Constraints (10) and (11) formulate
similar relationship between two successive requests on a
server’s route. Both request locations (h and i) must belong
to the same facility. They are either assigned together or not
assigned at all to a facility (j). Constraint (12) restricts the
start service time of a request not to be earlier than its release
(or arrival) time. Constraint (13) formulates the precedence
relationship between successive requests on a route as well
as the subtour elimination constraints. The average response
time requirement is enforced by constraint (14). Constraint
(15) relates the response time of an individual request with
its satisfaction variable (J;;) while constraint (16) requires a
minimum fraction fy of all requests to satisfy the response
time limit R. The last constraint (17) declares the type of deci-
sion variables and their restrictions. The above formulation is
a representation of the three-level decision problem. In the
dynamic environment, the stochastic parameter values are
only available as the event occurs. The heuristic in the next
section is designed to tackle the dynamic problem.

4. Simulation-Based Hybrid Heuristic

The general facility location-allocation problem is NP-hard
as shown by Kariv and Hakimi [11]. Under uncertainty in
demand calls, locations, and service times, a simulation-
based hybrid heuristic is proposed. The initialization stage
determines an initial solution for the three levels of decisions,
followed by iterative improvement involving optimization,
simulation, and ejection and reinsertion search techniques to
identify sets of improved feasible solutions.

4.1. Initialization. To obtain the initial location and allocation
decisions (first two levels), classical deterministic location-
allocation models are solved. For each resulting service region
(aselected facility with its assigned demand nodes), the initial
capacity value (third level decision) is obtained by solving a
deterministic bounded latency problem, simplified from the
stochastic formulation (Section 3).

4.1.1. Initial Location and Allocation. The proposed method
starts with finding the smallest number of facilities to set
up (denoted by Ng) which divides the territory into the
same number of separate service regions, each with one
facility. This is achieved by imposing the constraint requiring
the direct travel time (= distance/average vehicle speed v)
between a facility and each of its assigned demand sites to
be within the response time limit R. (Note that variation in
travel time and demand rates is not considered in the initial



solution.) First, define F;; as the set of facility nodes within
the direct travel time limit R from a demand site #; that
is, Fip = {j | dj,-/v < Rand j e {1,...,m}}, where
dj; is the direct travel distance from node j to node i
(= 1,...,m). The travel distances between pairs of nodes
can be found from geographical information systems and
the average vehicle speed v from government reports (e.g.,
Transport Department, Hong Kong [37]). Fz is obtained
for demand site i (= 1,...,m) by simply comparing direct
distance between node i and every other node. Sets Fjp, i =
1,...,m, serve as input to finding Ny by the following binary
integer program.

Decision Variables:

’fj = 1if a facility is set up at node j, 0 otherwise, j =
sy,

yij = 1if demand site i is allocated to facility at node

j € Fi, 0 otherwise, i = 1,...,m;
Formulation:
m
Minimize Z = Z X; (18)
=1
subject to
Zyijzl’ i=1,...,m (19)
jeFr
yl]_xJSO, jEFiR,izl,...,m (20)
xj,yij=0,l, jEFiR’ i=1,...,m. (21)

The objective function in (18) determines the smallest
number of facilities (Ng) required to reach out to each
demand site (i) within the response distance limit (= R - v).
This limit is fulfilled by the construction of set F;; defined
above. Equation (19) assigns each demand site uniquely to a
facility. Constraint (20) ensures that a demand site is assigned
to an established facility within the distance limit (R - ).
Constraint (21) declares the decision variables. Thereafter for
each input number of facilities, N (> Npy), the above step
can be skipped. The first two levels of decisions (location
and allocation) are initially determined from minimizing the
overall workload of the following p-median network location
model with p = N.

Formulation:
m
Minimize Z = Z Z AitiiVij (22)
i=1 jeF
subject to Z x;j=N (23)
j=L...m

and constraints (19), (20), and (21).

The workload in a service region depends on both
demand intensities and travel time. The objective of mini-
mizing the overall average (or expected) workload was also
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adopted in the territory planning problem of Zhong et al.
[29]. The total workload in (22) represents the total average
travel time taken to serve all requests directly from the facility
(j), where A; and f;; are the mean request arrival rate from a
demand site (i) and mean (direct) travel time between nodes
iand j, respectively. (Note that the average on-site processing
time,a constant for every unit request, is excluded from (22).)
Equation (23) partitions the territory into N (> Ny) service
regions. At this point, the first two levels of decisions, N,
{xj} and { y,-j}, have been initially obtained and the service
regions are treated as independent problems to provide input
to find the third level decision (capacity) and subsequently
for further improvement (Section 4.2). To obtain another
solution on the curve of number of facilities versus capacity,
N (= Np) is increased and the algorithm repeats from solving
the above model described by constraints (19)-(23).

4.1.2. Lower Bound on Capacity in Service Region. The re-
sponse time requirement is not considered here when esti-
mating a lower bound on capacity which serves as the initial
number of service units (third level decision) for a service
region with a facility node (j). This lower bound is obtained
by solving a deterministic bounded latency problem (BLP)
with side constraints (below). A BLP finds the minimum
number of service units required to serve all demand nodes
such that each node needs not wait more than a latency bound
(equivalent to response time limit). The session duration
(T) here defines the latency bound implying all requests to
be reached within T. Each demand node is visited at least
once by a service unit. Based on assumption (8), the on-site
processing time is only request-dependent, but not on the
three levels of decisions. The sum of average processing times
of all requests, denoted by p, will be treated outside the route
sequencing decisions as a side constraint (31), representing
the supply and demand of working time from all service
units. The problem is formulated by a mixed integer network
flow model, named as NFM, modified from the stochastic
formulation (Section 3). For each given service region (from
results in Section 4.1.1), the node set consists of the facility
node (), its assigned demand nodes, and two copies of the
facility node representing the source node s and a sink node
e. Hence, the travel time from s to each demand node (i)
in the region is f; = t; and f;,f; = 0. Suppose the total
number of facility and demand nodes in the region of j is m;
and let V. denote the set of such nodes. The arc set, denoted
by A, consists of three types of arcs related to nodes & and
iin V (s, h) links the source to a facility/demand node #;
(h,7) represents two distinct nodes, h and i (# h), served
successively on a server’s route; and (4, e) is the arc indicating
that i is the last visited node on a route. Then define a subset
Al c A by excluding all the end of route arcs (i, e) from A,
ieV;

Decision Variables. Consider the following:

Ssn> Jni> fie = flow (number of service units) on the
three types of arc (s, h), (h, i), (i,e) € A,

a,; = lifarc (h,i) € A’ is used, 0 otherwise,
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7; = serverarrival time at node i € V; (assume the start
time at the source node = 7, = 0).

Formulation of NFM. Consider

Minimize Z = Z fon

her (24)
subject to
her
Y fuzl i€V (26)
(hi)eA’
2 = 2 S i€V 7)
(hi)eA (i,v)eA
fri<m;-ay,  (hi)e A (28)
1+ (T+t,)ay -1, <T, (hi)eA (29)
0<7;<T, i€V (30)
Z-Tz Z thi fnit P 31)
(hi)eA’
Jomw Tnis fie 20, (s,h),(hi), (ie) € A,
a,; =0,1, (hi)e A (32)
7,20, i€ V]

The objective function in (24) determines the minimum
number of service units at the facility (source s) required
to complete all requests in a service session. The natural
lower and upper bounds of the required service units are
imposed on the outflow (service units) from the source (s)
to all nodes (h € V;) in constraint (25). The demand
constraint (26) requires at least one service unit to visit
demand nodei € V.. Flow balance constraints are formulated
in (27) for every node. Subtour elimination constraints are
formulated in (28)-(30), where T (session duration) is the
latency bound (or maximum waiting time in the session).
The sum of average on-site processing times (p) is treated
in constraint (31), representing the aggregate supply and
demand relationship on working time (sum of travelling time
and on-site processing time). The supply expression (left side
of (31)) helps to determine the objective value—lower bound
on capacity. Constraint (32) declares the types of decision
variables and their restrictions.

It should be noted that, after obtaining the initial solution
for the three-level decisions from this section, the direct
travel time limit (= R) between each selected facility and
its assigned demand sites needs not be enforced, due to
consideration of uncertainty in parameters. (If the facility
location is infeasible for its assigned demand sites, this will be
reflected in the simulation procedure of the hybrid heuristic
in which the response time requirement cannot be satisfied
with any increase in service capacity, i.e., no convergence.)

4.2. Iterative Improvement by Simulation and Ejection and Re-
insertion Procedure. Apart from the impact of the three levels
of decisions, the response time performance also depends on
a number of factors, such as geographical characteristics of
the service region, time-dependent real-time arrivals, traffic
condition, availability of real-time information, and server
dispatch logic. To model the uncertainties in call arrival
time, travel time, and on-site processing time caused by these
factors, a queuing network simulation model SIM (Figure 4)
is developed to simulate the operations in each service region.
In addition, two choices of simple dispatch algorithms are
avaijlable in SIM to model the dynamic situation. SIM is
used for adjusting the capacity (denoted by s;) in the service
region of the facility node (j) whenever there is under-
or overachievement of the response time requirement. To
improve the three levels of decisions simultaneously, an
ejection, reinsertion procedure is applied iteratively until a
termination condition is met. During this iterative proce-
dure, any new feasible/infeasible region evaluated by SIM
is recorded to save future simulation time if it reappears in
the search. The iterative improvement algorithm is presented
in the flowchart in Figure 3 followed by more details of
the important components. Notations are first classified and
defined as follows.

(i) Solutions: X, denotes the initial solution (results of
the initialization stage in Section 4.1) and X, the first
complete solution obtained by applying SIM to find
the feasible capacity for each service region in X,,. Let
X denote the incumbent solution and X, the new
solution generated. After every ejection step when
some nodes are ejected from regions, the remaining
solution of X is denoted by Xj. Throughout the
algorithm, the best found feasible solution is stored
in X* with its total capacity in Z*.

(ii) Feasible/infeasible service regions: Py represents the
set of feasible service region. In each feasible region,
the information recorded is facility node, assigned
demand nodes, capacity, server utilization, and aver-
age number of served requests per session. P; rep-
resents the set of infeasible service region found
during the algorithm. The information recorded for
each infeasible region consists only of the facility and
demand nodes.

(iii) Ejection pool: E represents the ejection pool holding
nodes ejected from an incumbent solution X. The
size of E is dynamic and denoted by p. p;. records
the size p when Z* was last improved. The dynamic
parameter p, . represents the maximum size of E.
When there is improvement in Z* in the present
size (p) during a given number of iterations, p, . is
increased from p, ., by a constant.

(iv) Iteration count: dynamic counters include iter, ;,,,
the number of iterations recorded without improve-
ment of Z*. The maximum value of iter,, iy, is
denoted by iter,,. (a constant), after which some
algorithm parameter values will be changed.
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FIGURE 3: Iterative improvement algorithm.

In the iterative improvement algorithm (Figure 3), the
initialization step includes reading input data of X, initial
ejection pool size p, iter,,,,, running time limit, and setting
initial values of variables: P, = ¢, P, = ¢, X* = ¢,
Z" = 00, Pax = initial p + (constant), and iter,, ;,, = 0.
The next step finds the first complete feasible solution (X, ) by
running an embedded subroutine SIM (Figure 4) in Eval_cap
for each region in the initial solution (X,) (Section 4.1). As the
capacity in X is a lower bound, if response time performance
(mean and/or percentage achievement) is underachieved, the
capacity is increased by one and simulation will repeat until
service level is satisfied. Record the current facility location,
demand sites, capacity decisions, together with server (or
resource) utilization, and average number of served requests
from the simulation in the memory array of feasible service
regions (Pp). The main concept of the iterative algorithm is
to search for more solutions by repeatedly selecting p nodes
from an incumbent solution (X) into the ejection pool E
and reinserting them back into the remaining solution (Xz)

exhaustively using a branch-and-bound procedure. An inner
loop of the flowchart applies this concept until there is no
improvement on the best total capacity Z* for a given number
of (iter,,,,) iterations. An outer loop changes the size (p) of
E and repeats the inner loop until the maximum size (p,,,)
is reached. The algorithm terminates under any of the three
conditions: the running time exceeds a given limit, the lower
bound of Z is attained as it reaches the number of facilities
(N), or the maximum size (p,,,,) of the ejection pool is
reached. Details of important components are summarized
as follows.

4.2.1. Arrays of Feasible and Infeasible Service Regions. To
save computational effort, whenever the capacity decision
of a service region (a facility and assigned demand nodes)
has been evaluated by SIM, it will be recorded. Array Pg
stores five types of information: the three-level decisions of
a feasible region (facility node, assigned demand nodes, and
capacity), server utilization (in percent), and average number
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FIGURE 4: Simulation model SIM with first-come-first-serve (FCFES) dispatch algorithm.

of served requests per session. Array P; only stores the set
of facility with its demand nodes not satisfying the response
time requirement (i.e., infeasible regions).

4.2.2. Eval_cap. This procedure evaluates the minimum feasi-
ble capacity (s) and utilization of a facility in its service region
given a starting capacity value (s = s,). If the region already
exists in Py, then the capacity is retrieved for calculations and
this subroutine ends. If a new service region is found, the
main concept here is to apply the specific dynamic dispatch
algorithm on the s service units to complete simulated
requests in the region. When the simulation results (in SIM)
indicate violation of any response time requirements, s is
increased by one and the simulation experiments repeat
until the requirements are first satisfied. Capacity s is then
returned. The new service region and s will be recorded into
Py, together with other relevant information described above.
Conversely, if s, units are sufficient to fulfil the response time
requirement, s (= s,) will be decreased by one and simulation
experiments repeat until the requirement is first violated.
Then s+1 will be returned as the capacity of this new region to
be stored in Py.. Note that Eval_cap may involve recomputing
the new facility node if the original facility node has been
ejected as one of the p nodes in the iterative improvement

algorithm. The testing of new facility node is in increasing
order of workload (= sum of {average travel time from the
tested facility to node x demand rate of node} over all nodes
in the region). If no capacity (s) can satisfy the response time
requirement, the nodes of this region will be stored in P; and
infinite capacity is returned.

4.2.3. Generate New Incumbent Solution. In the iterative
improvement procedure, a new solution X, ., is generated
to diversify the search. It is obtained by solving a set-
partitioning model on P with an additional lower bound
constraint Z > [r - Z*]. This imposes a gap between the
objective value Z (total capacity) of the new solution and
Z" by a random factor r, where 1 < r < 2. If the lower
bound, [r-Z" ], is too large that there is no solution, it will be
relaxed to half the value of Z* and the current lower bound
(e, (Z* + |r - Z"])/2). The set-partitioning model with
the revised lower bound constraint is rerun until a feasible
solution, denoted by X ,,, is obtained.

4.2.4. Select (p) Nodes from the Incumbent Solution into
Ejection Pool E. The rationale behind this is to allow changes
to an incumbent solution X by ejecting p nodes through two
procedures.
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(i) First, select a facility (j) randomly from X based
on the total utilization (= number of service units
x server utilization percentage) of facilities in a way
such that a facility with higher total utilization has
larger probability of being selected.

(ii) Randomly select a demand node in facility j based
on its proximity to other facility nodes in a way such
that a node being closer to other facility nodes is more
likely to be selected.

(iii) Repeat the above until p nodes are selected into E.

4.2.5. Perform Reinsertion. The p nodes in E are reinserted
in different ways back into service regions of the remaining
solution (X) by the branch-and-bound procedure.

(i) For every node (i) in E, find its distance to each facility
node in Xp. Sort the distances in increasing order to
create an ordered list, denoted by L, of size N. Repeat
for every other node in E. The joint list formed is L x
Lyx---xL,.

(ii) In each set of insertion, node i in E is inserted into
a facility in list L; (i = 1,..., p) until each of the p
nodes is assigned a facility. This is followed by capacity
evaluation of each affected facility (with its assigned
nodes) by applying procedure Eval_cap.

(iii) When a partial or complete solution (< N service
regions) is evaluated with sum of capacity > Z%,
this set of inferior reinsertion is discarded. Accord-
ingly when a feasible complete solution obtained has
smaller total capacity Z < Z*, Z* and X" are updated.

4.2.6. Size of Ejection Pool. Whenever the best objective value
(Z%) is improved, the current size (p) of E will be recorded
as Ppes and the ejection procedure is allowed to eject more
nodes from X by increasing the maximum size (p,,,,) of E
from p,., by a constant parameter.

4.2.7. SIM (Simulation Model). SIM is a discrete-event queu-
ing network simulation model with spatial requests arriving
dynamically in a given service region. The objective is to
find the minimum capacity in the given service region
satisfying the response time requirement. It is embedded
within Eval_cap. The advantage of using simulation approach
is the flexibility in testing different variable factors (and their
interactions) to generate a distribution of outputs under a
given response time requirement (R and fg). Unlike static
problems where all information is available at the beginning,
the data in the dynamic problem (e.g., request arrival time,
next available time of server) will only be known when
the event occurs. For a given service region, the variables
considered include the number of requests, their arrival
times, location, travel time and on-site processing time.
In addition, two simple dispatch algorithms are applied to
examine their impact on the heuristic performance. Figure 4
shows the logical design of SIM with the dispatch algorithm
first-come-first-serve (FCFS). An alternative based on the
nearest-neighbour rule (NN) is available for dispatching
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a server to a nearby request after its actual service completion.
The pseudocode of NN is shown in Algorithm 1.

The variation in each time-based variable (arrival time,
travel time, and on-site processing time) is modelled by
a normal distribution characterized by a given mean and
standard deviation. For travel time data, given that the mean
travel time (= distance/average vehicle speed v) from node i to
node j is t;; and coefficient of variation is cr, the travel time
will be simulated from a normal distribution with mean t;;
and standard deviation ¢ - t;;. To avoid extreme values being
simulated, a lower bound of one-half and an upper bound of
three times the mean t;; are imposed on the simulated travel
time. As requests are not necessarily failures or rare events
(often approximated by Poisson arrivals), the interarrival
time of request at each demand node (i) is approximated
by a normal distribution with mean arrival rate A; (or
mean interarrival time of 1/A;)and coefficient of variation
¢, of interarrival time (i.e., standard deviation is ¢, - 1/A;).
Requests generated from all demand nodes are then sorted in
ascending order of arrival times for dispatch. The service time
of a request comprises the sequence-dependent travel time
and on-site processing time. Similarly, the on-site processing
time will be simulated from a normal distribution with given
mean y and standard deviation ¢, -y, where ¢, is the coeflicient
of variation. SIM will be run for a predetermined number
of (n;) replications over which the performance statistics
of average travel time, average response time, percentage
achievement of response time limit (R), server utilization
(percentage), and average number of served requests are
collected. Adjustment of capacity for a service region in
the simulation model is necessary when the response time
requirement is under- or overachieved. Typically the initial
capacity in each region (from objective in (24)) is likely a
lower bound. The adjustment is set upwards in incremental
step of 1 service unit. When evaluating the capacity of
the remaining solution (Xjg) after ejection of nodes, the
adjustment is downwards in steps of —1 service unit even if
the input capacity is feasible. The adjusted capacity will act as
input to SIM for repeating another set of n; replications until
the response time requirement is first achieved. For upward
adjustment, the first feasible capacity is then returned. As
for downward adjustment of capacity, the stopping condition
is the first occurrence of underachievement of the response
time requirement. Hence, one additional unit to the current
capacity will be returned as the minimum capacity required.
Note that a given service region could be infeasible. This is
realized when the capacity does not converge for the last n,
trials (where each trial consists of n; replications). In Type I
experiments assuming unit request per node (Section 5.1), the
value of n, is set to be the number of nodes in the region as
it takes at most n, trials to adjust the capacity to its upper (or
lower) limit. Otherwise, n, can be an input parameter. When
no convergence occurs, the infeasible facility and demand
nodes will be stored in P; and infinite capacity is returned
from SIM.

4.2.8. Dispatch Algorithms (Dynamic). The motivation be-
hind the choice of the two dispatch algorithms is to mimic the
dispatch logic of some practical systems as much as possible
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Repeat
If e is an arrival request Then

Endif
Else {e is an actual service completion}

Else reset s, — ¢
Endif

Endif

Ifs, # ¢ and t < session end time Then
Assign request to server s,

Endif
Sort L in ascending order of time

Until a termination condition™ holds.

For each demand node in the given region: Generate request arrival times
Sort requests from all nodes in ascending order of time into a list L
Initialize: Let current time 7 = 0; e = first event in list L with event time >7

If all servers are busy Then s, < ¢ (no server assigned);
Else find the estimated earliest arrival time, t, among all available servers.
Let s, be the server which can arrive the earliest (estimated) at e

Let s, = server available after completing e

If there is any unassigned request(s) on or before current time 7 Then
Find the unassigned request nearest to the current location of s,
Estimate the arrival time, t, of s, to the request location

Generate the actual travel time and on-site processing time to determine the actual completion time ¢,
Store t, and related information (request, location, server s,) in list L
Else retain e and related information (location, server s,) in list L for later assignment

Advance T — the first event time (>7) in list L. Let e denote the event

*3 termination conditions: (i) T exceeds the session end time (ii) all requests are assigned or
(iii) all requests have arrived and 7 reaches the completion time of the last event in list L

ALGoriTHM I: Pseudocode of nearest-neighbour (NN) dispatch algorithm.

(without involving too much computational time as simula-
tion is adopted). Examples include the online taxi automation
system mentioned by Mandle et al. [38] which primarily
focused on reaching individual requests in the shortest
possible time to enhance customer satisfaction. Requests are
prioritized in a first-come-first-serve manner to be assigned
to the nearest taxi. In emergency ambulance dispatch, a com-
mon rule is to send the closest unit to the request site. Various
researchers studied other dispatch strategies. Bandara et al.
[39] incorporated call urgency into their proposed dispatch
heuristic which assigns the nearest available ambulance for
Priority 1 calls and the less busy ambulance for Priority 2 calls.
Results from simulation experiments reported an increase in
patient survivability, decreased average response time, and
higher percentage of Priority 1 calls served within 10 minutes.
As requests have equal priority here (assumption (4)), they
would all be treated like Priority 1 calls. The main difference
between the two dispatch algorithms is customer-based (in
FCES) or server-based (in NN) and the use of estimated or
actual service completion time information in dispatching
servers to requests. In FCFS (Figure 4), requests prioritized
by their arrival order are assigned to the server with the
estimated earliest arrival time. This is calculated by the sum
of the estimated earliest completion time (of already assigned
requests) of the server and the mean travel time from his
last request location to the request being considered. The
completion time estimates are updated whenever an actual

completion occurs to facilitate future assignments. On the
other hand, the request arrival order may not be respected in
NN (Algorithm 1). Unassigned requests will be stored in a list
(L) and whenever an actual service is completed, the server
will be dispatched to the nearest unassigned request. Both
dispatch methods will use the mean travel time (£;;) between
the two locations in estimating the arrival time of a unit at
the request location. When the estimated earliest arrival time
exceeds the session end time, the request will not be accepted
temporarily and will remain in the list for future assignment
to possibly another nearby server. Otherwise, the request will
remain unserved in the session.

4.3. Impact of Sharing Capacity. Sharing capacity will allow
a demand node to be served by one or more facilities. To
explore possible advantage, a classical set-covering model
(Appendix B) with an additional constraint to select N
facilities (assumption (5) in Section 3) is applied to the final
pool of feasible regions (Py) at the end of the hybrid heuristic.
The basic (binary) decisions {x;, j € Py} involve selecting
N service regions in Pp with minimum total capacity (or
other objective criteria) such that each demand node in the
territory is covered by at least one facility. (If an alternative set
of N service regions (or facilities) is to be generated, one can
simply add one more constraint ) ;. x; < N -1 to forbid the
recent set () to be reselected.)

JEQ
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5. Computational Experiments and Results

Two types of experiments are performed in testing the
simulation-based hybrid heuristic. The first type simulates
disaster outbreak with multiple requests occurring in a short
time interval. Twelve data sets of size from 29 to 262 cities
are selected from the Travelling Salesman Problem library
[40], assuming unit request per node. Certain variables
(interarrival time distribution, travel time variability, and
dispatch algorithm) are tested with two alternatives each
to examine their impact on the total capacity. The second
type of experiments simulates the express delivery service
environment where arrivals span over a longer time period
and nodes in the service network have different demand
intensities, like clustered customer nodes in urban cities.

5.1. Type 1 Experiments: Requests Arriving Early in a Short
Interval. The data sets from the Travelling Salesman Problem
(TSP) [40] provide the distances in the network. Each node
here is assumed to have one unit request. In an extreme
case, all requests are released at the beginning of the service
session. With no variability in travel time and on-site process-
ing time, the problem would be deterministic. In reality, the
request calls arrive dynamically over a short interval; travel
times and on-site processing times are uncertain. Hence,
results from a deterministic problem are used as a reference
for comparison with the hybrid heuristic solving the dynamic
problem. The deterministic problem of finding the minimum
number of servers such that each request needs not wait more
than a time limit (latency bound) has been introduced as
the bounded latency problem (BLP) for a given facility and
its demand nodes (Section 2: Jothi and Raghavachari [13]).
When facility decisions are unknown, the problem is named
here as the BLP with location decisions (Appendix C)—
a simplified deterministic version of the stochastic mixed
integer program (Section 3) with unit request per node and all
requests available at time 0. The computational time required
for solving this NP-hard problem is significant for problems
of medium to large size. Hence, it will be allowed more
running time than the hybrid heuristic. After observing the
performance of both methods in preliminary experiments,
the maximum time limit allowed for the mixed integer
program (Appendix C) would be 1,800 CPU seconds and half
of that for the hybrid heuristic, that is, 900 CPU seconds.
Beyond these limits, the objective function shows little
improvement. Model NEM, providing the initial capacity for
each region (Section 4.1.2), is given only 30 CPU seconds,
while allowing more time (900 — 30 = 870 CPU seconds) for
the iterative improvement procedure in the hybrid heuristic.

Type 1 experiments simulated the dynamic problem in
which the hybrid heuristic is applied with two dispatch
algorithms separately. Due to incomplete information, results
from a dynamic problem would not be better than an optimal
solution of an equivalent deterministic problem. Neverthe-
less, it is difficult to solve an NP-hard problem exactly
especially for large problems. In general, it is observed that
the (optimal) result of total capacity from the mixed integer
program would provide an upper bound to the heuristic
value, unless there is large variability in some parameters.
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(When there are few facilities and variability in travel time
is moderately high (¢ = 1), simulation results show that, even
with a large capacity, a high response time requirement (e.g.,
fr=95%) could not be fulfilled (Figure 7, when N = 4). This
insight will also be illustrated in the small static example in
Figures 1 and 2 by comparing the impact on total capacity in
varying travel time versus demand intensity.) For simplicity,
the on-site processing time is assumed to be zero here. To
model the dynamic situation, the following three factors and
two alternatives of each are tested in the hybrid heuristic,
giving a total of 8 versions for each TSP data set for each value
of N (Tables 1, 2, 3, and 4):

(i) interarrival time distribution: uniform distribution;
normal distribution with ¢, = 0.5,

(ii) variability in travel time: ¢; = 0; normal distribution
with ¢ = 0.5 (¢ = 0 implies constant average travel
time between nodes),

(iil) dynamic algorithms explained earlier (Section 4.2):
FCFS and NN.

5.L1. Heuristic Parameters. The choice of parameter values
and its variability affect the rate of change of capacity with
the number of facilities. When the response time requirement
is tight (small R and/or large f3), larger capacity saving is
observed when facilities are added to its minimum feasible
value (Figures 5-7), especially when travel time has large
variability. To select the value of R, the distances are converted
to time by assuming a vehicle speed of v = 100 km/hour. As
each request should not wait more than R, the value of R is
chosen as a calculated factor, & - min;{max{t;;}}, from the
data set, where « is a constant taken from [0.6,1] and ti; is
the average travel time from node i to node j. The factor
« reflects the closeness of demand nodes from one or more
facilities within the time limit R. To simulate calls arriving
early in a short interval in the dynamic environment, the call
arrival times are generated from the normal distribution with
mean at R/2 and the largest arrival time bounded by R. The
session duration is set to be T = 2R to allow late-arriving
calls to be able to satisfy the response time requirement.
Results are compared with the alternative uniform arrival
distribution with simulated requests arriving over the same
interval [0, R] and with the same T. To ensure that almost
all calls would be served for comparison with results from
the mixed integer program (Appendix C), a high percentage
fulfillment (f) of 95% is chosen, as well as for the percentage
of calls required to be served within the session. In both
Type I and II experiments, the number of replications in
SIM is chosen to be n; = 25 and initial ejection pool size
p = 2. When p, .. is updated (from p,., + constant), the

incremental constant = 3 and iter,, =7

5.2. Type 2 Experiments: Requests Span over Time with Higher
Variability in Data. The operating environment of express
delivery services allowing multiple requests per demand
node is simulated here. Customer-centred response time
performance will help increase revenue. As the problem
size is large, only the hybrid heuristic with different input
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TaBLE 1: Total capacity of mixed integer program (MIP) and simulation-based heuristic on TSP data sets: bays29, att48, and eil51.

Total capacity bays29 (29 nodes, R = 153) att48 (48 nodes, R = 840) eil51 (51 nodes, R = 30)
Number of facilities (N) 1 2 3 5 8 1 3 5 7 9 1 3 5 7 9
MIP 12" 9 8 8 * 12 9 10 10 9" 13 12 12 12 1
Heuristic: arrival(c,), ¢, dispatch
Uniform(-), 0, FCFS 9 7 8 10 8 9 9 1 10 10 9 9
Normal(0.5), 0, FCFS 10 9 8 12 10 10 9 12 1 1 1 1
Uniform(-), 0, NN 12 7 8 15 9 13 10 9 9 9
Normal(0.5), 0, NN 14 1 10 9 8 17 10 9 14 12 1 10 10
Uniform(-), 0.5, FCFS # 10 10 8 9 # 10 10 10 10 15 1 11 10 11
Normal(0.5), 0.5, FCFS # 1 10 10 10 # 1 1 1 11 17 13 13 13 12
Uniform(-), 0.5, NN # 13 1 9 8 # 10 9 9 9 26 12 1 10 10
Normal(0.5), 0.5, NN # 16 13 10 9 # 1 10 10 10 31 14 12 11 11

. # . .
*Optimal; “no convergence in capacity.

TaBLE 2: Total capacity of mixed integer program (MIP) and simulation-based heuristic on TSP data sets: berlin52, pr76, and gr120.

Total capacity berlin52 (52 nodes, R = 570) pr76 (76 nodes, R = 7116) gr120 (120 nodes, R = 240.66)
Number of facilities (N) 1 3 5 9 1 1 3 5 8§ 10 1 12 2 6 10 14 18 22 23
MIP n 1 110 u 6 17 16 17 16 13 16 — — 39 29 29 27 35
Heuristic: arrival(c,), ¢, dispatch
Uniform(-), 0, FCFS 10 9 9 9 1 2 12 n 1 1n 1mw 12 22 21 21 20 18 22 23
Normal(0.5), 0, FCFS m 10 10 10 1 3 13 13 13 12 12 13 25 22 22 23 23 23 24
Uniform(-), 0, NN 12 8 8 9 11 7 11 1 100 1 1 12 24 19 19 20 19 22 23
Normal(0.5), 0, NN 5 10 9 10 1 Y 14 11 11 1 1u 12 30 22 22 21 21 22 23
Uniform(-), 0.5, FCES 15 10 11 10 1 4 14 13 12 12 12 13 29 23 24 24 22 22 24
Normal(0.5), 0.5, FCFS 6 11 11 10 12 27 15 14 14 14 13 15 33 26 25 28 26 26 28
Uniform(-), 0.5, NN 28 10 9 10 11 36 14 13 12 1 11 12 62 22 22 20 22 22 24
Normal(0.5), 0.5, NN 33 11 10 10 1 48 15 14 12 12 1 12 57 24 25 24 23 23 23

*Optimal; —: no solution.

TaBLE 3: Total capacity of mixed integer program (MIP) and simulation-based heuristic on TSP data sets: ch130, kroA150, and sil75.

Total capacity

ch130 (130 nodes, R = 288)

kroA150 (150 nodes, R = 1326)

sill75 (175 nodes, R = 182)

Number of facilities (N) 2 7 10 13 16 19 1 4 8 12 17 20 7 10 15 20 25 30

MIP — 106 35 40 42 42 54 — 44 51 5 50 — — — — — 115

Heuristic: arrival(c,), ¢y, dispatch
Uniform(-), 0, FCES v 17 17 17 18 19 23 18 18 17 17 20 59 56 55 54 54 53
Normal(0.5), 0, FCFS 20 20 20 20 19 21 25 20 19 21 19 21 68 67 66 65 65 67
Uniform(-), 0, NN 20 16 15 15 16 19 2 17 16 16 17 20 66 62 58 58 58 56
Normal(0.5), 0, NN 2 17 17 16 16 19 27 18 16 16 17 20 77 74 71 72 70 68
Uniform(-), 0.5, FCFS 23 20 19 20 19 20 43 21 20 21 18 20 109 8 8 76 76 74
Normal(0.5), 0.5, FCFS 24 22 23 24 20 22 51 23 21 23 20 22 123 103 92 88 8 86
Uniform(-), 0.5, NN 26 18 17 16 16 19 8 17 17 18 20 12 9 78 72 70 67
Normal(0.5), 0.5, NN 27 19 18 18 17 20 9 17 19 17 21 125 105 91 8 82 83

. # . .
—: no solution; "no convergence in capacity.

factors will be run for comparative analysis with no absolute
comparison from the mixed integer program (Appendix C).
The data and parameters came from three sources of delivery

service.

(i) The first source provides locations and demand data
in the network from real-life data of a local delivery
service with customers distributed in 89 housing es-
tates (demand sites) and 5 candidate depots on Hong
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TABLE 4: Total capacity of mixed integer program (MIP) and simulation-based heuristic on TSP data sets: d198, tsp225, and gil262.

Total capacity d198 (198 nodes, R = 983)

tsp225 (225 nodes, R = 113)

gil262 (262 nodes, R = 49)
5 10 15 20 30 4 10 20 25 30 35 40

Number of facilities (N) 4 5 6 10 2

MIP — 56 — 52 —

Heuristic: arrival(c,), ¢, dispatch
Uniform(-), 0, FCFS 2 12 12 14 34
Normal(0.5), 0, FCFS 3 14 15 16 37
Uniform(-), 0, NN 9 9 10 11 40
Normal(0.5), 0, NN 10 9 1 12 46
Uniform(-), 0.5, FCFS 4 14 13 15 50
Normal(0.5), 0.5, FCFS 5 14 14 16 56
Uniform(-), 0.5, NN 9 10 10 12
Normal(0.5), 0.5, NN 10 10 10 12

- — 8 98 88 - — — — 9 108 124

29 27 31 29 30 42 40 37 39 38 40 41
32 31 31 34 33 47 45 43 43 46 46 47
27 25 25 24 30 47 39 36 35 39 37 40
29 27 29 27 30 55 43 38 40 39 39 41
34 31 31 32 32 54 46 45 43 43 43 45
37 3 3 37 3 60 50 50 50 51 49 51
31 26 30 25 30 8 43 37 39 38 37 4
35 27 31 29 32 98 45 42 42 40 43 44

s # . .
—: no solution; "no convergence in capacity.

Kong island resulting in a total of 94 nodes [41].
The geographical characteristics consist of densely
populated clustered districts. Pairwise travel distances
were estimated by a geographical information system.
An average vehicle speed of 20.1 km/hour provided
by Transport Department, Hong Kong [37], helps
to convert distances into travel times. The average
daily demand volume is 21,090 from all demand sites
(including both residential and business customers).
Data set from this source are made available on
internet [42], with mean daily volume of node i (=
1,...,94) denoted by A.

(ii) The second source, an international express delivery
company described in Lin [43], helps to approximate
the express demand. It has 550 customer locations
in Hong Kong while the geographical location is not
disclosed. To approximate the express demand in
mail delivery (first source), an adjustment factor of
550/21090 is adopted. Assuming that a total of 550
express requests occur on an average day of 10 work
hours, demand node i has an estimated mean request
arrival rate (per minute) of A; = A; x 550/21090/(10
work hours per day x 60 minutes). Accordingly,
the interarrival time distribution has mean 1/A; and
standard deviation ¢,-1/A,. A minimum time gap of10
seconds is imposed between the arrival of successive
requests and a minimum of 5 minutes on the travel
time to the next request.

(iii) The third source, a Taiwan express delivery company
in Lin et al. [36] together with the second source
in Hong Kong [43], provides certain operational
information in the express delivery service, including
the average on-site processing time (y) of 5 minutes.
A minimum of 2 minutes and maximum of 30 min-
utes are assumed here. A workday actually consists
of two half-day sessions: 3.5 hours and 6.5 hours,
respectively, with a lunch break of 1.5 hours. The
experiments here will focus on the longer afternoon

session (6.5 hours), assuming independent work ses-
sions. Unaccepted calls arriving near the end of the
session will be assumed lost.

The scenario with a moderate variability in time-based
parameters is tested by setting ¢, = ¢ = ¢ = 1
(with upper and lower bounds imposed on simulated values
mentioned above). Response time service level is tested from
low to high requirement. The mean response time limit R
assumes some convenient values of 90, 60, and 30 minutes.
Two sets of percentage requirements are adopted for each R:
fr =50% and 90%, respectively. To compare fairly between
the two dynamic dispatch algorithms (FCFS and NN) and
ensure that both serve similar number of requests, the average
percentage of served requests recorded in FCES is enforced
as a lower bound in NN when requirement is low (fz =
50%). When requirement is high (fz = 90%), the average
percentage of served requests must be at least 95% in both
dispatch algorithms. The runtime of different components in
the hybrid heuristic is chosen after initial testing. As in Type
1 experiments, the hybrid heuristic has a running time limit
of 900 CPU seconds in which 30 CPU seconds are allowed
in Model NFM for finding the initial capacity for each region
(Section 4.1.2).

In both Type 1and 2 experiments, the number of facilities
(N) tested starts from the smallest feasible value, assuming
that the mean direct travel time between a facility and each
demand node is within R (Section 4.1.1). The subsequent N
values are chosen when the total capacity results can reflect
significant change in the curve. The largest N is chosen
when the heuristic capacity reaches the lower bound (N) or
shows an increasing trend (i.e., worse). All algorithms are
coded in Visual Basic.NET 2005 version and the experiments
are performed on a Pentium 4, 2.5GHz processor. IBM
ILOG CPLEX 12.5 is used to solve the small static 4-node
example in Figures 1 and 2 (mathematical formulation in
Section 3), optimization subproblems in the hybrid heuristic,
and the deterministic problem (Appendix C) for comparison
of results in Type 1 experiments.
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FIGURE 5: Relationship between total capacity and number of facilities using FCFS dispatch algorithm under moderate variability (¢, = ¢; =
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FIGURE 6: Relationship between total capacity and number of facilities using NN dispatch algorithm under moderate variability (¢, = ¢, =

¢, = 1).

5.3. Test Results. Tables 1-4 show the results for Type 1
experiments based on the 12 TSP data sets ranging from
26 to 262 nodes. The mixed integer program (Appendix C)
can only reach optimality in 4 instances with fewer than 100
customer nodes (Table 1: data set bays29 with N = 1, 8; att48
with N = 9; and Table 2: berlin52 with N = 11).

In the first five data sets (Tables 1 and 2) with fewer than
100 nodes, the mixed integer program and hybrid heuristic
produce comparable values in total capacity. When variability
in parameters is small (uniform arrival distribution or ¢, =
0), the heuristic produces lower capacity value than the
mixed integer program, apart from instances when number

of facilities (N) is at its smallest value (i.e., N = 1 or 2in Tables
land 2). When N is small and travel time variability measure
cr = 0.5, no convergence in capacity or very large value
was experienced in several data sets (e.g., Table 1: bays29 and
att48), implying impossible achievement of the response time
requirement. The decrease in total capacity is more significant
when N increases from the smallest feasible value to the next
(e.g., Table 1: data set bays29 when N = 1 — 2; att48 when
N =1 — 3). When problem size increases beyond 100 nodes
(Tables 2-4), it becomes increasingly difficult for the mixed
integer program to obtain a feasible or improved solution. The
relationship of the capacity versus N is irregular in the MIP
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FIGURE 7: High service level curves (R = 30 min., fz = 95%) for the FCFS and NN dispatch algorithms under moderate variability (¢, = ¢, =

¢, = 1).

results. For larger problems of over 180 nodes (Table 4), only
feasible solutions can be obtained from the mixed integer
program when N is large.

Some insights are drawn from the experimental results
(Tables 1-4) of the hybrid heuristic.

(i) Initially, there is a decreasing trend of total capacity
with decentralization of facilities as observed for
each scenario tested on a data set. Thereafter, the
total capacity levels with only small variation due to
randomness. Beyond a certain limit, capacity would
gradually increase as each additional facility will
require a minimum amount of resource (e. g., 1 service
unit).

(ii) The higher the variability of parameters (interar-
rival time, travel time), the larger the total capacity
required. (Compare capacity results of scenario Uni-
form arrival rate versus Normal (¢, = 0.5) while the
other two factors remain the same. Similarly, compare
scenario ¢y = 0 versus ¢p = 0.5.)

(iii) The variability in travel time increases capacity more
than variability in interarrival time, particularly when
only a few facilities are set up. (For small N values,
compare change in capacity between two pairs of
scenario: (1) scenario Uniform arrival rate to Normal
(¢, = 0.5), both with ¢y = 0; and (2) ¢; = 0 to ¢ =
0.5, both with Uniform arrival rate. For instance, in
Table 4, data set gil262, at the smallest N = 4:

Based on FCFS dispatch, (1) 47 — 42 = 5; and
(2) 54-42 = 12. Hence, capacity changein (1) <
(2).

Based on NN dispatch, (1) 55 — 47 = 8; and
(2) 89 — 47 = 42. Hence, capacity change in
(1) < (2).

In both types of dispatch, this insight is valid. The
same is observed for other data sets when N is small.)

Another illustration is on the small static 4-node
example in Figures 1 and 2. We explore the change
in capacity if the actual demand is doubled, versus
the actual travel time takes twice as long, while
other parameters remain unchanged. The scenario
of duplicating the demand (number of requests per
node increases from 2 to 4) versus doubling the
travel time between every two nodes (from 15 to
30 minutes) is compared. The optimal (minimum)
capacity satisfying the same response time require-
ment (average response time < R = 15 minutes) is
shown in Table 5. (This is obtained by solving the
formulation in Section 3, assuming parameter values
are deterministic.) The same insight is observed for
small N = 1 or 2in Case 1, and N = 1 in Case 2.

The simulation-based hybrid heuristic can obtain feasible
capacity values much easier (with half the total running
time of the mixed integer program) and allows variation
in different parameters in examining their impact. The
capacity values obtained are more stable and lower than the
deterministic model as problem size grows.

The Type 2 experiments are run under the scenario of
moderate variability in time-based data (¢, = ¢p = ¢, = 1).
The relationship curves of total capacity versus N at different
values of R and f are plotted for the two dynamic dispatch
algorithms FCFS (Figure 5) and NN (Figure 6), respectively.
These results can provide information to the following.

(i) Identify appropriate response time service level and
allocate demand sites into service regions, given
the number of facilities and total capacity available.
Conversely, capacity can be estimated for a defined
service region under a given response time service
level.

(ii) Improve service level with a given capacity. For
instance in the lowest requirement curve (R = 90 min.
and fp =50%), point A in Figure 5 represents a single
facility and 16 service units. It can be improved to
service level (R = 60 min., f = 50%) by setting up
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TABLE 5: Impact of doubling travel time versus doubling demand request on total capacity in static example (Figures 1 and 2).

Minimum capacity (number of service units)

Case Number of facilities (N) .
.. . Actual demand request doubled Actuz?l travel time doubled
Original (Appendix A) (4 requests per node) (30 min. between every two
q P nodes)
1 4 7 (Infeasible)
1 2 2 4 8
4 4 4
1 3 3 4
2 2 2 3 3
4 4 4 4

Case 1: (worst case) all requests arrive at time 0.

Case 2: (average case) half of the requests arrive at time 0, the other half at the 30th minute in an hour.

(at least 1) additional facility. Similarly in a higher
requirement curve (R = 90 min., f = 90%), point
B with 22 service units in a single facility can be
improved to service level (R = 60 min., f; = 90%)
by setting up (at least 1) additional facility and
with fewer units. Point C in Figure 6 illustrates a
similar characteristic with another dynamic dispatch
algorithm (NN). These improvements are possible
typically when only a few facilities are set up and
service level is not high.

(iii) Adopt an appropriate dispatching rule. When the
response time service level is more demanding (small
R and/or high f3), the dispatch algorithm FCEFS
results in lower total capacity than NN since the
order of service in FCFS is approximately following
the call arrival order. On the other hand, NN will
be beneficial when the response time requirement
is moderate (e.g., R = 90min., fz = 50%), as there
is more flexibility for a server to complete nearby
available requests, thereby increasing productivity per
server.

Additional experiments are conducted for requirement
beyond the highest service level (R = 30 min, fz = 90%) in
Figures 5 and 6. Figure 7 represents the service level curves
(R =30min, fi =95%) for the two dispatch algorithms. No
capacity is feasible for the smallest N (= 4) when considering
uncertainties, even if it is feasible under average parameter
values. They tend to have large fluctuation in capacity
compared to lower service level curves. However, they can
still reflect the initial trend of reduction in total capacity for
decentralized facilities. As N increases, the capacity stabilizes
for some range of N but will increase again with larger N.
In general, decentralization results in shorter travel distances
to the next assigned request, quicker response time per trip
at the expense of more service regions and facilities to be
administered. Here, it is shown that when sequential trip
travel is allowed for servicing requests, the minimum total
capacity does not decrease monotonically with increase in
number of facilities, but capacity will increase beyond a
certain limit of N. Figures 5 and 6 also show that the higher
the service level requirement (small R and large f), the wider

the separation from the lower service level curves. Besides in
the additional experiments, more fluctuation in total capacity
is observed as time-based parameters increase its variation
(larger coefficient of variation).

The impact of sharing capacity (Section 4.3) can allow
some demand nodes to be “covered” by more than one
facility. This occurs more frequently in nodes with small
demand intensities. Hence, in the dynamic environment,
such nodes could have second (or multiple) coverage pro-
vided by another facility (or service region) when service
units in the first responsible facility are busy. The savings in
total capacity are not much in the experiments, at most one or
two units. Other capacity sharing models could be explored
in sequential trip travel. This would be similar to split delivery
options adopted in some vehicle routing operations.

6. Sensitivity of Results to Model Assumptions
and Methodology Proposed

After solving the problem based on assumptions (1)-(10)
in Section 3, a natural step is to realize certain model
assumptions may limit the solution quality or oversimplify
reality, such as the following:

(2) each demand site is to be assigned to exactly one
facility;
(4) all requests are treated with the same priority.

Relaxing assumption (2) implies allowing service units
from one or more facilities to respond to a request. Accord-
ingly, the constraints related to assignment variables (y;;)
in the mathematical formulation (Section 3) could be mod-
ified. However, a larger service region may imply larger
travelling time and response time which may offset the
benefits from capacity sharing. This should be further inves-
tigated. Assumption (4) is unrealistic for emergency response
systems. One approach is to apply a two-priority class to
differentiate between requests and adopt different strategies,
for example, response time service levels, dispatch methods,
for each class, which is simply an extended version of the
current problem.

Simulation is only one approach to model uncertainty
when analytical formulas are unavailable. It requires some
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information on the distribution of uncertain parameters and
lower/upper bounds are necessary to avoid using extreme
simulated values. Different distribution assumed for an
uncertain parameter may result in different total capacity
values. However, the general trend of the curve relating total
capacity and number of facilities is expected to be much the
same. When the response time service level requirement is
high (small R and/or large f3), the curve tends to show large
fluctuation in capacity, possibly due to the randomness nature
of simulation. Despite requiring longer computational time
and more coding effort, the advantages of applying simulation
to this research include the following.

(i) Revealing an infeasible problem with uncertain pa-
rameters even if the problem seems feasible based
on average parameter values. When setting up only
a few facilities, even if the average direct travel time
between facilities and assigned nodes is within the
average response time limit, simulation can reveal the
solution is infeasible when allowing variability in pa-
rameters (e.g., Figure 7 when N = 4, static 4-node
example in Figure 1, and Table 5 when N = 1, and
actual travel time is twice the average travel time).

(ii) Identifying the significant uncertain parameter(s)
with larger impact on the results. When only a few
facilities are set up, the variability in travel time tends
to increase capacity more than variability in demand
in achieving the same response time service level (e.g.,
Tables 1-4 when N is the smallest number).

The ejection and rejection procedure is one of the iterative
improvement approaches. Other global or local search algo-
rithms could be used as alternative, together with memory
of feasible/infeasible regions. Performance comparison could
be made first in the deterministic problems (e.g., Section 3
formulation assuming all deterministic parameters; mixed
integer program in Appendix C) before considering the
uncertainties.

The two dynamic dispatch methods could be improved
by dynamic/adaptive scheduling algorithms which consider
multiple server-request assignments simultaneously. The
advantage of using simple (well-known) dispatch methods
here is to avoid increasing the running time when the iterative
simulation approach is adopted for this three-level integrated
problem.

7. Conclusions

This study has provided an analytical framework to tackle
a three-level territory planning problem involving simul-
taneous decisions on facility location (first level), demand
allocation (second level), and resource capacity (third level)
under uncertain demand, travel time, and service time
when sequential trip travel is also allowed. Response time
performance requirement is common in many industries. It
may appear in the form of an upper limit (R) imposed on
the average response time or a minimum percentage ( f5) of
served requests satisfying a response time upper limit (R).
In emergency systems planning, Carter et al. [44] showed
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that defining response areas for each ambulance will decrease
the average response time. Bandara et al. [39] proposed to
incorporate better dispatching rule for ambulances together
with defined response areas by ambulance in their future
research. Without considering call priorities and operational
constraints, the three-level integrated problem is related in
a way by considering the ambulance location as a facility,
response areas as allocated demand sites, and number of
ambulances (at each location) as resource capacity.

A simulation-based hybrid heuristic offers a flexible
approach to test uncertainty factors and different servicing
strategies. The current framework for a single period can be
extended to a multiperiod planning problem by increasing
the number of replications (with period-specific parameters)
in the simulation model (SIM) to determine the capacity
decision by period when the high-level decisions (facility
location and demand allocation) are given or temporarily
fixed. The relationship of this three-level problem with the
deterministic bounded latency problem (BLP) is pointed
out. When all parameters are deterministic and with unit
request per node, the three-level problem corresponds to a
BLP with location decisions and the latency bound given
by the response time limit R. This can be formulated as a
mixed integer program (MIP). Both the simulation-based
heuristic and MIP are tested on twelve travelling salesman
problem (TSP) data sets containing 29 to 262 nodes [40],
assuming unit request per node. The heuristic is run with
three different factors (interarrival time distribution, travel
time variability, and dynamic dispatch algorithm) where each
factor has two alternatives, resulting in eight versions. For
small problems of up to 100 nodes, the heuristic produces
solutions more efficiently and capacity values are comparable
with the MIP results. For larger problems, the heuristic results
are much lower than the best MIP results even with half the
running time. The second type of experiments simulates the
delivery service environment with local data and operating
parameters from two local sources and a third source in
Taiwan. Arrivals of requests are simulated. Results show
that a policy with few facilities can achieve higher response
time service level with the same or lower total capacity by
operating with more facilities up to a certain limit. Beyond
this limit, total capacity will increase. Some future research
directions include the three-level problem with heteroge-
neous resources and servicing strategies, like capacity sharing
and dynamic/adaptive scheduling of real-time requests.

Appendices

A. Static Example of 4 Nodes

Demand arrival rate per node = A = 2 per hour; travel time
between every pair of nodes = t = 15 min.; on-site processing
time =y = 5 min.

Response time requirement: average response time < R =
15 min.

Let F, denote node i if a facility is set up, N; otherwise
(i=1,2,3,4).
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Let i, denote the kth request from node i (i = 1,2,3,4;
k=1,2).
For more details see Tables 6 and 7.

B. A Set-Covering Model with an Additional
Constraint to Explore Sharing of Capacity
Across Regions

Parameters. Consider the following:

s; = capacity of service region j € Pp,

D; = set of service regions () in Py that includes node
i=1,...,m.

Decision Variables. Consider the following:

x; = Lif service region j is selected, 0 otherwise, j €

Pr.
Set-Covering Model with an Additional Constraint. Consider

Minimize Z = Z Sj- X;

E (B.1)
subject to
Yoxj21, i=1...,m (B.2)
jeh;
Z xj=N (B.3)
Jj€Ps
x;=0,1, je€Pp (B.4)

The objective function in constraint (B.l) minimizes
the total capacity by selecting an optimal set of feasible
regions in Pp. Constraint (B.2) requires each demand node
in the territory to be included in at least one service region.
Constraint (B.3) is the additional constraint requiring a total
of N facilities to be selected (assumption (5) in Section 3). The
selection decision variables of service regions are declared in
constraint (B.4).

C. The Bounded Latency Problem (BLP) with
Location Decisions

Parameters. Consider the following:

m =number of facility and demand nodes in network,
N = number of facilities to be selected,

s = (artificial) source node of network,

e = (artificial) sink node of network,

A = set of arcs in network = {(s,1), (i, e), (h,i) | h,i =
1,...,m},
A" = set of arcs in A excluding those linked to source,
sink, or between a node and itself = {(h,i) € A | h #
i; S5 i # e}s
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t,,; = average travel time from node h to node i, h,i =
I,...,m(assumet; =t; =t;, = 0),

y,, = on-site processing time of node h = 1,...,m.

Decision Variables. Consider the following:

x; = lif a facility is set up at node j, 0 otherwise, j =
L...,m,

fni =flowon arc (h,i) € A,

ay,; = lifarc (h, i) is used, 0 otherwise, (h, ) € A,

7; = server arrival time at node i (used in the subtour
elimination constraints),i = 1,...,m.

Mixed Integer Program. Consider

Minimize Z = z fei (C.1)
(si)eA
subject to
N < Z siSm—N (C2)
(si)eA
2% =N (C3)
j=1
faism-x, i=1,...,m (C4)
fuitxp+x<2, (hi)eA (C.5)
fri+txi<1, (hi)e A (C.6)
(h,i)E%Ihii} Sua™ i AL (€7
fii= Z fip i=l...,m (C.8)
(i,h)e{Ali#h}
1< f,sm-1)-x;+1, i=1...,m (C9)
<R i=1,...,m (C.10)
ap; < fra<m-a,;, (hi)eA (C.11)
T+ (R+y, +t) -1, <R (hi)e A  (Cl2)
fri =0, (hi)eA,

a,; =01, (hi)e A (C.13)

x;=0,1, 7,20, i=1,...,m.

1 1

The main difference with the BLP is the additional
location decisions of N facilities and its assigned demand
nodes. By network construction, the source node (s) is
linked to every facility node which could be set up at
any facility/demand node, without loss of generality. The
allocation decisions (of demand nodes) are represented by
nodes visited on the path(s) originating from a facility node.
In every feasible solution, each demand node will have exactly
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one facility node as its predecessor. Unit request is assumed
for each facility/demand node and all requests are available at
time 0. The response time requirement (R), represented by
constraints (C.10), is imposed on the server arrival time at
every node (except sink node).

The flow variables (f;,;) represent the number of service
units travelling between two nodes (from /1 to 7). The objective
in (C1) determines the minimum capacity (number of
service units) to fulfill the response time requirement (R) for
all requests. This capacity is represented by the total outflow
from the source node (s) and its natural lower and upper
bounds are given in constraint (C.2). The selection of N
facilities (Section 3, assumption (5)) and their locations are
expressed in equation (C.3). Constraint (C.4) restricts that a
facility node (i) can receive at most 7 units (= total number of
requests, one from each facility/demand node) of flow from
the source node (s). The inflow to the node (i) represents the
number of requests that can be served through this facility.
Constraint (C.5) formulates the independence condition of
facilities that no flow is allowed between two facility nodes.
Constraint (C.6) restricts that a facility node (i) should
not receive flow from a demand node (h). Flow balance at
each node (except source and sink nodes) is formulated by
constraints (C.7) and (C.8). Arc (i, i) in these two constraints
enforces at least one service unit to visit node i (= 1,...,m) by
imposing a lower bound constraint (C.9). If node i is a facility,
the upper bound on arc flow is m (= m — 1 + 1), the sum of
requests from all nodes, and 1 otherwise. The response time
requirement (latency bound or waiting time) is formulated by
constraint (C.10). The relationship between the flow on an arc
and the use of the arc is formulated by constraint (C.11) which
enables the formulation of subtour elimination constraints in
(C12). The last constraint (C.13) declares the type of decision
variables and their restrictions.
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