
Scientific Programming 15 (2007) 95–105 95
IOS Press

Performance characterization of a rover
navigation algorithm using large-scale
simulation

Richard Madison∗, Abhinandan Jain, Christopher Lim and Mark Maimone
Jet Propulsion Laboratory, California Institute of Technology, CA, USA

Abstract. Autonomous rover navigation is a critical technology for robotic exploration of Mars. Simulation allows more
extensive testing of such technologies than would be possible with hardware test beds alone. A large number of simulations,
running in parallel, can test an algorithm under many different operating conditions to quickly identify the operational envelope
of the technology and identify failure modes that were not discovered in more limited testing. GESTALT is the autonomous
navigation algorithm developed for NASA’s Mars rovers. ROAMS is a rover simulator developed to support the Mars program.
We have integrated GESTALT into ROAMS to test closed-loop, autonomous navigation in simulation. We have developed a
prototype capability to run many copies of ROAMS in parallel on a supercomputer, varying input parameters to rapidly explore
GESTALT’s performance across a parameter space. Using these tools, we have demonstrated that large scale simulation can
identify performance limits and unexpected behaviors in an algorithm. Such parallel simulation was able to test approximately
500 parameter combinations in the time required for a single test on a hardware test bed.

Keywords: Simulation, autonomous navigation, mars rover

1. Introduction

Autonomous rover navigation algorithms choose
commands to direct a robotic vehicle toward a goal
while avoiding obstacles. Efficient control of Mars
rovers requires such algorithms, because the time delay
in communicating with Mars excludes earth-bound op-
erators from all but the slowest control loops. NASA’s
Mars Rovers, MER (current) and MSL (planned), use
the GESTALT algorithm [4,9] to provide autonomous
navigation. Using autonomous algorithms in uncertain
environments is inherently risky, but the risk can be
mitigated by testing the algorithms extensively on the
entire range of conditions that the algorithm may face.
This establishes the algorithm’s operational envelope,
allowing a rover operator to maximize efficiency on

∗Corresponding author: Richard Madison, M/S 125-109, 4800
Oak Grove Drive, Pasadena, CA 91109-8099, USA. Tel.: +1 818
354 1897; Fax: +1 818 393 0879; E-mail: armadison@earthlink.net.

Mars by using autonomy without jeopardizing the rover
or being overly cautious.

Such large-scale testing is best done in simulation.
Hardware testing is severely limited by the availabili-
ty and speed of hardware testbeds and the expense of
constructing terrains. By contrast, multiple copies of
a simulator can be available early in a program, and
the parameters of virtual terrains are easily modified.
Many copies of a simulation, running simultaneously
on many terrains, can rapidly and systematically ex-
plore a navigation algorithm’s performance over a large
parameter space. In addition, simulation can test condi-
tions not available to hardware test beds because of ex-
pense, risk to the hardware test bed, or simply physical
impossibility.

This paper describes a prototype capability we de-
veloped to rapidly explore the operational envelope of
rover technologies within a large parameter space, us-
ing as a specific example the GESTALT autonomous
navigation algorithm operating on terrains with various
slopes, obstacle height and distribution, and wheel slip-

ISSN 1058-9244/07/$17.00 2007 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193430684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

96 R. Madison et al. / Performance characterization of a rover navigation algorithm using large-scale simulation

page. We integrated GESTALT with the ROAMS rover
simulator to test the algorithm’s performance over a
broad range of terrain environments. We developed a
progressive sequence of tests to verify the integration of
GESTALT with ROAMS and the performance of com-
ponent algorithms within GESTALT. We configured
the ROAMS Monte Carlo (RMC) batch manager to
perform these tests, running ROAMS with GESTALT
many times, over a range of terrain parameters. We de-
veloped a tool to evaluate the performance on each pa-
rameter set. We also adapted RMC to operate on a su-
percomputer, running many tests in parallel to radically
decrease the time required for a thorough walk through
the parameter space. Finally, we conducted three tests
to evaluate the utility of this ensemble of programs in
identifying the performance envelopes of rover tech-
nologies, through the specific example of GESTALT
on various terrains.

2. Testing navigation in simulation

To provide an initial testing capability, we adapt-
ed the ROAMS rover simulator to incorporate the
GESTALT navigation algorithm. This allows closed
loop tests of the algorithm, with a single simulation run
replacing a single hardware test. The following sec-
tions describe the ROAMS simulator, the GESTALT
algorithm, and integration of GESTALT into ROAMS

2.1. ROAMS

JPL has developed ROAMS (ROver Analysis, Mod-
eling and Simulation) [1,3,6], a physics-based rover
simulation environment to support trade studies, de-
velopment, and closed-loop testing of rover technolo-
gies in simulation. ROAMS models the components
of a robotic vehicle’s mechanical subsystem, sensors,
effectors, on-board control software, and environment.
ROAMS operates in a series of simulation steps, calling
sensor models to read rover state data, flight software
to convert these data into rover commands, and effector
models to evolve the rover state based on these com-
mands and the interaction between the rover’s phys-
ical components and its environment. ROAMS pro-
vides interfaces to close control loops at many levels,
from motor control up through autonomous navigation.
Control algorithms can be integrated as flight software
components in the simulation, or they can be run stan-
dalone and use ROAMS as a server by sending effec-
tor commands to ROAMS and querying vehicle state

information from ROAMS sensors. The ROAMS Sim-
Scape [2] terrain modeling toolkit allows ROAMS to
incorporate arbitrary terrains, specifying terrain height,
texture, and rover slippage parameters, which is useful
for navigation testing. ROAMS generates geometrical-
ly realistic images of this terrain [10,11], conforming to
the CAHVORE model for cameras with significant lens
distortion, and made more realistic with user-specified
terrain textures, sun placement and intensity, and op-
tional terrain and rover shadows. This permits naviga-
tion algorithms, such as GESTALT, that take images as
inputs.

2.2. GESTALT

NASA’s Mars Exploration Rovers use JPL’s Grid-
based Estimation of Surface Traversability Applied
to Local Terrain (GESTALT) software to drive au-
tonomously through unknown terrain [4]. The software
accepts a cloud of 3D points as input, typically (but not
necessarily) generated by stereo vision processing [12].
Points are grouped into rover turn-in-place-sized discs
(e.g., 1.3 meter radius to the farthest solar panel tip)
centered over a grid of 20 cm2 cells, and a plane is fit to
each set of points. Parameters from each plane fit are
used to assess the overall traversability of that patch of
terrain, using three distinct filters. The Step filter looks
for obstacle-sized deviations from the best-fit plane,
the Tilt filter compares the surface normal tilt against
a pre-set limit, and the Roughness filter compares the
overall residual of the plane fit against a pre-set limit.
The most conservative of these filter values is assigned
as the resulting “Goodness” for that grid cell.

Having constructed a complete local map,GESTALT
then considers many possible motions from the current
rover position. Potential paths include forward and
backward arcs of varying curvature and turn-in-place
motions followed by straight-ahead drives. Paths as
long as 3 meters are normally evaluated, although gen-
erally only 0.5 meters are traversed before re-imaging.
The “Goodness” values of the cells that comprise each
path are combined using a variety of filters (e.g., cells
nearby are weighted more highly than those farther
away) to generate path evaluations. These are merged
with similar evaluations from other higher level behav-
iors (like preferring to drive toward the goal), and fi-
nally the safest arc that will move the rover toward its
goal is selected.

Although GESTALT has been demonstrated on sev-
eral rovers [5,7], tests run on these vehicles are neces-
sarily limited in scope. Terrain is limited to those on

R. Madison et al. / Performance characterization of a rover navigation algorithm using large-scale simulation 97

which the vehicle is known to be safe, and it becomes
impractical to rerun tests through identical conditions
while varying just a few algorithmic parameters. Sim-
ulation provides the capability of continuously validat-
ing the software during active development,saving time
by enabling initial parameter tuning across a variety of
terrains, and exploring terrain types that are unsafe or
impractical for actual vehicle tests.

2.3. ROAMS/Gestalt closed loop integration

ROAMS consists of a collection of models, rep-
resenting components of the rover’s hardware, soft-
ware, and environment. ROAMS advances a simula-
tion clock, calling each model at each simulation step.
The models use internal state information along with
input signals to calculate outputs, which in turn become
input signals to other models. One way to integrate
a flight software algorithm, such as GESTALT, into
ROAMS is to wrap it within a ROAMS model.

The GESTALT software consists of two large pieces:
a function library that encodes most of the algorithm;
and a MER flight software module that executes the
highest level functions and interfaces with the space-
craft’s other software modules. We integrated the li-
brary into the ROAMS code base, made a ROAMS
model that calls GESTALT’s high level functions and
converts their inputs and outputs between GESTALT
and ROAMS formats, and connected the model into
ROAMS.

The ROAMS model of GESTALT inputs a goal po-
sition, the estimated rover pose and images from the
rover’s cameras. It calls library functions to calculate
the best arc to move the rover closer to the goal while
avoiding obstacles. It fills one of four outputs – param-
eters of the arc or three flags representing end condi-
tions – and zeroes the other three outputs. If the rover’s
goal and current position are close enough together, the
model raises the at-goal flag. If GESTALT calculates
arcs 500 times and still the rover has not reached the
goal, then it probably will never reach the goal, so the
model raises the time-out flag. If GESTALT finds no
suitable arcs to move the rover safely toward the goal,
it raises the give-up flag. If none of these conditions
are met, GESTALT outputs the length and turn radius
of the best arc. The ROAMS model can read input
images and convert them to range maps for GESTALT,
or it can read range maps directly. When reading range
maps directly, it can read a single range map from the
rover’s front-mounted cameras, or it can merge range
maps from both front and rear cameras.

We connected the GESTALT model into ROAMS
so that GESTALT runs in closed loop. We connect-
ed the inputs of the GESTALT model to other models
that estimate rover pose and generate images or range
maps from virtual, rover-mounted cameras. We con-
nected the commanded-arc output of GESTALT to the
locomotor model, which in turn connects through as
series of models that combine the commands, terrain,
and rover dynamics to update the rover pose. This pose
then becomes the input to the estimator and imaging
models that provide the inputs to the GESTALT model
in the next simulation step.

To run ROAMS/GESTALT, we provide the goal-
coordinates input to the GESTALT model and identify
other parameters used by the non-GESTALT models,
such as a terrain model and initial rover pose. We let
ROAMS run the simulation clock, and we monitor the
GESTALT model’s three output flags. The ensemble of
models in ROAMS causes the rover to iteratively sense,
navigate, and drive until it raises one of the three output
flags. When a flag is raised, the GESTALT model pro-
duces no more arcs, so the rover simply idles. We con-
clude that GESTALT successfully navigated the input
goal and terrain parameters if and only if the at-goal
flag is raised.

3. Performance test plan

To evaluate our ability to test rover technologies us-
ing ROAMS, we planned a sequence of increasingly
difficult exercises. In each exercise, we would run
the system and verify that any failures were due to in-
put parameters exceeding the operational envelope of
GESTALT rather than any problems within the simula-
tion system. The tests begin with several components of
GESTALT disabled to simplify localizing any problems
that we do find. The early tests are designed primarily
to verify the system. The later tests demonstrate testing
GESTALT in increasingly realistic environments and
with pieces of GESTALT reinstated, leading to a test of
in-tact GESTALT and a complete simulation system.

– Flat plane. The rover is positioned on a flat, level
terrain with the navigation goal at parameter dis-
tance and heading. This provides a sanity check to
verify that GESTALT correctly performs the sim-
plest possible navigation. Any problems indicate
failures in the integration.

– Grid of rocks. The rover is positioned on level
terrain amid a regular grid of rocks. Parameters

98 R. Madison et al. / Performance characterization of a rover navigation algorithm using large-scale simulation

include rock size and spacing, along with distance
and direction to the goal. This test verifies that
GESTALT recognizes and drives around obstacles.
It also tests how high a rock must be for GESTALT
to consider it an obstacle.

– Slippery slope. The rover drives on a slippery,
inclined plane that contains a single rock of suf-
ficient size (determined in the previous test) that
GESTALT considers it an obstacle. The rover ini-
tially faces the goal. The rock is halfway between
rover and goal, offset to the side by parameter
distance to modulate the extent of the detour that
the rover must take to avoid the obstacle. Oth-
er parameters include the slope and friction angle
(slipperiness) of the plane, the downhill direction
relative to the traverse direction, and the distance
to the goal. One goal of this test is to verify that
terrain slippage is properly invoked in the test. A
second goal is to evaluate how well GESTALT
navigates when slippage causes the rover’s actual
movements to differ from the arcs commanded by
GESTALT.

– Wheel odometry.In the preceding tests, the pose-
estimate provided to GESTALT was the ground
truth rover pose. This test repeats the slippery
slope or other previous test but incorporates a
ROAMS model of a noisy estimator to simulate
a real sensor. Noisy pose estimates should de-
grade GESTALT performance. The test would
demonstrate proper integration of the new model
in preparation for realistic testing of the navigation
algorithm.

– Grid of holes. This test repeats the Grid of
Rocks test but use negative obstacles, demonstrat-
ing GESTALT’s ability to avoid holes, such as
small craters.

– Rock distribution model. This test repeats the
Grid of Rocks test, but rather than using an even
grid of rocks, it uses the Golembek model [8] to
produce a realistic distribution of rock sizes and
positions. This allows GESTALT testing in more
realistic terrains where results should map well to
performance on Mars.

– Wheel traps. Certain rocks are small enough for
the rover to traverse but large enough to wedge
between wheels, rendering the rover immobile.
GESTALT recognizes that these are not “step” ob-
stacles, but their presence creates a “rough ter-
rain” obstacle. The Wheel Traps test places these
rocks along the path of the rover and verifies that
GESTALT routes around them.

– Stereo Imaging. GESTALT identifies hazards in
3D point clouds. It can either input these clouds
directly or generate them from input stereo image
pairs. ROAMS cameras create both types of da-
ta. In the preceding tests, GESTALT used point
clouds directly, eliminating one potential source
of integration error. In the Stereo Imaging test, the
system is modified to feed stereo image pairs to
GESTALT. Repeating one or more of the previous
tests verifies that GESTALT correctly reads and
processes these stereo pairs.

– Visible Rover. In the previous tests, the rover was
made invisible so that GESTALT would not mis-
classify as obstacles those pieces of the rover that
are visible in the rover camera images. GESTALT
prevents the misclassification by masking out
rover components from the input images. The ear-
ly tests input point clouds directly, incidentally by-
passing the masking step. After the Stereo Imag-
ing test reinstates the masking, the Visible Rover
test makes the rover visible again and repeats the
Flat Plane test, verifying that GESTALT directs
the rover forward, not detecting rover components
as obstacles.

4. Testing on a range of input parameters

The key to success in any of the tests outlined above
is to run many times, varying the values of terrain pa-
rameters. We automated this task using the ROAMS
Monte Carlo (RMC) package. We adapted RMC to re-
peatedly run ROAMS/GESTALT, varying input param-
eters across a parameter space, and recording end con-
ditions and the path traversed by the rover in each run.
We further adapted RMC to run on the JPL supercom-
puter, allowing about 400 test runs per hour. We devel-
oped a tool to display the paths and end conditions for
many runs simultaneously, revealing patterns in which
input parameters lead to which output conditions.

4.1. ROAMS Monte Carlo (RMC)

The ROAMS Monte Carlo batch job manager (RMC)
runs a user-specified script of ROAMS commands
many times, varying parameters over a large parameter
space. Written entirely in the Tcl scripting language,
RMC allows the user to specify the input parameters,
output parameters, number of jobs and the commands
to execute. The RMC executes the specified ROAMS
commands for the specified number of times, with each

R. Madison et al. / Performance characterization of a rover navigation algorithm using large-scale simulation 99

Fig. 1. The visualizer tool. A set of 100 tests beginning from a grid of starting points and several possible starting headings. The top and bottom
clusters represent two different starting headings. The bottom left and bottom right seem to have starting headings 180 degrees apart, but actually
the rover drove backwards there. The figure shows that most paths succeed (dark grey arrows), four times out due to overloaded processors (light
grey arrows), and one time out because it cannot turn sharply enough reach the goal (white arrow).

run using a different combination of input parameters.
Using Tcl to specify the code to generate input and out-
put parameters allows the user to tailor the Tcl scripts
without having to recompile the entire RMC software.
RMC can draw input parameters randomly from speci-
fied ranges (Monte Carlo search), or it can test all com-
binations of specified sets of input parameter values
(parametric search.) RMC allows the user to specify
the following parameters:

– Input variable list . This is a list of primary “inde-
pendent” variables that are varied to generate the
individual batch-job parameters.

– Variable generation from user-specified data
sets. This is a specification for the variation of an
input variable. The following data sets are cur-
rently supported:

∗ Uniform distribution. The value is drawn from
a continuous uniform random distribution.

∗ Gaussian distribution. The value is drawn from
a continuous Gaussian random distribution.

∗ Random list. The value is picked randomly from
an unordered list of predefined values.

∗ Sequence list. The value is picked in sequential
order from a list of predefined values.

∗ Constant. The value is a constant.

– Variable decorrelation. A number of dependent
variables in the simulation may need to be affect-
ed by the setting of the input (the independent)
variable. In addition a number of side effects may
be required upon setting of the variable. Decorre-
lation code allows the user to specify the one-to-
many mapping as well as side effects desired for
each setting of the individual variable.

– Variable phasing. A simulation is considered to
have well defined phases at which the decorrelat-
ed variables need to be set. For example, cer-

100 R. Madison et al. / Performance characterization of a rover navigation algorithm using large-scale simulation

tain parameters need to be set before any model is
instanced, whereas others can only be set after a
model has been instanced.

– Result specification. This specifies the quanti-
ties that must be output from the simulation. The
recording of these quantities is specified by the
corresponding code for extracting the variable of
interest. After a job completes, output parameters
(again defined through Tcl variables) are written
to a separate results file for each job. Finally, af-
ter all the jobs are completed, the RMC gathers
all the results into a single MySql database for
post-processing through SQL commands.

– Maximum number of jobs. This specifies the
number of sets of variable instances that will be
generated and the maximum number of times the
ROAMS script is executed. This number should
be selected to both provide sufficient coverage of
the individual probability distributions to ensure
statistically meaningful results as well as to com-
binatorially exhaust the sequenced and list vari-
ables.

– Commands to execute. This specifies the ROAMS
commands to execute. The commands are exe-
cuted through Platform Computing Corporation’s
Load Sharing Facility (LSF) batch queuing soft-
ware. RMC auto-generates an LSF script to sub-
mit the desired number of jobs to the supercom-
puter. The LSF software then schedules the jobs to
assure fair and efficient use of the nodes on the su-
percomputer. Each job is given a time-out param-
eter (1 hour in our case) to ensure that each job will
terminate properly if an error occurs. Each Monte
Carlo job is executed as a completely independent
process; jobs do not communicate with each other
and a separate environment is maintained for each
job.

4.2. Running many tests in parallel

RMC provides the capability to run many copies
of ROAMS. To run these many tests in a reasonable
amount of time, we used the JPL Supercomputer clus-
ter. This is a cluster of 1024 Dell Xeon Pentium 4
processors running at 3.2 GHz. A single user can al-
locate jobs to as many as 200 processors, so RMC can
run up to 200 copies of ROAMS at once. In early
testing, the median traverse of 7 m required 7 minutes
to accomplish on a single processor. An experiment
with 1000 runs of ROAMS under varying parameters
required 21/2 hours to complete, suggesting an average

time of 30 minutes per run. The extra time stems from
some processors becoming bogged down or hanging,
perhaps running other programs for other users at the
same time, with some runs timing out after an hour.
Even with the extra time, a thousand simulation tests
require about two and a half hours, comparable to two
tests on a hardware test bed.

4.3. Data visualizer tool

The combination of RMC and ROAMS/GESTALT
produces one output file for each set of input parame-
ters, recording the path traversed by the rover and the
end condition of the traverse that resulted from those
parameters. Analyzing these outputs reveals the region
of the parameter space within which GESTALT oper-
ates successfully. To quickly detect these patterns, we
created a graphical visualization tool.

An example output of the tool is shown in Fig. 1.
The user specifies the run numbers of a set of RMC
runs to compare. For each test, the visualizer shows the
rover’s starting point (yellow circle), the run number
(yellow text to the bottom right of the circle), and a path
leading to the navigation goal (large green cross). A
yellow cross marks the coordinate origin, for reference.

Each path is color coded to show which of five end
conditions terminated the test. An arrow shows the
position and orientation of the rover at the end of the
traverse. Paths are green when the rover reaches the
goal. This is the most common result. Paths are or-
ange when GESTALT is unable to find a suitable arc to
continue the path to the goal. This does not appear in
the simple case of Fig. 1. Paths are red when the rover
does not reach the goal after driving 500 arcs. This ap-
pears only once in Fig. 1, where the rover, executing its
sharpest possible turn, went into orbit around the goal,
unable to get any closer. The arrowhead along the top
of the arc shows that GESTALT had reversed direction
and backtracked before giving up. Paths are cyan when
the host processor kills the RMC process after running
for an hour. This seems to occur when the processor
runs much slower than normal, either because multi-
ple users share a processor or because bus contention
causes the processor to idle excessively. Paths are dark
blue when the RMC process dies without explanation,
neither being killed after an hour nor having ROAMS
crash. The user can specify that the visualizer should
show all paths or only paths of specific colors, allowing
more rapid investigation of failure cases.

R. Madison et al. / Performance characterization of a rover navigation algorithm using large-scale simulation 101

5. Verification

We evaluated our ability to test rover technologies
using ROAMS, RMC, the Supercomputer, and the data
visualizer by running the tests outline in Section 3. For
each test, we configured RMC to test every combination
of values for an appropriate set of input parameters.
We also provided a ROAMS script that set the rover
initial pose and goal location, enabled output logging,
and then stepped the simulation clock until GESTALT
set a flag to indicate an end condition. Due to time
constraints, we ran only the first three tests: flat plane,
rock grid, slippery slope.

5.1. Flat plane

In the first test, the rover drove to goals at various
distances and various azimuths relative to the starting
orientation. There entire test occurred on a plane with-
out obstacles, so we expected GESTALT to succeed in
all cases. The purpose was to identify any bugs in the
test code or any errors in integration of GESTALT into
ROAMS.

Figure 2 shows the ROAMS visualization of the rover
on the plane and a typical visualizer tool screen shot.
The test consisted of 1000 runs, with the rover begin-
ning at each starting position on a 10 × 10 grid and
at each of 10 initial headings separated by 0.6 radians.
The figure shows the 100 runs at initial heading −2.4
radians from left facing. The visualizer was asked to
show only successful runs, which include all but one
run in this case. In fact, most runs were successful
in the flat plane test. In a small number of tests, the
rover could not turn sharply enough to reach the goal
(an obvious problem, in retrospect), and a few others
were halted by the host computer, perhaps after being
slowed by file system contention.

While the final results described above were quite
satisfactory, early testing identified two limitations of
GESTALT that were not obvious – the needs for rear
cameras and a timeout capability. Figure 3 shows the
data visualizer results for early tests, showing the 100
starting points at each of two initial headings. Many
tests timed out or died mysteriously without the rover
traveling very far. Our initial response was to add the
timeout end condition, which had not been part of the
original design. Though not shown in the figure, this
addition caused most of the failures to switch from
killed-by-host end condition to time-out, suggesting
that the real problem was that GESTALT was causing
the rover to drive back and forth along the same arc.

A closer look at the visualizer tool revealed that the
failures all occurred when the rover was initially faced
away from the goal. A little research showed that the
initial integration of GESTALT into ROAMS used on-
ly the front hazcams. If the rover initially faces away
from the target, the cameras show safe terrain ahead
and no data for the terrain behind. GESTALT com-
mands the rover to move into the safe terrain ahead.
After moving forward for a while, GESTALT notices
previously-observed, safe terrain behind the rover, to-
ward the goal, and commands the rover to back up.
This repeats until timeout. By modifying our interface
to GESTALT to use both front and rear cameras, we
eliminated the problem behavior, causing GESTALT
to succeed in almost all cases. This provided the first
example of running GESTALT on a large parameter
space, visualizing the results, and identifying an algo-
rithmic problem that, while obvious in retrospect, easi-
ly could have been overlooked if GESTALT were tested
on only a few cases.

5.2. Rock grid

In the second test, we drove the rover through a
regular grid of rocks on a level plane. The objective was
to verify that GESTALT circumvents simple obstacles
and rolls over objects too small to be obstacles. Figure 4
shows the ROAMS visualization view of the rover on
the terrain and a visualizer tool view of the results from
a subset of the tests.

We ran 148 tests, varying the rock size, rock spacing,
and goal positions. We used three rock sizes – 9 cm,
18 cm, and 27 cm – expecting that the rover would treat
only the 27 cm rocks as obstacles. We tested 8 values of
spacing between rocks, from 0.5 to 4.0 m apart at 0.5 m
intervals. The rover was initially oriented parallel to the
grid and situated midway between four rocks near the
coordinate origin. The goal was set midway between
two columns of rocks approximately 5 m ahead of the
rover and offset to the left by one of 6 values, from 0 m
to 5 m at 1 m spacing.

The visualizer tool screen shot in Fig. 4 shows the
results for several of tests using 18 cm rocks. The rock
grid terrain always has a rock at the coordinate origin,
so starting positions are offset diagonally from the ori-
gin, centered between four rocks. The 8 possible rock
spacings produce 8 possible starting positions. Rock
spacings less than 2.0 m are impassible for the rover,
as indicated by orange, “give up” paths. Slightly larger
spacings allow the rover to pass but require paths com-
posed primarily of horizontal and vertical segments.

102 R. Madison et al. / Performance characterization of a rover navigation algorithm using large-scale simulation

 9.34 9.30

Fig. 2. Rover on a flat plane. Visualizer showing all successful paths for the set of runs that begin facing about 60 degrees from north. In the end,
almost all runs reached the goal.

 9.37 9.38

 9.37 9.38

Fig. 3. Two sets of rover tracks, each consisting of the the various starting positions with the rover pointing in a particular direction. The goal is
near the top center. Starting positions with the rover pointing generally toward the goal cause GESTALT to succeed, while those with the rover
facing generally away from the goal fail. The solution was to enable the rear cameras.

The largest spacings allow the rover to drive diagonally
between the rocks to the goal.

In general, GESTALT behaved as expected. The
rover reached the goal except when obstacle-sized
rocks were close enough together that the entire terrain
appeared to be an obstacle. A few runs were killed
unexpectedly by the supercomputer host. We were sur-
prised to see that 18 cm rocks were treated as obsta-
cles, though GESTALT was set up to identify obstacles
at 20 cm height. In a real testing scenario, this might
cause a user to go back and review the GESTALT pa-
rameters to understand this unexpected behavior and
perhaps to warn users if the behavior is correct but
counterintuitive.

5.3. Slippery slope

In the third test, the rover drove on a slippery slope,
circumventing a rock on the way to its goal. The rock
is 18 cm tall, which GESTALT considers an obstacle
according to the previous test. The goal for this third
test was to evaluate the ability of GESTALT to avoid
obstacles despite slippage. Figure 5 shows the rover
on its terrain and a visualizer tool screen shot of some
results.

The test varied five parameters, providing 5040 com-
binations. The rover was positioned initially to face a
navigation goal, 2 m, 4 m, or 6 m away. The obstacle
was placed halfway between the start and goal posi-
tions, then offset to the left by 0.1 m, 0.3 m, 0.6 m,

R. Madison et al. / Performance characterization of a rover navigation algorithm using large-scale simulation 103

 9.31 9.32

Fig. 4. The second test, wherein the rover traversed a grid of rocks. Close-together rocks are impassible, producing light grey trails. Farther
spacings allow the rover to navigate, producing dark grey trails that reach the goal. Not all trails end at the marked goal, because the Visualizer
Tool shows only one goal, but the goal has a different location for each rock spacing.

 9.35 9.42

DOWNHILL

Fig. 5. The rover tries to drive past a rock on a slope. It succeeds when slippage is low and slides down hill when slippage is higher.

1.0 m, or 1.5 m. At the largest offset, the rover should
drive directly to the goal. With decreasing offset and
decreasing distance to the target, GESTALT must com-
mand increasingly drastic arcs to avoid the obstacle. In
addition, the terrain was sloped and slippery, requiring
GESTALT to overcome slippage-induced failure to ex-
ecute the commanded arcs. The downhill direction rel-
ative to the goal direction was varied in 30◦ increments
from 0◦ to 330◦. The terrain slope was varied from 0◦

to 30◦ in increments of 5◦. The friction angle took on
values of 17◦, 23◦, 29◦, and 34◦. On a pure plane, the
rover would have traction for terrain slopes less than
the friction angle and slide uncontrollably for terrains
with higher slopes. ROAMS adds some randomness to
create a more gradual, more realistic transition between
these two behaviors. We expect to see rover slippage
increase gradually as the terrain slope increases and/or
the friction angle decreases.

The visualizer view in Fig. 5 shows a typical re-
sult, in this case several runs where the only parameter
that varies is terrain slope. The top of the image is
downhill. The yellow cross marks the obstacle, which
begins slightly downhill from the rover-to-goal path.
The friction angle is 23◦. At low slopes, up to 20◦,
the rover drives around the rock, showing successful,
green tracks. The rover detours uphill from the rock,
which is a shorter diversion because the rover is initial-
ly uphill from the rock. Some slippage is evident from
the thickness of the green line, which is actually four
not-quite-overlapping lines. At slopes of 20◦ and 25◦,
near the friction angles, the rover slips noticeably. As
it approaches the target, it slips further down hill and
therefore points further uphill to continue to point to
the target. The rover has the least traction when point-
ing up hill, and once it is directly below the target, it
cannot muster the traction to climb up to the target. It

104 R. Madison et al. / Performance characterization of a rover navigation algorithm using large-scale simulation

eventually times out, producing a cyan track. At a 30 ◦

slope, friction is so lacking that the rover slides off the
virtual world, producing an orange track as GESTALT
recognizes that it has left the terrain and thus cannot
identify a viable arc to command.

Beyond indicating that the simulation functioned
properly, this test revealed a behavior of GESTALT
that might not have otherwise been noticed. At high
slopes, near the friction angle, the rover can drive up-
hill at shallow angles but not at sharp angles. To reach
a cross-slope goal, the rover must navigate toward a
point slightly uphill from the actual goal, gaining alti-
tude while at its initial cross-slope heading. Later, as
it turns to face the new goal and begins to slide, it can
slide down to the original goal.

6. Conclusions

Testing GESTALT or other algorithms in simulation
on a supercomputer allows a much more thorough in-
vestigation of the limits of our navigation software than
is possible using hardware testbeds alone. To demon-
strate the viability of such software testing, we inte-
grated the GESTALT algorithm into the ROAMS sim-
ulator, allowing closed-loop testing in simulation. We
adapted the Roams Monte Carlo batch manager to run
the simulation many times using varying input parame-
ters, exploring the parameter space. We ran this on the
JPL Supercomputer cluster, testing GESTALT’s perfor-
mance at about 400 points in the parameter space per
hour. We developed a visualization tool to help rapidly
identify trends in the results. We ran three experiments
to verify that the ensemble of programs functioned to-
gether. These tests revealed some surprising behaviors
of GESTALT that might have been overlooked if limit-
ed hardware-test bed testing had prevented exploration
of the regions of the parameter space where the behav-
iors occurred. This capability should be beneficial to
MSL, which is slated to use GESTALT and unlikely to
have schedule for extensive hardware test bed testing
of GESTALT.

The impact of this initial capability to do large-scale
simulation extends beyond the example application to
GESTALT. The task developed the capability to evalu-
ate the performance of a rover technology over a range
of environmental (or other) parameters by embedding
the technology in the ROAMS simulator and running
many simulations in parallel on a supercomputer, each
evaluating one point in the parameter space. It demon-
strated exploring a space of terrain parameters such as

wheel slippage and slope that may not even be available
to hardware testbeds. It demonstrated the ability to run
hundreds of tests in the time required to run a single
test on a hardware test bed.

The framework is now available for testing
GESTALT against additional parameters such as pose
estimation noise. It is also useful for testing the impact
of environmental or other parameters on other rover
technologies. It also can be used to test rover algo-
rithms in general and, more broadly, to test new rover
hardware designs.

Two future extensions to enhance the current capa-
bilities are presented here. The first is to conduct the
remaining experiments in the test plan. The second
is to identify when the rover drives into a region that
GESTALT considers unsafe. One way to do this is to
add a tool that applies GESTALT’s traversability eval-
uator to the entire terrain map. A user would use this
tool before running ROAMS to create a map of areas
that GESTALT considers dangerous. Then as ROAMS
generates and reports the actual path of the rover, it
could monitor the safety map and report, along with the
simulation end criterion, the traversability of the worst
point on the path.

Acknowledgements

This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Ad-
ministration and funded through the internal Research
and Technology Development program. The research
was sponsored by the JPL Research and Technology
Demonstration program. We would like to thank Ger-
ard Benenyan and Leonard Reder for writing the data
visualizer tool and running the experiments.

References

[1] A. Jain, J. Balaram, J. Cameron, J. Guineau, C. Lim,
M. Pomerantz and G. Sohl, Recent Developments in the
ROAMS Planetary Rover Simulation Environment, IEEE
2004 Aerospace Conference, Big Sky, Montana, March 6–13,
2004.

[2] A Jain, J. Cameron, C. Lim and J. Guineau, SimScape Ter-
rain Modeling Toolkit, Second International Conference on
Space Mission Challenges for Information Technology (SMC-
IT 2006), Pasadena, CA, July 2006.

[3] A. Jain, J. Guineau, C. Lim, W. Lincoln, M. Pomerantz, G.
Sohl and R. Steele, Roams: Planetary Surface Rover Simula-
tion Environment, i-SAIRAS 2003, Nara, Japan, May 19–23,
2003.

R. Madison et al. / Performance characterization of a rover navigation algorithm using large-scale simulation 105

[4] J.J. Biesiadecki and M.W. Maimone, The Mars Exploration
Rover Surface Mobility Flight Software: Driving Ambition,
IEEE 2006 Aerospace Conference, Big Sky, Montana, March
2006.

[5] J.J. Biesiadecki, M.W. Maimone and J. Morrison, The Athena
SDM Rover: A Testbed for Mars Rover Mobility, i-SAIRAS
2001, Montreal, Canada, June 2001.

[6] J. Yen and A. Jain, ROAMS: Rover Analysis Modeling and
Simulation Software, i-SAIRAS 1999, Noordwijk, Nether-
lands, June 1999.

[7] J. Montgomery, Mars Science Laboratory GESTALT Tech-
nology Test Report, JPL technical report D-34115, August
2006.

[8] M. Golembek and D. Rapp, Size-frequency distributions of
rocks on Mars and Earth analog sites: Implications for future

landed missions, JGRP 102:E2 (Feb 1997), 4117–4129.
[9] M.W. Maimone, J.J. Biesiadecki, E. Tunstel, Y. Cheng and

C. Leger, Surface navigation and mobility intelligence on the
Mars Exploration Rovers, Intelligence for Space Robotics,
TSI Press, Albuquerque, 2006, 45–69.

[10] R. Madison, M. Pomerantz and A. Jain, Camera Response
Modeling and Verification in ROAMS, i-SAIRAS 2005, Mu-
nich, Germany, September 2005.

[11] R. Madison, Verification of ROAMS CAHVORE Imaging,
JPL technical report D-35616, June 2006.

[12] S.B. Goldberg, M.W. Maimone and L.H. Matthies, Stereo
vision and rover navigation software for planetary exploration,
IEEE 2002 Aerospace Conference, Big Sky, Montana, March
2002.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

