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A split-step theta (SST) method is introduced and used to solve the nonlinear neutral stochastic delay differential equations
(NSDDEs). The mean square asymptotic stability of the split-step theta (SST) method for nonlinear neutral stochastic delay
differential equations is studied. It is proved that under the one-sided Lipschitz condition and the linear growth condition, the
split-step theta method with 𝜃 ∈ (1/2, 1] is asymptotically mean square stable for all positive step sizes, and the split-step theta
method with 𝜃 ∈ [0, 1/2] is asymptotically mean square stable for some step sizes. It is also proved in this paper that the split-step
theta (SST) method possesses a bounded absorbing set which is independent of initial data, and the mean square dissipativity of
this method is also proved.

1. Introduction

Stochastic functional differential equations (SFDEs) play
important roles in science and engineering applications,
especially for systemswhose evolutions in time are influenced
by random forces as well as their history information. When
the time delays in SFDEs are constants, they turn into
stochastic delay differential equations (SDDEs). Both the
theory and numerical methods for SDDEs have been well
developed in the recent decades; see [1–8]. Recently, many
dynamical systems not only depend on the present and the
past states but also involve derivatives with delays; they are
described as the neutral stochastic delay differential equa-
tions (NSDDEs). Compared to the stochastic differential
equations and the stochastic delay differential equations, the
study of the neutral stochastic delay differential equations
has just started. In 1981, Kolmanovskii and Myshkis [9] took
the environmental disturbances into account, introduced the
neutral stochastic delay differential equations (NSDDEs),
and gave their applications in chemical engineering and
aeroelasticity. The analytical solutions of NSDDEs are hard

to obtain; many authors have to study the numerical methods
forNSDDEs.Wu andMao [10] studied the convergence of the
Euler-Maruyama method for neutral stochastic functional
differential equations under the one-side Lipschitz conditions
and the linear growth conditions. In 2009, Zhou and Wu
[11] studied the convergence of the Euler-Maruyama method
for NSDDEs with Markov switching under the one-side
Lipschitz conditions and the linear growth conditions. The
convergence of 𝜃-method and the mean square asymptotic
stability of the semi-implicit Euler method for NSDDEs were
studied byGan et al. [12], Zhou and Fang [13], andYin andMa
[14], respectively. Later, the almost sure exponential stability
of Euler-Maruyama method for NSDDEs was studied in [15]
with the discrete semimartingale convergence theorem.

To the best of our knowledge, most of these studies have
focused on the convergence of numerical solutions for NSD-
DEs; the stability and dissipativity of numerical solutions for
them are rarely concerned.

The aim of this paper is to study the mean square stability
and dissipativity of the split-step theta method with some
conditions and the step constrained for NSDDEs.
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The paper is organized as follows. In Section 2, some
stability definitions about the analytic solutions for NSDDEs
are introduced; some notations and preliminaries are also
presented in this section. In Section 3, the split-step theta
method is introduced and used to solve the NSDDEs; the
asymptotic stability of the split-step theta method is proved.
In Section 4, the long time behavior of numerical solution
is studied and the mean square dissipativity result of the
method is illustrated. In Section 5, some numerical experi-
ments are given to confirm the theoretical results.

2. Exponential Mean Square Stability of
Analytic Solution

Let | ⋅ | denote both the Euclidean norm in 𝑅
𝑑 and the

trace (or Frobenius) norm in 𝑅
𝑑×𝑙 (denoted by |𝐴| =

√trace(𝐴Τ𝐴)); if 𝐴 is a vector or matrix, its transpose
is denoted by 𝐴

Τ. Let {Ω, 𝐹, {𝐹𝑡}𝑡≥0,P} define a complete
probability space with a filtration {𝐹𝑡}𝑡≥0 which is increas-
ing and right continuous, and 𝐹0 contain all P-null sets.
Let 𝑤(𝑡) = (𝑤1(𝑡), 𝑤2(𝑡), . . . , 𝑤𝑙(𝑡))

Τ denote standard 𝑙-
dimensional Brownian motion on the probability space. In
this paper we talk about the 𝑑-dimensional NSDDEs with the
following form:

𝑑 (𝑦 (𝑡) − 𝑁 (𝑦 (𝑡 − 𝜏)))

= 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏)) 𝑑𝑡

+ 𝑔 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏)) 𝑑𝑤 (𝑡) , 𝑡 ≥ 0,

𝑦 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝑁 : 𝑅
𝑑

→ 𝑅
𝑑, 𝑓 : 𝑅+ × 𝑅

𝑑
× 𝑅
𝑑

→ 𝑅
𝑑, and

𝑔 : 𝑅+ × 𝑅
𝑑

× 𝑅
𝑑

→ 𝑅
𝑑×𝑙 are the Borel measurable functions.

𝜏 is a positive constant delay, and 𝜑(𝑡) is 𝐹0-measurable,
𝐶([−𝜏, 0]; 𝑅

𝑑
)-valued random variable which satisfies

sup
−𝜏≤𝑡≤0

Ε [𝜑
Τ

(𝑡) 𝜑 (𝑡)] < +∞ (2)

with the notation E denoting the mathematical expectation
with respect to P.

The following conditions (a1) and (a2) are standard for the
existence and uniqueness of the solution for (1).

(a1)The Local Lipschitz Condition.There exist constants 𝐾𝐿 >

0 and 𝐿 > 0 such that

𝑓 (𝑡, 𝑥1, 𝑦1) − 𝑓 (𝑡, 𝑥2, 𝑦2)

2

∨
𝑔 (𝑡, 𝑥1, 𝑦1) − 𝑔 (𝑡, 𝑥2, 𝑦2)


2

≤ 𝐾𝐿 (
𝑥1 − 𝑥2


2

+
𝑦1 − 𝑦2


2
) ,

(3)

for all |𝑥1| ∨ |𝑥2| ∨ |𝑦1| ∨ |𝑦2| ≤ 𝐿 and 𝑡 ∈ 𝑅+, where 𝑎 ∨ 𝑏

represents max{𝑎, 𝑏} and 𝑎 ∧ 𝑏 represents min{𝑎, 𝑏}.

(a2) The Linear Growth Condition. There exists a constant
𝐾𝐺 > 0, such that

𝑓 (𝑡, 𝑥, 𝑦)

2

∨
𝑔 (𝑡, 𝑥, 𝑦)


2

∨ |𝑁 (𝑥)|
2

≤ 𝐾𝐺 (1 + |𝑥|
2

+
𝑦


2
) ,

(4)

for all (𝑡, 𝑥, 𝑦) ∈ 𝑅+ × 𝑅 × 𝑅.

As an especial case of Theorem 3.1 in Mao’s monograph
(see [6]), we can easily know that under hypothesis (a1) and
(a2), system (1) has a global unique continuous solution on
𝑡 ≥ −𝜏, which is denoted by 𝑦(𝑡).

Now we recall some stability concepts for the solution of
(1).

Definition 1 (see [6]). The trivial solution of (1) is said to
be exponentially mean square stable, if there exists a pair
of constants 𝑟 > 0 and 𝐶 > 0, such that, whenever
sup
−𝜏≤𝑡≤0

Ε[𝜑
Τ
(𝑡)𝜑(𝑡)] < +∞,

Ε [𝑦
Τ

(𝑡) 𝑦 (𝑡)] ≤ 𝐶 sup
−𝜏≤𝑡≤0

Ε [𝜑
Τ

(𝑡) 𝜑 (𝑡)] 𝑒
−𝑟𝑡

, 𝑡 ≥ 0. (5)

Lemma 2. Assume that there exist a symmetric, positive
definite 𝑑 × 𝑑 matrix 𝑄 and positive constants 𝜇1, 𝜇2, and
𝜆 ∈ (0, 1) such that for all (𝑡, 𝑥, 𝑦) ∈ 𝑅+ × 𝑅

𝑑
× 𝑅
𝑑

|𝑁 (𝑥)| ≤ 𝜆 |𝑥| , (6)

(𝑥 − 𝑁 (𝑦))
Τ

𝑄𝑓 (𝑡, 𝑥, 𝑦)

+
1

2
trace [𝑔

Τ
(𝑡, 𝑥, 𝑦) 𝑄𝑔 (𝑡, 𝑥, 𝑦)] ≤ −𝜇1𝑥

Τ
𝑄𝑥

+ 𝜇2𝑦
Τ
𝑄𝑦.

(7)

If conditions

0 < 𝜆 <
1

2
,

𝜇1 >
𝜇2

(1 − 2𝜆)
2

(8)

hold, then the trivial solution of (1) is exponentially mean
square stable.

Remark 3. In general, we require 𝜆 ̸= 0. When 𝜆 = 0,
(1) becomes a stochastic delay differential equation. Many
stability and dissipativity results have been studied in the
literature (see [5, 16]).

By Lemma 2, the following result can easily be obtained.

Theorem 4. Suppose (6) holds. Assume that there are positive
constants 𝜆1, 𝜆2, and 𝐾, such that, for all 𝑥, 𝑦 ∈ 𝑅

𝑑,

(𝑥 − 𝑁 (𝑦))
Τ

𝑄𝑓 (𝑡, 𝑥, 𝑦) ≤ −𝜆1𝑥
Τ
𝑄𝑥 + 𝜆2𝑦

Τ
𝑄𝑦,

𝑓 (𝑡, 𝑥, 𝑦)

2

∨
𝑔 (𝑡, 𝑥, 𝑦)


2

≤ 𝐾 (|𝑥|
2

+
𝑦


2
) .

(9)
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If conditions

0 < 𝜆 <
1

2
,

𝜆1 >
1

2
𝐾 +

2𝜆2 + 𝐾

2 (1 − 2𝜆)
2

(10)

hold, then the trivial solution of (1) is exponentially mean
square stable.

Proof. Consider (9) and the inequality; we get the following
inequality:

(𝑥 − 𝑁 (𝑦))
Τ

𝑄𝑓 (𝑡, 𝑥, 𝑦)

+
1

2
trace [𝑔

Τ
(𝑡, 𝑥, 𝑦) 𝑄𝑔 (𝑡, 𝑥, 𝑦)]

≤ −𝜆1𝑥
Τ
𝑄𝑥 + 𝜆2𝑦

Τ
𝑄𝑦 +

1

2
𝐾 (𝑥
Τ
𝑄𝑥 + 𝑦

Τ
𝑄𝑦)

≤ − (𝜆1 −
1

2
𝐾) 𝑥
Τ
𝑄𝑥 + (𝜆2 +

1

2
𝐾) 𝜇2𝑦

Τ
𝑄𝑦.

(11)

Let 𝜇1 = (𝜆1 − (1/2)𝐾), 𝜇2 = (𝜆2 + (1/2)𝐾); when conditions
(10) hold, we get that

𝜇1 >
𝜇2

(1 − 2𝜆)
2
. (12)

Using Lemma 2, we can easily prove that the trivial solution
of (1) is exponentially mean square stable.

3. The Stability of the Split-Step Theta Method

The split-step theta method is proved to be able to keep the
mean square asymptotic stability of the exact solution under
the sufficient conditions of the asymptotic stability of the
exact solution, so in this paper we use the split-step theta
method to solve the NSDDE.

Appling the split-step theta (SST) method into problem
(1) gives the following form:

𝑌𝑛 − 𝑁𝑌𝑛−𝑚 = 𝑦𝑛 − 𝑁𝑦𝑛−𝑚

+ 𝜃Δ𝑡𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) ,

(13)

𝑌𝑛 = 𝑌𝑛−𝑚, (14)

𝑦𝑛+1 − 𝑁𝑦𝑛+1−𝑚 = 𝑦𝑛 − 𝑁𝑦𝑛−𝑚

+ Δ𝑡𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

+ 𝑔 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) Δ𝑤𝑛,

(15)

where the step size Δ𝑡 = 𝜏/𝑚, 𝑚 is an integer, 𝑦𝑖 is an
approximation to 𝑦(𝑡𝑖), 𝑡𝑖 = 𝑖Δ𝑡, 𝑖 = 1, 2, . . ., and 𝑦𝑘 =

𝑌𝑘 = 𝜑(𝑘Δ𝑡) for 𝑘 = −𝑚, −𝑚 + 1, . . . , 0. 𝜃 ∈ [0, 1] is a fixed
parameter, andΔ𝑤𝑘 fl 𝑤((𝑘+1)Δ𝑡)−𝑤(𝑘Δ𝑡) is the Brownian
increment.

When 𝜃 = 0 the split-step theta method is simplified
into the split-step forward Euler method and when 𝜃 = 1

the split-step theta method is simplified into the split-step
backward Euler method. They were discussed for stochastic
differential equations in [17–20]. In order to consider the
stability property of scheme (13)–(15) we should give some
stability concepts for numerical methods firstly.

Definition 5 (see [16]). For a given step size Δ𝑡, a numerical
method is said to be exponentially mean square stable if there
is a pair of positive constants 𝛾 and 𝐶 such that for any initial
data 𝜑(𝑡) the numerical solution 𝑦𝑛 produced by the method
satisfies

Ε [𝑦
Τ

𝑛
𝑦𝑛] ≤ 𝐶𝑒

−𝛾𝑡
𝑛 sup
−𝜏≤𝑡≤0

Ε [𝜑
Τ

(𝑡) 𝜑 (𝑡)] , ∀𝑛 ≥ 0. (16)

Definition 6 (see [16]). For a given step size Δ𝑡, a numerical
method is said to be asymptotically mean square stable if for
any initial data 𝜑(𝑡) the numerical solution 𝑦𝑛 produced by
the method satisfies

lim
𝑛→∞

Ε [𝑦
Τ

𝑛
𝑦𝑛] = 0. (17)

Theorem 7. Assume that system (1) satisfies (7) with −𝜇1 +

𝜇2 < 0; then the SST method (13)–(15) with 𝜃 ∈ (1/2, 1] is
asymptotically mean square stable for all Δ𝑡 > 0. If we further
assume that there exist constants 𝐾1 and 𝐾2 such that

𝑓
Τ

(𝑡, 𝑥, 𝑦) 𝑄𝑓 (𝑡, 𝑥, 𝑦) ≤ 𝐾1𝑥
Τ
𝑄𝑥 + 𝐾2𝑦

Τ
𝑄𝑦,

(𝑡, 𝑥, 𝑦) ∈ 𝑅+ × 𝑅
𝑑

× 𝑅
𝑑
,

(18)

then, for any 𝜃 ∈ [0, 1/2), there exists a constantΔ𝑡0 depending
on 𝜃 such that the method is asymptotically mean square stable
for Δ𝑡 ∈ (0, Δ𝑡0).

Proof. From (15) it follows that

(𝑦𝑛+1 − 𝑁𝑦𝑛+1−𝑚)
Τ

𝑄 (𝑦𝑛+1 − 𝑁𝑦𝑛+1−𝑚)

= (𝑦𝑛 − 𝑁𝑦𝑛−𝑚)
Τ

𝑄 (𝑦𝑛 − 𝑁𝑦𝑛−𝑚)

+ Δ𝑡
2
𝑓
Τ

(𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) 𝑄𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

+ Δ𝑤
Τ

𝑛
𝑔
Τ

(𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) 𝑄𝑔 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

⋅ Δ𝑤𝑛 + 2 (𝑦𝑛 − 𝑁𝑦𝑛−𝑚)
Τ

Δ𝑡𝑄𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

+ 2 (𝑦𝑛 − 𝑁𝑦𝑛−𝑚)
Τ

𝑄𝑔 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) Δ𝑤𝑛

+ 2Δ𝑡𝑓
Τ

(𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) 𝑄𝑔 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

⋅ Δ𝑤𝑛.

(19)
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Since 𝑤(𝑡) = (𝑤1(𝑡), 𝑤2(𝑡), . . . , 𝑤𝑙(𝑡))
Τ is a standard 𝑙-dimen-

sional Brownian motion we have that

Ε (Δ𝑤𝑖) = 0,

Ε [(Δ𝑤𝑖)
2
] = Δ𝑡,

Ε [Δ𝑤
Τ

𝑛
𝑔
Τ

(𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) 𝑄𝑔 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

⋅ Δ𝑤𝑛] = Δ𝑡Ε [trace𝑔Τ (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

⋅ 𝑄𝑔 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)] .

(20)

Let 𝑥𝑛 = 𝑦𝑛−𝑁𝑦𝑛−𝑚,𝑋𝑛 = 𝑌𝑛−𝑁𝑌𝑛−𝑚, 𝑛 = 0, 1, . . ., substitute
the designation into (19) and then, taking expectation on both
sides, one receives

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1] ≤ Ε [𝑥

Τ

𝑛
𝑄𝑥𝑛] + (1 − 2𝜃) Δ𝑡

2
𝑓
Τ

(𝑡𝑛

+ 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) 𝑄𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) + 2Δ𝑡Ε (𝑌𝑛

− 𝑁𝑌𝑛−𝑚)
Τ

Δ𝑡𝑄𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

+ Δ𝑡Ε [trace𝑔Τ (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)

⋅ 𝑄𝑔 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛)] ,

(21)

which, combined with (7), gives

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1] ≤ Ε [𝑥

Τ

𝑛
𝑄𝑥𝑛]

+ 2Δ𝑡Ε (−𝜇1𝑌
Τ

𝑛
𝑄𝑌𝑛 + 𝜇2𝑌

Τ

𝑛
𝑄𝑌𝑛) + (1 − 2𝜃)

⋅ Δ𝑡
2
𝑓
Τ

(𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) 𝑄𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) .

(22)

In the case of 𝜃 > 1/2, using

Δ𝑡𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) =
1

𝜃
(𝑋𝑛 − 𝑥𝑛) ,

2𝑋
Τ

𝑛
𝑄𝑥𝑛

≤
2𝜃 − 1 − (−𝜇1 + 𝜇2) Δ𝑡𝜃

2

2𝜃 − 1
𝑋
Τ

𝑛
𝑄𝑋𝑛

+
2𝜃 − 1

2𝜃 − 1 − (−𝜇1 + 𝜇2) Δ𝑡𝜃2
𝑥
Τ

𝑛
𝑄𝑥𝑛,

(23)

then we have

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1]

≤ (1 +
(−𝜇1 + 𝜇2) Δ𝑡 (2𝜃 − 1)

2𝜃 − 1 − (−𝜇1 + 𝜇2) Δ𝑡𝜃2
) Ε [𝑥

Τ

𝑛
𝑄𝑥𝑛]

− 2Δ𝑡𝜇2Ε [𝑌
Τ

𝑛
𝑄𝑌𝑛]

+ 2Δ𝑡 ((1 − 𝜆
2
) 𝜇2 + 𝜆

2
𝜇1) Ε [𝑌

Τ

𝑛
𝑄𝑌𝑛] .

(24)

Let

𝑘 = max{1 +
(−𝜇1 + 𝜇2) Δ𝑡 (2𝜃 − 1)

2𝜃 − 1 − (−𝜇1 + 𝜇2) Δ𝑡𝜃2
,

(
𝜇2

((1 − 𝜆2) 𝜇2 + 𝜆2𝜇1)
)

1/𝑚

} ;

(25)

we can deduce that 0 < 𝑘 < 1.
By induction, the following results are obtained from (24):

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1]

≤ 𝑘
𝑛+1

Ε [𝑥
Τ

0
𝑄𝑥0] − 2Δ𝑡𝜇2

𝑛

∑

𝑗=0

𝑘
𝑛−𝑗

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗]

+ 2Δ𝑡 ((1 − 𝜆
2
) 𝜇2 + 𝜆

2
𝜇1)

𝑛

∑

𝑗=0

𝑘
𝑛−𝑗

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗] .

(26)

Using condition (14), we can get the following inequality:
𝑛

∑

𝑗=0

𝑘
𝑛−𝑗

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗] ≤ 𝑚𝑘

𝑛−𝑚+1 max
−𝑚≤𝑗≤−1

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗]

+ 𝑘
−𝑚

𝑛−𝑚+1

∑

𝑗=0

𝑘
𝑛−𝑗

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗] .

(27)

Therefore,

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1] ≤ 𝑘

𝑛+1
(Ε [𝑥

Τ

0
𝑄𝑥0]

+ 2𝜏 ((1 − 𝜆
2
) 𝜇2 + 𝜆

2
𝜇1) 𝑘
−𝑚 max
−𝑚≤𝑗≤−1

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗])

− 2Δ𝑡 (𝜇2 − ((1 − 𝜆
2
) 𝜇2 + 𝜆

2
𝜇1) 𝑘
−𝑚

)

⋅

𝑛−𝑚+1

∑

𝑗=0

𝑘
𝑛−𝑗

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗] .

(28)

It can be deduced from (28) and (25) that −(𝜇2 − ((1 − 𝜆
2
)𝜇2 +

𝜆
2
𝜇1)𝑘
−𝑚

) ≤ 0, so, we can have the following inequality:

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1] ≤ 𝑘

𝑛+1
(Ε [𝑥

Τ

0
𝑄𝑥0]

+ 2𝜏 ((1 − 𝜆
2
) 𝜇2 + 𝜆

2
𝜇1) 𝑘
−𝑚 max
−𝑚≤𝑗≤−1

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗]) .

(29)

On the other hand, we know that
𝑦𝑛+1

 =
𝑦𝑛+1 − 𝑁𝑦𝑛+1−𝑚 + 𝑁𝑦𝑛+1−𝑚



≤
𝑥𝑛+1

 +
𝑁𝑦𝑛+1−𝑚

 ,

(30)

then we get

Ε [𝑦
Τ

𝑛+1
𝑄𝑦𝑛+1] ≤ 2Ε [𝑥

Τ

𝑛+1
𝑄𝑥𝑛+1]

+ 2𝜆
2
Ε [𝑦
Τ

𝑛+1−𝑚
𝑄𝑦𝑛+1−𝑚] ;

(31)
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define

𝜀0 = 𝑘
𝑛+1

(Ε [𝑥
Τ

0
𝑄𝑥0] + 2𝜏 ((1 − 𝜆

2
) 𝜇2 + 𝜆

2
𝜇1) 𝑘
−𝑚

⋅ max
−𝑚≤𝑗≤−1

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗]) ;

(32)

the following inequality could be deduced from (31):

Ε [𝑦
Τ

𝑛+1
𝑄𝑦𝑛+1] ≤

2

1 − 2𝜆2
𝜀0

+ (2𝜆
2
)
⌊𝑛/𝑚⌋+1

max
−𝑚≤𝑗≤−1

Ε [𝑦
Τ

𝑗
𝑄𝑦𝑗] ,

(33)

which implies that the method is asymptotically mean square
stable.

For the case that 𝜃 ∈ [0, 1/2), with the hypothesis (18) and
(22) we can obtain the following inequality:

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1]

≤ Ε [𝑥
Τ

𝑛
𝑄𝑥𝑛]

+ Δ𝑡 ((1 − 2𝜃) Δ𝑡𝐾1 − 2𝜇1) Ε [𝑌
Τ

𝑛
𝑄𝑌𝑛]

+ Δ𝑡 ((1 − 2𝜃) Δ𝑡𝐾2 + 2𝜇2) Ε [𝑌
Τ

𝑛
𝑄𝑌] .

(34)

A combination of (13) and (18) gives

𝑥
Τ

𝑛
𝑄𝑥𝑛 ≤ 𝐿1𝑌

Τ

𝑛
𝑄𝑌𝑛 + 𝐿2𝑌

Τ

𝑛
𝑄𝑌𝑛,

(35)

where 𝐿1 = (1+𝜃Δ𝑡)(2+𝜃Δ𝑡𝐾1), 𝐿2 = (1+𝜃Δ𝑡)(2𝜆
2
+𝜃Δ𝑡𝐾2).

Let

Δ𝑡0 =

{{{

{{{

{

+∞, 𝜃 =
1

2
,

−2 (−𝜇1 + 𝜇2)

(1 − 2𝜃) (𝐾1 + 𝐾2)
, 𝜃 ∈ [0,

1

2
) ;

(36)

then, for any fixed Δ𝑡 ∈ (0, Δ𝑡0), 2(−𝜇1+𝜇2)+Δ𝑡(1−2𝜃)(𝐾1+

𝐾2) < 0, there exists a small positive number 𝜀 such that

2 (−𝜇1 + 𝜇2) + Δ𝑡 (1 − 2𝜃) (𝐾1 + 𝐾2) +
𝐿1 + 𝐿2

Δ𝑡
𝜀

< 0.

(37)

Therefore,

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1]

≤ (1 − 𝜀) Ε [𝑥
Τ

𝑛
𝑄𝑥𝑛]

+ Δ𝑡 ((1 − 2𝜃) Δ𝑡𝐾1 − 2𝜇1 +
𝐿1

Δ𝑡
𝜀) Ε [𝑌

Τ

𝑛
𝑄𝑌𝑛]

+ Δ𝑡 ((1 − 2𝜃) Δ𝑡𝐾2 + 2𝜇2 +
𝐿2

Δ𝑡
𝜀) Ε [𝑌

Τ

𝑛
𝑄𝑌𝑛] .

(38)

Let �̃� = max{1 − 𝜀, (((1 − 2𝜃)Δ𝑡𝐾2 + 2𝜇2 + (𝐿2/Δ𝑡)𝜀)/ − ((1 −

2𝜃)Δ𝑡𝐾1 − 2𝜇1 + (𝐿1/Δ𝑡)𝜀))
1/𝑚

}; then 0 < �̃� < 1. Similar to

the derivation of the first part, the following inequality can be
proved from (38):

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1]

≤ 𝑘
𝑛+1

(Ε [𝑥
Τ

0
𝑄𝑥0] + �̃��̃�

−𝑚

max
−𝑚≤𝑗≤−1

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗]) ,

(39)

where �̃� = 𝜏((1 − 2𝜃)Δ𝑡𝐾2 + 2𝜇2 + (𝐿2/Δ𝑡)𝜀).
Similar to the proof of (31), we can prove that when Δ𝑡 ∈

(0, Δ𝑡0) the method is asymptotically mean square stable; the
proof of theorem is completed.

Remark 8. For system (1) with 𝑁 = 0, it becomes a stochastic
delay differential equation; the mean square stability of the
theta method has been studied in [16]; Theorem 7 can be
regarded as an extension of Theorem 3.4 presented in [16].

Remark 9. For the NSDDEs, the mean square asymptotic
stability of the BEM method has been studied by Wang and
Chen in [15]; it has shown that BEM method can reproduce
the mean square stability of the exact solutions; Theorem 7
improves the result in [15].

4. Mean Square Dissipativity

The numerical solutions’ long time dynamic behavior will
be studied in this section. Before it, we make the following
hypothesis: assume that there exist a symmetric, positive
definite 𝑑 × 𝑑 matrix 𝑄 and positive constants 𝜇1, 𝜇2, and
𝛾 such that, for all (𝑡, 𝑥, 𝑦) ∈ 𝑅+ × 𝑅

𝑑
× 𝑅
𝑑, the following

inequality exists:

[𝑥 − 𝑁 (𝑦)]
Τ

𝑄𝑓 (𝑡, 𝑥, 𝑦)

+
1

2
trace [𝑔

Τ
(𝑡, 𝑥, 𝑦) 𝑄𝑔 (𝑡, 𝑥, 𝑦)]

≤ 𝛾 − 𝜇1𝑥
Τ
𝑄𝑥 + 𝜇2𝑦

Τ
𝑄𝑦.

(40)

Now we state and prove some conclusions.

Definition 10 (see [16]). Assume that system (1) satisfies (40).
The numerical method is said to be dissipative if when the
method is applied to problem (1) with constraint 𝜏 = 𝑚ℎ,
there exists a constant𝐶 such that, for any initial values, there
exists 𝑛0, depending only on initial values 𝜑(𝑡), such that

Ε [𝑦
Τ

𝑛
𝑄𝑦𝑛] ≤ 𝐶, 𝑛 ≥ 𝑛0. (41)

Theorem 11. Assume that system (1) satisfies (40); there exists
a constant 𝐶 such that, for any initial values, there exists 𝑛0
depending only on the initial values 𝜑(𝑡), when 𝑛 ≥ 𝑛0, the
numerical solution 𝑦𝑛 generated by the SST method (13)–(15)
with 𝜃 ∈ (1/2, 1], such that

Ε [𝑦
Τ

𝑛
𝑄𝑦𝑛] ≤ 𝐶. (42)
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Proof. Consider (21) and (40); the following inequality can be
obtained:

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1] ≤ Ε [𝑥

Τ

𝑛
𝑄𝑥𝑛] + 2Δ𝑡𝛾

+ 2Δ𝑡Ε (−𝜇1𝑌
Τ

𝑛
𝑄𝑌𝑛 + 𝜇2𝑌

Τ

𝑛
𝑄𝑌𝑛) + (1 − 2𝜃)

⋅ Δ𝑡
2
𝑓
Τ

(𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) 𝑄𝑓 (𝑡𝑛 + 𝜃Δ𝑡, 𝑌𝑛, 𝑌𝑛) .

(43)

We can get the following inequality the same as the derivation
of (28):

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1] ≤ 𝑘

𝑛+1
(Ε [𝑥

Τ

0
𝑄𝑥0]

+ 2𝜏 ((1 − 𝜆
2
) 𝜇2 + 𝜆

2
𝜇1) 𝑘
−𝑚 max
−𝑚≤𝑗≤−1

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗])

− 2Δ𝑡 (𝜇2 − ((1 − 𝜆
2
) 𝜇2 + 𝜆

2
𝜇1) 𝑘
−𝑚

)

⋅

𝑛−𝑚+1

∑

𝑗=0

𝑘
𝑛−𝑗

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗] + 2Δ𝑡𝛾

𝑛

∑

𝑗=0

𝑘
𝑗
,

(44)

where 0 < 𝑘 < 1 is the same as defined in (25).
Because −(𝜇2 − ((1 − 𝜆

2
)𝜇2 + 𝜆

2
𝜇1)𝑘
−𝑚

) ≤ 0, we have the
following inequality:

Ε [𝑥
Τ

𝑛+1
𝑄𝑥𝑛+1] ≤ 𝑘

𝑛+1
(Ε [𝑥

Τ

0
𝑄𝑥0]

+ 2𝜏 ((1 − 𝜆
2
) 𝜇2 + 𝜆

2
𝜇1) 𝑘
−𝑚 max
−𝑚≤𝑗≤−1

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗])

+
2𝛾Δ𝑡

1 − 𝑘
.

(45)

Let

𝜀1 = 𝑘
𝑛+1

(Ε [𝑥
Τ

0
𝑄𝑥0] + 2𝜏 ((1 − 𝜆

2
) 𝜇2 + 𝜆

2
𝜇1) 𝑘
−𝑚

⋅ max
−𝑚≤𝑗≤−1

Ε [𝑌
Τ

𝑗
𝑄𝑌𝑗]) +

2𝛾Δ𝑡

1 − 𝑘
;

(46)

the following inequality could be deduced from (31):

Ε [𝑦
Τ

𝑛+1
𝑄𝑦𝑛+1] ≤ 2Ε [𝑥

Τ

𝑛+1
𝑄𝑥𝑛+1]

+ 2𝜆
2
Ε [𝑦
Τ

𝑛+1−𝑚
𝑄𝑦𝑛+1−𝑚]

≤ 2𝜀1 + 2𝜆
2
Ε [𝑦
Τ

𝑛+1−𝑚
𝑄𝑦𝑛+1−𝑚] ≤ 𝐶,

(47)

where 𝐶 = 2𝜀1/(1 − 2𝜆
2
) + 𝜀. The theorem is completed.

Theorem 11 means that the discrete system possesses a
bounded absorbing set in the sense of mean square. The
numerical solution trajectory from any initial date will enter
the set in a finite time and thereafter remain inside. It is called
mean square dissipativity.

Remark 12. For the study of the dissipativity of numerical
methods for deterministic delay differential equations with
constant delays, Huang andChang studied the dissipativity of
Runge-Kutta methods and multistep Runge-Kutta methods
in [21, 22].

5. The Numerical Experiment

In this section, we will give a numerical experiment to illus-
trate the stability and dissipativity result obtained in Sections
3 and 4. Consider the following nonlinear scalar neutral
stochastic delay differential equation:

𝑑 [𝑦 (𝑡) − 0.25 sin (𝑦 (𝑡 − 1))]

= [−8𝑦 (𝑡) + sin (𝑦 (𝑡 − 1))] 𝑑𝑡 + 𝑦 (𝑡 − 1) 𝑑𝑊 (𝑡) ,

𝑡 ≥ 0,

𝑦 (𝑡) = 𝑡 + 1, − 1 ≤ 𝑡 ≤ 0.

(48)

It is easy to verify that nonlinear neutral stochastic
delay differential equation (48) satisfies the conditions of
Theorem 7; the corresponding parameters are given as fol-
lows:

𝜆 =
1

4
,

𝜇1 = 8,

𝜇2 =
1

2
,

𝐾1 = 64,

𝐾2 = 1,

Δ𝑡0 =

{{{

{{{

{

+∞, 𝜃 =
1

2

0.2884, 𝜃 ∈ (0,
1

2
) .

(49)

The initial condition is given by 𝑦(𝑡) = 𝑡 + 1, 𝑡 ∈

[−1, 0], where we take 𝜏 = 1. In the following tests, we
show the influence of step size Δ𝑡 and the parameter 𝜃 on
M-S stability of the SST method; the data used in all figures
are obtained by the mean square of data by 200 trajectories;
that is, Ε𝑦

2

𝑛
≈ (1/200) ∑

200

𝑖=1
[𝑦
(𝑖)

𝑛
]
2, Ε𝑦𝑛 ≈ (1/200) ∑

200

𝑖=1
𝑦
(𝑖)

𝑛
,

where 𝑦
(𝑖)

𝑛
denotes the numerical solution of 𝑦(𝑡𝑛) in the 𝑖th

trajectory.
Taking step sizes Δ𝑡 = 0.1, Δ𝑡 = 0.2, Δ𝑡 = 0.3,

and Δ𝑡 = 0.6, we obtain the numerical solutions of (48),
and the numerical solutions are displayed in Figures 1–6,
respectively. We can see that when 𝜃 = 0.6, the SST method
is asymptotically mean square stable for all the step sizes
selected, but when 𝜃 = 0.1, the SST method is asymptotically
mean square stable only for the step sizes Δ𝑡 ≤ 0.2884; it is
not mean square stable for the step sizes Δ𝑡 > 0.2884.
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Figure 1: Mean square stability of SST method with 𝜃 = 0.6 and
Δ𝑡 = 0.1.
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Figure 2: Mean square stability of SST method with 𝜃 = 0.6 and
Δ𝑡 = 0.6.
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Figure 3: Mean square stability of SST method with 𝜃 = 0.1 and
Δ𝑡 = 0.1.
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Figure 4: Mean square stability of SST method with 𝜃 = 0.1 and
Δ𝑡 = 0.2.
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Figure 5: Unstable test for SST method with 𝜃 = 0.1 and Δ𝑡 = 0.3.
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Figure 6: Unstable test for SST method with 𝜃 = 0.1 and Δ𝑡 = 0.6.
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