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“Leaky” vaccines are those for which vaccine-induced protection reduces infection rates on a per-exposure basis, as opposed to “all-
or-none” vaccines, which reduce infection rates to zero for some fraction of subjects, independent of the number of exposures. Leaky
vaccines therefore protect subjects with fewer exposures at a higher effective rate than subjects with more exposures. This simple
observation has serious implications for analysis methodologies that rely on the assumption that the vaccine effect is homogeneous
across subjects. We argue and show through examples that this heterogeneous vaccine effect leads to a violation of the proportional
hazards assumption, to incomparability of infected cases across treatment groups, and to nonindependence of the distributions of
the competing failure processes in a competing risks setting. We discuss implications for vaccine efficacy estimation, correlates of
protection analysis, and mark-specific efficacy analysis (also known as sieve analysis).

1. Introduction

Public health vaccines have reduced the global burden of
disease considerably over the past century. Statistical design
and analysis of vaccine efficacy trials are well-studied and
critical components of the development of these interven-
tions. As discussed in [1], analysis of vaccine interventions
is usually complicated by the unobservability of exposure.
Even when exposure rates are constant across subjects, the
stochastic nature of exposures means that some subjects will
experience no exposures while others may experience multi-
ple exposures. Except in challenge trials in which exposure
is controlled by the experimental setting, or in controlled
scenarios in which exposure is estimable; the missingness
of exposure times poses a challenge to estimation of per-
exposure vaccine efficacy.

Vaccine efficacy has multiple definitions (see [2] for a
thorough review), including per-exposure reduction in sus-
ceptibility, which is distinct from reduction in instantaneous
hazard of infection and also from reduction in overall (attack)
rate of infection. These definitions coincide in some settings
but generally are not the same. It has been shown that

the mechanism of the vaccine’s protection is relevant to
the relationship among these kinds of efficacy, with “leaky”
vaccines (defined as those modifying per-exposure infection
rates for all subjects equally) at one extreme and “all-or-none”
vaccines (which completely protect some subjects and have
no effect on the others) at the other extreme.While for all-or-
none vaccines the overall attack rate is reduced by the fraction
of recipients that have protective responses, for leaky vaccines
the attack rate is reduced by an amount that depends on the
number of exposures that each subject experiences.

If each subject experiences exactly one exposure during
the trial, then a leaky vaccine reducing susceptibility by 50%
has the same attack-rate efficacy as an all-or-none vaccine that
fully protects 50% of the subjects. Here we focus on examples
such as HIV-1 vaccine trials, in which multiple exposures
are possible and in which some (or many) participants will
experience no exposures at all. In such settings, the effect
of a partially efficacious leaky vaccine is to reduce attack
rates for subjects who experience one exposure more than
for subjects who experience multiple exposures, since each
exposure has an independent opportunity to infect. Although
in this setting reinfection is possible, we assume that the
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endpoint of interest is initial infection only, so that infected
subjects are removed from the at-risk population.

In this paper, we consider the analysis of leaky vaccines
when there is heterogeneity in subjects’ infecting exposure
distributions (defined as either heterogeneity in exposure or
in per-exposure infection susceptibility or both). Through
arguments and simulation, [3] have previously shown that,
for this scenario, the assumption of proportional hazards
(that is usually required for Cox modeling) is violated.
Here we restate these arguments and consider additional
implications for survival analysis in the setting of competing
risks. We argue that the conditional distribution of exposure
rates, given infection status, depends on both time and
treatment assignment, which implies not only that the hazard
ratio varies over time (reflecting variation in the risk group
distribution among the “at-risk” uninfected population) but
also that the risk group distribution varies among those
infected—both over time and across treatment groups. We
discuss general implications of this observation for vaccine
efficacy analysis methods and for immune correlates analysis
methods, including case-onlymethods (which save resources
by evaluating covariates only among the subjects who became
infected in a trial), and for competing risks settings. We
review proofs for two mark-specific efficacy analysis (also
called “sieve analysis”) methodologies and show that the
proofs do not apply in this setting, leading to a potential bias
in these analyses.We conclude that in the absence of exposure
data, failure time and failure type data alone are insufficient
to distinguish per-exposure vaccine efficacy that varies across
subjects from per-exposure vaccine efficacy that varies across
marks of the failure.

2. Materials and Methods

2.1. Notation and Definitions. In this section, we introduce
the notation and examples that wewill use to demonstrate the
implications of risk heterogeneity for evaluating the efficacy
of leaky vaccines. We assume a setting of a well-conducted
placebo-controlled randomized clinical trial to evaluate a
vaccine intervention, where the effect of the intervention
is to reduce the per-exposure infection probability by a
(multiplicative) factor 𝜂, so that if for a subject the probability
of infection given one exposure is 𝜙𝑝 in the absence of the
intervention, it is 𝜙V = 𝜂𝜙𝑝 if the subject is assigned to the
vaccine treatment group.

As shown in [1], for nonharmful vaccines, the vaccine
effect can be seen as a filter on each subject’s infecting
exposure process 𝑁, which is itself a filtered version of
the exposure counting process 𝐸. That is, for an arbitrary
process 𝐸(𝑡) counting a placebo recipient’s exposures up
to time 𝑡, an infection occurs with probability 𝜙𝑝 for each
time 𝑡 at which the exposure count increases. For vaccine
recipients this probability is reduced to 𝜙V = 𝜙𝑝𝜂, where
with probability 1 − 𝜂 the would-be-infection is avoided
due to the vaccine intervention. With minor adjustments the
arguments in this paper can be adapted to apply to vaccines
that could induce harm, such that the vaccine is not providing
an additional filter but is modifying and possibly increasing

the rate at which exposures become infections; for simplicity
of presentation we will proceed with the assumption that
0 < 𝜂 < 1.

We assume that we do not observe the exposure processes
at all; we are given data of the form of per-subject pairs
(𝑇,𝑀) representing the observed part of the latent pair of
processes (𝐼, 𝐶), where 𝐼 is the time at which the subject’s
infection count 𝑁 increases from zero to one and 𝐶 is the
right-censoring time.We only observe one value of this latent
pair, 𝑇 ≡ min(𝐼, 𝐶). 𝑀 = 1 indicates missingness of the
infection time (𝑀 = 1 means that 𝑇 = 𝐶). We assume
conditions of noninformative censoring, such that 𝐼:𝐶. The
arguments are easily extended to a setting in which the right-
censored values are used to improve estimates of efficacy,
but henceforth we consider only the uncensored data (except
when explicitly addressing the assumption in the context of
competing risks analysis).

We define three distinct notions of vaccine efficacy, based
on different quantities. First we define the attack rate for
treatment group 𝑥 (vaccine recipients have 𝑥 = V and placebo
recipients have 𝑥 = 𝑝) as 𝑎𝑥 = Pr(𝑇 < 𝜏 | 𝑥). Then
the attack-rate vaccine efficacy VE𝑎 = 1 − 𝑎V/𝑎𝑝 is the
reduction in the total fraction of infected subjects due to the
vaccine.The per-exposure vaccine efficacy VE𝜙 = 1−𝜙V/𝜙𝑝 is
the reduction in the per-exposure susceptibility to infection
due to the vaccine. Finally we define the hazard-rate vaccine
efficacy VE𝜆 = 1 − 𝜆V(𝜏)/𝜆𝑝(𝜏), where for each treatment
group 𝑥 the infection hazard is 𝜆𝑥(𝑡) = lim𝑑↘0Pr(𝑁(𝑡 + 𝑑) =

1 | 𝑥,𝑁(𝑡) = 0)/𝑑, the instantaneous rate of infection
just after time 𝑡 given noninfection up to time 𝑡. The set of
subjects with treatment assignment 𝑥 that are not infected
up to time 𝑡 is called the at-risk group 𝑅𝑥(𝑡), and the set
of subjects already infected by time 𝑡 is called the infected
group 𝐼𝑥(𝑡).

2.2. Risk Groups. We assume for simplicity of presentation
that there are two risk groups. We allow that some fraction
𝜋ℎ of subjects is “high risk,” by which we mean that the
exposure rates are higher for these subjects, and in particular
that both single and multiple exposures are more likely for
these subjects. Since a “leaky” vaccine only protects a subject
if every exposure is noninfecting, the attack-rate VE is higher
for low-risk subjects than for high-risk subjects. For example,
if the vaccine effect reduces per-exposure susceptibility by
𝜂 = 50%, and if low-risk subjects tend to have about one
exposure during the trial and high-risk subjects tend to have
about nine exposures, then about half of the low-risk subjects
will be protected while about 0.5

9
= 0.2% of the high-risk

subjects will be protected. This implies that the fraction of
high- (versus low-) risk subjects among the infected vaccine
recipients will differ from that fraction among the infected
placebo recipients.

For illustration, we suppose arbitrarily that the baseline
hazard function is constant, as in the exponential model.
Under this model, an infection event occurs in a low-risk
placebo recipient at a time-constant rate 𝜆𝑙, which can be
written as the low-risk marginal rate of an exposure 𝜆

𝐸

𝑙

times the conditional probability 𝜙𝑙𝑝 that the exposure will
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infect the low-risk placebo recipient: 𝜆𝑙 ≡ 𝜆
𝐸

𝑙
𝜙𝑙𝑝. For high-

risk subjects we have corresponding infecting exposure rate
𝜆ℎ ≡ 𝜆

𝐸

ℎ
𝜙ℎ𝑝. Because of the memoryless property of the

exponential model, these rates are equivalently viewed as
hazards.

The fraction 𝑎𝑙𝑝 of low-risk placebo recipients that will
become infected is the fraction having infecting exposure
times 𝑇 that exceed the trial duration 𝜏. Since we assume
independence across subjects, under the exponential model
the number of infected low-risk placebo recipients follows
a binomial distribution with proportion 𝑎𝑙𝑝 given by the
probability that a Poisson-distributed random variable (with
rate 𝜆𝑙𝜏) counting infecting exposures exceeds zero: 𝑎𝑙𝑝 ≡ 1−

𝑒
−𝜆𝑙𝜏. Similarly the number of the high-risk placebo recipients
that will become infected is given by a binomial distribution
with proportion 𝑎ℎ𝑝 ≡ 1 − 𝑒

−𝜆ℎ𝜏.

2.3. VE𝑎 under Heterogeneous Risk. A leaky vaccine with
multiplicative vaccine effect 𝜂 = 𝜙𝑙V/𝜙𝑙𝑝 = 𝜙ℎV/𝜙ℎ𝑝

(corresponding to a VE𝜙 of 1 − 𝜂) will result in overall attack
rates 𝑎𝑙V = 1 − 𝑒

−𝜆𝑙𝜏𝜂 and 𝑎ℎV = 1 − 𝑒
−𝜆ℎ𝜏𝜂 among low-

and high-risk vaccine recipients, respectively. If the vaccine
is partially efficacious then 0 < 𝜂 < 1, and 𝑎ℎV < 𝑎ℎ𝑝 and
𝑎𝑙V < 𝑎𝑙𝑝, so the vaccine reduces the probability of being
infected for both high- and low-risk participants. However,
the reduction is not the same for high-risk participants as for
low-risk participants, since 𝜆ℎ > 𝜆𝑙 implies that

(
𝑎ℎV

𝑎ℎ𝑝

=
1 − 𝑒
−𝜆ℎ𝜂𝜏

1 − 𝑒−𝜆ℎ𝜏
) > (

𝑎𝑙V

𝑎𝑙𝑝

=
1 − 𝑒
−𝜆𝑙𝜂𝜏

1 − 𝑒−𝜆𝑙𝜏
) . (1)

The direction of the inequality is reversed for harmful
vaccines (with 𝜂 > 1).

2.4. Differential Enrichment of High-Risk Infected Subjects
across Treatment Groups. This differential attack-rate efficacy
by risk group results in a different proportion of high-risk
participants among infected subjects at the end of the trial
across the two treatment groups. To see this, consider that
if the beginning-of-trial probability of being high risk is 𝜋ℎ,
then we can define the conditional probability 𝛾ℎ𝑥 of being
high risk for subjects in the infected group 𝐼𝑥(𝜏) in terms of
the posterior odds 𝛾ℎ𝑝/(1 − 𝛾ℎ𝑝) ≡ (𝜋ℎ/(1 − 𝜋ℎ))(𝑎ℎ𝑝/𝑎𝑙𝑝) for
placebo recipients and 𝛾ℎV/(1 − 𝛾ℎV) ≡ (𝜋ℎ/(1 − 𝜋ℎ))(𝑎ℎV/𝑎𝑙V)

for vaccinees.
For partially efficacious vaccines with 0 < 𝜏 < 1, since

the vaccine reduces low-risk infections more than high-risk
infections, 𝑎𝑙V/𝑎𝑙𝑝 < 𝑎ℎV/𝑎ℎ𝑝. This results in an enrichment
of high-risk participants among the infected vaccinees as
compared with the infected placebo recipients: 𝛾ℎV > 𝛾ℎ𝑝. For
a harmful vaccine, this inequality is reversed.

2.5. Differential Enrichment of High-Risk at-Risk Subjects
across Treatment Groups. This correspondingly results in a
different proportion of high-risk participants among subjects
remaining at-risk at the end of the trial across the two
treatment groups. The posterior odds of being high risk

among those remaining uninfected are 𝜔ℎ𝑝/(1 − 𝜔ℎ𝑝) ≡

(𝜋ℎ/(1 − 𝜋ℎ))((1 − 𝑎ℎ𝑝)/(1 − 𝑎𝑙𝑝)) for placebo recipients and
𝜔ℎV/(1−𝜔ℎV) ≡ (𝜋ℎ/(1−𝜋ℎ))((1−𝑎ℎV)/(1−𝑎𝑙V)) for vaccinees.

If (1 − 𝑎ℎ𝑝)/(1 − 𝑎𝑙𝑝) < (1 − 𝑎ℎV)/(1 − 𝑎𝑙V), or equivalently
if (1 − 𝑎𝑙V)/(1 − 𝑎𝑙𝑝) < (1 − 𝑎ℎV)/(1 − 𝑎ℎ𝑝), then this
results in an enrichment of high-risk participants among
the uninfected vaccinees as compared with the uninfected
placebo recipients: 𝜔ℎV > 𝜔ℎ𝑝. This condition is met if both
𝑎𝑙V/𝑎𝑙𝑝 < 𝑎ℎV/𝑎ℎ𝑝 and (𝑎ℎ𝑝 − 𝑎ℎV) > (𝑎𝑙𝑝 − 𝑎𝑙V), since we can
write

1 − 𝑎𝑙V

1 − 𝑎𝑙𝑝

<
1 − 𝑎ℎV

1 − 𝑎ℎ𝑝

as 𝑎𝑙V𝑎ℎ𝑝 + (𝑎𝑙𝑝 − 𝑎𝑙V) < 𝑎ℎV𝑎𝑙𝑝 + (𝑎ℎ𝑝 − 𝑎ℎV) .

(2)

For a partially efficacious vaccine we have shown that
𝑎𝑙V/𝑎𝑙𝑝 < 𝑎ℎV/𝑎ℎ𝑝, which implies that 𝑎𝑙V𝑎ℎ𝑝 < 𝑎ℎV𝑎𝑙𝑝, so if also
(𝑎ℎ𝑝 − 𝑎ℎV) > (𝑎𝑙𝑝 − 𝑎𝑙V), then the condition in (2) is satisfied.

We may still have 𝜔ℎV > 𝜔ℎ𝑝 despite not satisfying (𝑎ℎ𝑝 −

𝑎ℎV) > (𝑎𝑙𝑝 − 𝑎𝑙V) and 𝑎𝑙V/𝑎𝑙𝑝 < 𝑎ℎV/𝑎ℎ𝑝. The general condition
is that

𝑎ℎV𝑎𝑙𝑝 − 𝑎𝑙V𝑎ℎ𝑝 > (𝑎𝑙𝑝 − 𝑎𝑙V) − (𝑎ℎ𝑝 − 𝑎ℎV) . (3)

2.6. Summary. In this section we have shown that, for
leaky vaccines, subject heterogeneity in risk results in time
variation of VE𝑎 = 1 − 𝑎V/𝑎𝑝, where the values 𝑎𝑥 (for 𝑥 ∈

{V, 𝑝}) are the marginal attack rates for vaccine and placebo
recipients. We have shown that this implies a change in the
composition of both the infected group 𝐼𝑥(𝑡) and in the at-risk
group 𝑅𝑥(𝑡) over time such that for both vaccine and placebo
recipients the proportion of high-risk subjects is higher in the
infected group than in the at-risk group by the end of the
trial.Wehave shown that this effect differs by treatment group
such that for partially protective leaky vaccines, the fraction
𝛾ℎV of high-risk subjects among those infected in the vaccine
group is higher than the fraction 𝛾ℎ𝑝 of high-risk subjects
among those infected in the placebo group. Finally we have
shown that the proportion of high-risk subjects among those
remaining at-risk at the end of the trialmay be higher or lower
in the vaccine group as compared with the placebo group; the
crucial point is that in general one should not expect that the
at-risk groups have the samedistribution of high-risk subjects
across treatments arms.

3. Results and Discussion

Next, we turn to implications of these observations. First, we
show, as has been shown previously, that VE𝜆 changes over
time or equivalently that the hazard proportion is inconstant.
Then we discuss implications of the risk imbalance in the
infected group for introducing bias into correlates of protec-
tion analysis whenever a putative correlate of protection is
also a correlate of placebo-recipient risk. Finally, we discuss
implications of the risk imbalance in the at-risk group in a
competing risks analysis and show that this risk imbalance
violates conditions required for the correctness of proofs
of unbiasedness for two sieve analysis methods for leaky
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vaccines, with the implication that the proven unbiasedness
is only guaranteed if subject risk is homogeneous.

3.1. Implications for the Proportional Hazards Assumption.
The differential efficacy for high-risk and low-risk subjects
has the effect of inducing a violation of the proportional
hazards assumption for the marginal hazards, even if it holds
separately for the low-risk hazards and the high-risk hazards.
Each marginal hazard function is a mixture of the two risk-
group hazards, and the mixing proportion changes over time
differently for placebo recipients than for vaccine recipients
as the at-risk frequencies diverge due to different rates of
infection in the two risk groups.

The marginal hazard rate of infection is a mixture over
high- and low-risk subjects. At the beginning of the trial the
marginal hazard for placebo recipients is 𝜆𝑝(0) ≡ 𝜋ℎ𝜆ℎ + (1−

𝜋ℎ)𝜆𝑙. This changes over the trial, since 𝜆𝑝(𝜏) ≡ 𝜔ℎ𝑝𝜆ℎ + (1 −

𝜔ℎ𝑝)𝜆𝑙.The change is due to a shiftingmixing proportion, and
it appears even when there are constant hazards within each
risk group.

For vaccine recipients, there is also a change in the
marginal hazard over the course of the trial, but the change
is different than for placebo recipients. At the beginning of
the trial the marginal hazard for vaccine recipients is 𝜆V(0) ≡

𝜋ℎ𝜆ℎ𝜂 + (1 − 𝜋ℎ)𝜆𝑙𝜂. At the end of the trial, 𝜆V(𝜏) ≡ 𝜔ℎV𝜆ℎ𝜂 +

(1 − 𝜔ℎV)𝜆𝑙𝜂.
If the study enrolls 𝑛 vaccine recipients, 𝑛 ∗ 𝜋ℎ of whom

are high risk, then a 𝑎𝑙V infection rate among low-risk vaccine
recipients (and a corresponding 𝑎ℎV among the high-risk
vaccinees) over the course of the trial yields a difference in
the ratio of high : low risk at-risk subjects from 𝜋ℎ at the
beginning to 𝜔ℎV at the end. Since the high-risk hazard rate
is 𝜆ℎ/𝜆𝑙 times the low-risk hazard rate 𝜆𝑙, then the marginal
hazard goes from ((1 − 𝜋ℎ)𝜆𝑙𝜂 + 𝜋ℎ(𝜆ℎ/𝜆𝑙)𝜆𝑙𝜂) = (1 − 𝜋ℎ +

𝜋ℎ(𝜆ℎ/𝜆𝑙))𝜆𝑙𝜂 to ((1 − 𝜔ℎV)𝜆𝑙𝜂 + 𝜔ℎV(𝜆ℎ/𝜆𝑙)𝜆𝑙𝜂) = (1 − 𝜔ℎV +

𝜔ℎV(𝜆ℎ/𝜆𝑙))𝜆𝑙𝜂. The vaccine recipient hazard is 1 − (1 − 𝜔ℎV +

𝜔ℎV(𝜆ℎ/𝜆𝑙))/(1 − 𝜋ℎ + 𝜋ℎ(𝜆ℎ/𝜆𝑙)) times 100% lower at the
end of the trial than at the beginning. The placebo recipient
hazard is correspondingly 1−(1−𝜔ℎ𝑝+𝜔ℎ𝑝(𝜆ℎ/𝜆𝑙))/(1−𝜋ℎ+

𝜋ℎ(𝜆ℎ/𝜆𝑙)) times 100% lower at the end of the trial than at the
beginning.

Unless the end-of-trial rates of high-risk subjects among
the uninfected are the same for both treatment groups (i.e.,
unless 𝜔ℎ𝑝 = 𝜔ℎV), the hazard ratio (vaccine to placebo)
will also differ at the end of the trial. The marginal hazards
ratio at the beginning of the trial is 𝜆V(0)/𝜆𝑝(0) = (𝜋ℎ𝜆ℎ𝜂 +

(1 − 𝜋ℎ)𝜆𝑙𝜂)/(𝜋ℎ𝜆ℎ + (1 − 𝜋ℎ)𝜆𝑙). At the end of the trial it is
𝜆V(𝜏)/𝜆𝑝(𝜏) = (𝜔ℎV𝜆ℎ𝜂+ (1−𝜔ℎV)𝜆𝑙𝜂)/(𝜔ℎ𝑝𝜆ℎ + (1−𝜔ℎ𝑝)𝜆𝑙).
These are equal only when 𝜔ℎV = 𝜔ℎ𝑝 = 𝜋ℎ, and never for
leaky vaccines with heterogeneous risk.

We demonstrate the situation with a simple example of
a leaky vaccine with about 𝑎𝑙𝑝 = 4% of low-risk placebo
recipients becoming infected over the unit-time course of
the trial (corresponding to a low-risk infecting exposure rate
of 𝜆𝑙 = 0.04) and about 𝑎ℎ𝑝 = 36% of high-risk placebo
recipients becoming infected (corresponding to a high-risk
instantaneous infecting exposure rate of 𝜆ℎ = 0.446). We
suppose a leaky vaccine that reduces the infection probability
by 𝜂 = 50% per exposure, which corresponds to 𝑎𝑙V = 2%

of low-risk vaccinees and 𝑎ℎV = 20% of high-risk vaccinees
becoming infected over the course of the trial. We suppose
that, at the start of the trial, 𝜋ℎ = 5% of participants are high
risk.

If the study enrolls 100 vaccine recipients, 5 of whom are
high risk, then a 2% infection rate among low-risk vaccine
recipients (and a corresponding 20% among the high-risk
vaccinees) over the course of the trial yields a difference in
the mixture of high : low risk hazards from 5 : 95 (𝜋ℎ = 5%)
at the beginning to 4 : 93 (𝜔ℎV = 4.1%). Since in our example
the high-risk hazard rate 𝜆ℎ is about eleven times the low-
risk hazard rate 𝜆𝑙, then the marginal vaccine hazard goes
from (0.95 × 𝜆𝑙𝜂 + 0.05 × 11𝜆𝑙𝜂) = 1.5𝜆𝑙𝜂 to (0.96 × 𝜆𝑙𝜂 +

0.04 × 11𝜆𝑙𝜂) = 1.4𝜆𝑙𝜂. In this example, the vaccine recipient
marginal hazard is about 5.8% lower at the end of the trial
than at the beginning.

If that study also enrolls 100 placebo recipients, 5 of whom
are high risk, then a 4% infection rate among low-risk placebo
recipients and a corresponding 36% among the high-risk
placebos over the course of the trial yields a difference in the
mixture of high : low risk hazards from 5 : 95 at the beginning
to 3 : 91 (about 𝜔ℎ𝑝 = 3.4%). Then the marginal placebo
hazard goes from (0.95 × 𝜆𝑙 + 0.05 × 11𝜆𝑙) = 1.5𝜆𝑙 to
(0.976 × 𝜆𝑙 + 0.034 × 11𝜆𝑙) = 1.34𝜆𝑙. In this example, the
marginal placebo recipient hazard is about 10.7% lower at the
end of the trial than at the beginning.

For the conditions of our example, the hazard ratio at the
beginning of the trial (vaccine/placebo) is 1.5𝜂/1.5 = 0.5, but
at the end of the trial it is 1.4𝜂/1.34 = 0.527, about a 5.5%
increase. If we increase the rate of exposures for high-risk
subjects 𝜆ℎ to 1, so that we expect about one exposure per
high-risk participant, then the ending hazard ratio is about
18.9%higher than it is at the trial’s beginning.Thediscrepancy
peaks at about 𝜆ℎ = 3, at a 55% increase in the hazard ratio,
then decreases again as the leaky vaccine effect diminishes
for the high-risk subjects. At 𝜆ℎ = 10, the ending hazard
proportion is down to 8.8% above its starting value.

The hazard proportion also changes over the duration of
the trial; Figure 1 shows the change over time of the hazard
ratio.The plot shows that the change is nonmonotonic in time
and that it has a single mode and a right skew. For harmful
vaccineswith 𝜂 > 1, the plot has the same shape, but the plot is
mirrored over the𝑋 axis, with negative percent change values
indicating that the hazard ratio decreases and then increases
again.

3.2. Implications for Correlates Analysis. The differential
enrichment of high-risk subjects among those infected across
treatment groups implies that even if a vaccine has an
equal per-exposure effect on every subject, its effects on
overall attack rates are expected to differ by risk group.
When evaluating a vaccine candidate to determine if its
partial efficacy can be attributed to unequal vaccine effects
across subjects (by for instance identifying preexisting subject
traits or immune responses to vaccination that differentiate
subjects for whom the vaccine worked best), care must be
taken to differentiate between these expected attack-rate
effects (which do not reflect differential per-exposure efficacy
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Figure 1: Effects of differential enrichment for high-risk subjects in the at-risk population across treatment groups. (a)Themarginal hazards
as a function of time for placebo recipients (dashed blue line) and vaccine recipients (solid red line) for the conditions of our example trial
in which a 1 : 1 randomization allocates subjects to receive a placebo or a leaky vaccine with per-exposure efficacy 𝜂 = 0.5, with independent
Poisson exposure rates 𝜆𝑙 = 0.0408 and 𝜆ℎ = 0.4463 for low-risk and high-risk subjects, respectively, and a 𝜋ℎ = 5% starting fraction of
high-risk subjects. (b) The ratio of the marginal hazards in (a). (c) The fraction of subjects infected in the two groups over time. (d) The
proportions 𝜔ℎ𝑝(𝑡) and 𝜔ℎV(𝑡) of the at-risk groups 𝑅𝑝(𝑡) (dashed blue line) and 𝑅V(𝑡) (solid red line) that are high risk, over time.

by subject trait) from effects that truly modify the per-
exposure efficacy by subject trait.

Several authors have noted that the analysis of vaccine
trials to identify subject correlates of VE𝜙 is complicated
by missingness of the counterfactual effects of vaccination
on the placebo recipients (see [4] for a review and unifying
perspective). With the data typically available from a clinical
trial it is possible to estimate correlates of infection risk
within vaccine recipients and placebo recipients separately
but without strong assumptions or additional data it is not
possible to causally attribute changes in infection risk (for
some subset of subject covariates) to the vaccine treatment
assignment.The problem is that it is not possible to differenti-
ate between preexisting risk differences and vaccine-induced
risk differences without additional information.

Here we point out that leaky vaccines with heterogeneous
subject risk constitute a concrete example of this difficulty.
Since we expect differential enrichment of high-risk subjects
even when the vaccine has an equal per-exposure effect,
then any correlate of infection risk in the placebo group will
necessarily correlate with VE𝑎. We also expect a correlation
between a subject’s risk category and VE𝜆. The implication is
that (in the absence of additional justification) any identified
correlate of risk in the vaccine group should not be inter-
preted as a correlate of protection if it is also a correlate of
risk in the placebo group.

This suggests a test for any putative candidate correlate of
VE𝜙: if an association exists between the correlate and infec-
tion risk in the placebo group then any correlation observed
in the vaccine group (even a much stronger correlation) may
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be solely attributable to expected risk group enrichment and
should not (without further justification) be attributed to
differential per-exposure efficacy. If there is no association
in the placebo group then the correlate of vaccine-group
infection risk remains a plausible candidate as a correlate
of VE𝜙. Further work is required to develop the conditions
underwhich a vaccine-group correlate of infection risk can be
attributed to differential efficacy, but this argument suggests
general cautionwhenever a placebo-group correlation cannot
be ruled out.

This reasoning also warrants caution about so-called
“case-only” methods, which evaluate only the infected cases.
Such methods can be cost saving because correlates need
not be measured in uninfected subjects. However if there is
enrichment of different risk groups among infected subjects
in the two treatment groups (which should be expected
for any leaky vaccine), then covariate differences across
treatment groups among infected subjects may simply reflect
differential baseline risk. Since correlate information is
unavailable for uninfected subjects, in case-only analyses the
test of placebo-recipient risk correlation is not possible. Below
we examine a special case of case-only analysis in the setting
of competing risks, known as “sieve analysis.”

3.3. Implications for Competing Risks and Sieve Analysis.
In addition to evaluating vaccine efficacy as a function of
subject-specific covariates, it is often of interest to evaluate the
extent to which a vaccine’s efficacy differs by type of infection.
In a series of papers on what has variously been called “mark-
specific intervention efficacy” or “sieve effects,” Gilbert et
al. defined sufficient conditions under which estimates are
unbiased for quantities relevant to the identification of these
effects [5–7]. Here we argue that one of those conditions can
be represented as a requirement of “proportional exposure
pseudohazards” and that this condition is required not
only for the failure-type-only methods (such as multinomial
logistic regression (MLR)) but also for the time-to-event
methods (including competing risks Cox models, even when
relaxing the assumption of proportional baseline risks as
in [8]). In the special case of a leaky intervention, this is
equivalent to a condition that we call “balanced replacement,”
which requires that for each subject, the exposure type be
independent of the exposure time and exposure history.
We show that if there is subject variation in infection risk,
then even balanced replacement is insufficient to ensure the
proportional pseudohazards condition.

A sieve effect is defined as any violation of equivalence of
VE𝜙
𝑠
across mark types 𝑠 [6]. We define per-exposure mark-

specific relative risks:

RR𝜙 (𝑠)

≡
Pr (fail with type 𝑠 | one exposure to type 𝑠, vaccine recipient)
Pr (fail with type 𝑠 | one exposure to type 𝑠, placebo recipient)

=
𝜙V𝑠

𝜙𝑝𝑠

,

(4)

and let VE𝜙
𝑠
= 1 − RR𝜙(𝑠).

Thus, a sieve effect is defined as a lack of equivalence
across all types 𝑠 ∈ 1, . . . , 𝐽 of RR𝜙(𝑠). In terms of odds ratios
to some baseline type (arbitrarily we use type 𝑠 = 1 here), the
null hypothesis of no sieve effect is that for all 𝑠, OR𝜙(𝑠) = 1,
where

OR𝜙 (𝑠) =
RR𝜙 (𝑠)
RR𝜙 (1)

=
𝜙V𝑠/𝜙𝑝𝑠

𝜙V1/𝜙𝑝1

=
𝜙V𝑠/𝜙V1

𝜙𝑝𝑠/𝜙𝑝1

.

(5)

In Appendix B we revisit the proof that under the
condition that was called “Assumption 2” in [6, page 804],
which “implies that the strain-specific exposure intensities
are proportional, that is, 𝜆𝐸𝑠(𝑡) = 𝜃𝑠𝜆𝐸1(𝑡),” estimates of
odds ratios based only on the type distributions of observed
infections in treated and untreated subjects of a randomized
controlled trial are unbiased forOR𝜙(𝑠).The proof establishes
an equivalence between the per-exposure odds ratio OR𝜙(𝑠)
and two other odds ratios of interest: the “prospective” (or
“attack-rate”) odds ratio, OR𝑎(𝑠) and the “retrospective” odds
ratio OR𝑟(𝑠), as defined below. We show in Appendix A
that the proof not only relies on the assumption, following
[9], that for any subject the type-specific exposure hazard is
that of a history-independent (zero-order) process, but also
that it relies on the stronger assumption that the “exposure
pseudohazards” are proportional. Whereas exposure hazards
condition on the exposure processes, the pseudohazards
condition on the subject’s infection count being 𝑁(𝑡) = 0,
which depends both on the exposure processes 𝐸 and on the
chance of each exposure resulting in an infection.

In Appendix C we show that unless each subject can
experience at most one exposure during the trial (a con-
dition that we call “thoroughly rare events”), proportional
pseudohazards require independence between each subject’s
exposure type distribution and the timing of his exposures
(a condition that we call “balanced replacement”). As noted
in [8], this in turn implies independence between each
subject’s infection time, 𝑇, and the mark of his infection, 𝑆,
a condition that could only hold under a null hypothesis of
no sieve effects. We then show that the proof requires subject
homogeneity in risk. Risk inhomogeneity leads to a violation
of the proportional pseudohazards condition, and of 𝑇: 𝑆,
evenwhen the balanced replacement condition holds for each
risk group (or individual subject) separately.

InAppendixDwe revisit the argument that time-to-event
methods such as competing risks Cox proportional hazards
models can yield unbiased estimates of these quantities even
when “Assumption 2” is violated. We argue that the assertion
of unbiasedness requires an assumption of “noninforma-
tive censoring” when treating infections with some marks
as censoring events while evaluating other mark types of
infections. Since this implies that 𝑇: 𝑆, we argue that the
time-to-event methods are also biased unless Assumption
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2 holds. We show that heterogeneity of the intervention
effect across subjects will generally lead to a violation of the
noninformative censoring assumption.

From these arguments we conclude that existingmethods
for evaluating hypotheses of sieve effects of leaky vaccines
are expected to be biased if there is any subject heterogeneity
in risk (or in response to the treatment), or if replacement
failures are imbalanced. Gilbert has evaluated bias under
violations of Assumption 2 in simulation studies [7, 8]
and showed that under the conditions of those simulations
the bias is limited to a few percentage points unless the
marginal attack rate 𝑎𝑝 is substantial, even when some
subjects have no response to the intervention at all. How-
ever, those simulations ensured equal exposure distributions
across subjects and did not carefully control replacement
distribution balance. Future work is required to update
the simulations to more specifically address issues of bal-
anced replacement and of heterogeneous infecting exposure
rates.

Particular caution is warranted when using case-only
sieve analysis methods as introduced in [10], to which these
arguments doubly apply, since in addition to the cautions
expressed about the effects of risk group enrichment on case-
only methods, the proof of the method’s approximate unbi-
asedness depends on the assumption that individual mark-
specific hazards can be evaluated by censoring other marks,
using the noninformative censoring assumption. Since that
assumption is surely violated whenever there are sieve effects,
the use of the case-only sieve analysis method to evaluate
sieve effects for subject-genotype dependency as the authors
propose (or any other correlate) is not justified by the proof.
Even under the null hypothesis of no sieve effects, the argu-
ments presented here and in Appendix D show that the non-
informative censoring assumption would only be reasonable
in a setting in which types of distributions do not vary by risk
group. If the different risk groups tend to be infected by differ-
ent distributions of viruses even in the absence of treatment,
as may be the case for HIV-1 trials (where risk is associated
with mode of transmission, which in turn is associated with
different populations of viruses), the assumption is likely
violated.

It remains likely that these methods, though not proven
unbiased, retain their power to detect sieve effects under
the heterogeneous risk conditions that we have considered.
Although the conditions of those proofs may not hold under
heterogeneity, we have not proven the contrary assertion;
other proofs that establish conditions under which unbiased
estimation is robust to subject variation in risk may yet
be devised. Also, in practice absolute unbiasedness may
not be required; with further work evaluating the practical
implications of these insights, we expect that these methods
will be approximately unbiased formany ormost applications
to leaky vaccines with heterogeneous risk. It remains to future
work to conduct a thorough evaluation of the loss of power
or the potential anticonservatism of analyses that assume risk
homogeneity when the assumption is not justified.

4. Conclusions

In this paper we have restated the argument that when
conducting statistical analysis of vaccine efficacy trials with
heterogeneous exposure or susceptibility risk, care should be
taken to account for the putative mechanism of the vaccine.
Two extremes of the spectrum of vaccine mechanisms are
considered. At one extreme (all-or-none), a vaccine protects
some fraction of subjects completely and the remaining
fraction are unaffected by it. At the opposite extreme (leaky),
a vaccine reduces the per-exposure transmission rate for all
recipients equally. We have shown that leaky vaccines induce
a violation of the proportional hazards condition that is often
assumed in survival analysis, due to a changing fraction of at-
risk subjects over time in both vaccinated and unvaccinated
individuals. Since these fractions change over time differently
in the two treatment groups, even if the proportional hazards
condition holds for each risk group individually, themarginal
hazard ratio changes over time.

Another effect of subject risk heterogeneity in leaky
vaccine trials is that the relative proportions of the risk groups
among infected subjects changes over time. We showed
that associations between subject covariates and vaccine
efficacy will be biased unless those covariates are distributed
equivalently in all risk groups. A simple diagnostic analysis of
the risk of infection among placebo recipients as a function
of the covariate could be used to reject the hypothesis of
independence that is required for interpreting correlations
with vaccine efficacy as indicative of differential efficacy
rather than differential baseline risk, but this is not possible
in a “case-only” analysis (which evaluates the association only
among infected subjects). This argument cautions against
case-only analysis of correlates of the partial efficacy of leaky
vaccines when there is subject heterogeneity in risk.

We also addressed the context of competing risks and
showed that leaky vaccines with risk heterogeneity will
induce time variation in the relative proportion of marks
(types of the competing risks) of infections and that since
this time variation occurs at different rates in the vaccine and
placebo groups, this induces a violation of the equivalence
between observable relative attack rates and unobservable
per-exposure relative risks that is required for unbiased
analysis of mark-specific vaccine efficacies (called “sieve
effects” when they differ across types) [6]. Furthermore, this
scenario has implications for the commonly encountered
analysis methodology of analyzing one mark type of the
competing risks by treating the infections by any other type as
right-censoring events. In particular, the censorship process
will not be independent of the infection process unless the
infection times of the competing risks are independent, but
the changing fractions of risk groups among the at-risk
subjects induce dependence (even when the processes are
conditionally independent).

Longini andHalloran [11] introduced an approach (frailty
models) to evaluating a vaccine’s efficacy when subject
susceptibilities in any treatment group vary (with some
fraction experiencing complete immunity as in an all-or-
none vaccine and the remainder having some per-exposure
susceptibility that may vary across individuals and differently
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for each treatment group). This approach enables estimation
of more complex vaccine effects, but the observations in this
paper about the implications of leaky vaccines with subject
heterogeneity in risk apply to these mixture models too, so
for instance a relative enrichment of high-risk subjects among
infected vaccine recipients cautions against naive correlation
of risk-dependent covariates with infection outcomes.

Recent work has introduced sieve analysis methods for
nonleaky vaccines, which have all-or-none style protection
but perhaps against only a subset of risk mark categories
(in which case they are called “some-or-none” vaccines) [12].
The all-or-none and some-or-none scenarios also engender
differential enrichment of high-risk subjects among infected
(and also at-risk) subjects, but because any protected subject
is fully protected against the vaccine-targetedmark types, the
attack rate will be reduced equally across risk groups as long
as risk is independent of relative exposure rates. If, however,
risk (in terms of rates of infection) is associated with themark
among placebo recipients, as expected for example, in HIV-1
vaccine trials, then the vaccine will reduce infection rates for
one risk group more than another.

The arguments in this paper together imply that it is
generally not possible to differentiate between mark-specific
efficacy and subject-covariate-specific efficacy using failure
time and failure type data alone unless subject risk is homo-
geneous. The only exception is when risk groups (though
heterogeneous in overall failure rate) have homogeneous
relative rates of the marks of infecting exposures across
competing risk mark types. Future work is needed to develop
statistical analysis methods that account for both subject
heterogeneity (as in a frailtymodel) and competing risks such
that the effects of each can be differentiated in an analysis of
a partially efficacious vaccine. Such approaches would likely
require parameterization not just of the frailty model but also
of the exposure processes, requiring considerable modeling
effort and sensitivity analysis.

Appendices

A. Correction to the Definition of
Proportional Exposure Pseudohazards

In practice we are usually unable to observe exposure events
(as noted in [9]), complicating estimation of the per-exposure
probabilities of failure 𝜙𝑥𝑠. We observe the “retrospective”
mark type distributions 𝑃

𝑟

𝑥𝑠
among those who become

infected before the end of trial:

𝑃
𝑟

𝑥𝑠
≡ Pr (infected with mark 𝑠 | infected in [0, 𝜏] ,

treatment assignment is𝑥) .
(A.1)

This is distinct from the “prospective” (or “joint attack
rate”) mark type distribution 𝑃

𝑎

𝑥𝑠
, which is the joint proba-

bility of infection (“failure”) (occurring at all) and that the
failure is of type 𝑠. It can also be defined in terms of the

“retrospective” failure type distribution 𝑃
𝑟

𝑥𝑠
and the marginal

failure probability 𝑎𝑥, since

𝑎𝑥 ≡ Pr (failed in [0, 𝜏] | 𝑥) ,

𝑃
𝑎

𝑥𝑠
≡ Pr (fail with type 𝑠 in [0, 𝜏] | 𝑥)

= 𝑎𝑥 × 𝑃
𝑟

𝑎𝑠
.

(A.2)

Both the retrospective and prospective probabilities are
distinct from the per-exposure probabilities that we intend to
estimate. Gilbert et al. showed in [6] that, under certain con-
ditions, there is an equivalence between the odds ratios for
all three of these. The proof (repeated below in Appendix B)
beginswith an expression of the failure hazard as a function of
the type-specific rate of exposure 𝜆𝐸𝑠(𝑡) and the per-exposure
probabilities of failure𝜙𝑥𝑠 [6, page 805].With𝑇 defined as the
time of the subject’s first failure, 𝑆 themark of that failure, and
𝜏 defined as the duration of the clinical trial, he wrote that, for
any 𝑡 ∈ [0, 𝜏],

Pr (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑆 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥)

= Pr (exposed to type 𝑠 in [𝑡, 𝑡 + Δ𝑡) | 𝑥,

exposure history)

× Pr (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑆 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥 ,

exposed to 𝑠 in [𝑡, 𝑡 + Δ𝑡) ,

exposure history) .

(A.3)

We note that the first term on the right hand side
should include the condition 𝑇 ≥ 𝑡 (that the subject has
not yet experienced a failure as of time 𝑡). This is not
subsumed by “exposure history” because it depends not only
on the exposure process(es) but also on the per-exposure
probabilities of failure. Also, the “exposure history” condition
does not exist on the left-hand side of the equation, so it
should either be added there or removed from the right-hand
side. That is, we can define the exposure-history conditional
failure hazard as

Pr (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑆 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥, exposure history)

= Pr (exposed to type 𝑠 in [𝑡, 𝑡 + Δ𝑡) | 𝑇 ≥ 𝑡, 𝑥,

exposure history)

× Pr (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑋 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥,

1in exposed to s in [𝑡, 𝑡 + Δ𝑡) ,

exposure history) ,
(A.4)

and then define themarginal failure hazard 𝜆𝑥𝑠(𝑡) in terms of
this as

∑

exposure history
Pr (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑆 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥,

exposure history)

× Pr (exposure history | 𝑇 ≥ 𝑡, 𝑥) .

(A.5)
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Since the per-exposure failure probability is assumed to
be independent of exposure history, we can directly define the
marginal failure hazard by dropping the condition from the
right-hand side:

𝜆𝑥𝑠 (𝑡) ≡ Pr (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑆 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥)

= Pr (exposed to type 𝑠 in [𝑡, 𝑡 + Δ𝑡) | 𝑇 ≥ 𝑡, 𝑥)

× Pr (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑆 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥 ,

exposed to 𝑠 in [𝑡, 𝑡 + Δ𝑡)) .

(A.6)

We define the first term of this corrected failure hazard as
the “exposure pseudohazard”:

ℓ𝑥𝑠 (𝑡) = Pr (exposed to type 𝑠 in [𝑡, 𝑡 + Δ𝑡) | 𝑇 ≥ 𝑡, 𝑥) .

(A.7)

This is distinct from the generalized hazard function of the
type 𝑠 exposure process 𝐸𝑠:

Pr (exposed to type 𝑠 in [𝑡, 𝑡 + Δ𝑡) | 𝑥, exposure history) ,
(A.8)

which conditions only on its own history (a generalization of
the standard hazard function’s dependence on nonfailure to
time 𝑡). There is no difference if every exposure results in a
failure, but the two functions depart whenever any exposure
event could be avoided (by a roll of the “leaky” dice, with
probability 1 − Pr(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑆 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥, exposed to
𝑠 in [𝑡, 𝑡 + Δ𝑡)) = 1 − 𝜙𝑥𝑠).

Conceptually, if exposures are occurring that do not
result in failures (we call these “avoided failures”), then
the subject may nevertheless fail, but later than she would
have otherwise. Since lower per-exposure failure probabilities
result in more avoided failures, the time-to-event distribu-
tion among those who fail in the treated group will be
right-shifted compared to what it would have been in the
untreated group. We note that it may not be right-shifted
for a particular failure type, but aggregating over all types,
lower per-exposure failure rates will result in later expected
failure times. Mathematically, this dependence between the
probability of nonfailure by time 𝑡 (i.e., that 𝑇 ≥ 𝑡) and the
rates of failure avoidance (1−𝜙𝑥𝑠) can be shown by expanding
ℓ𝑥𝑠(𝑡) in the equation 𝜆𝑥𝑠(𝑡) = ℓ𝑥𝑠(𝑡)𝜙𝑥𝑠:

ℓ𝑥𝑠 (𝑡) = ∑

exposure history
Pr (exposed to 𝑠 in

[𝑡, 𝑡 + Δ𝑡) | 𝑇 ≥ 𝑡, 𝑥,

exposure history)

× Pr (exposure history | 𝑇 ≥ 𝑡, 𝑥) .

(A.9)

By Bayes’ theorem,

Pr (exposure history | 𝑇 ≥ 𝑡, 𝑥)

∝ Pr (𝑇 ≥ 𝑡 | exposure history, 𝑥)

× Pr (exposure history | 𝑥) .

(A.10)

These are not all equal, since if the exposure history
includes 𝑘 exposure times 𝑒1, . . . , 𝑒𝑘, then Pr(𝑇 ≥ 𝑡 |

exposure history, 𝑥) involves a product of the 𝑘 chances that
those failures were avoided and would be monotonically
decreasing as the number of exposures increases (except in
the boring case of a perfect intervention).

In Appendix B we repeat the proof from [6, 3.12] of the
equivalence of the odds ratios, using these corrected defini-
tions.The proof crucially depends on the assumption that the
exposure pseudohazards ℓ𝑥𝑠(𝑡) are proportional across types.
That is, it requires that there exist 𝐽 constants 𝜃𝑠 such that
∀𝑠, ℓ𝑥𝑠(𝑡) = 𝜃𝑠ℓ𝑥1(𝑡). By (A.9), this would necessitate setting
Pr(exposed to 𝑠 in [𝑡, 𝑡 + Δ𝑡) | 𝑇 ≥ 𝑡, 𝑥, exposure history)
to depend on exposure history in such a way that exactly
counteracts the effect of variation in Pr(exposure history |

𝑇 ≥ 𝑡, 𝑥). This is the condition that we call “balanced
replacement” (so-called because it requires that the condi-
tional distribution of failure types to be the same regardless of
the number of avoided failures, so “replacement failures” have
the same distribution as the failures that they replace through
failure avoidance and subsequent reexposure). It is difficult
to imagine how this perfect balance could be accomplished
other than by assuming complete independence between the
type of the exposure and both its timing and the history of the
exposure processes (as in independent Poisson-distributed
exposure processes for each mark). Effectively, therefore,
balanced replacement implies that for each subject (given
his treatment and in general his response to the treatment,
as discussed below), the time and type of his failures are
independent.

B. Proof of the Equivalence of Odds Ratios
under Proportional Pseudohazards

Here we repeat the proof, given in [6], of the equivalence
of the retrospective odds ratios and the per-exposure odds
ratios.The proof begins by using the equation Pr(𝑇 ≥ 𝑡 | 𝑥) =

𝑒
−Λ(𝑡|𝑥) relating a survivor function to a cumulative hazard
function to establish that, under conditions of proportional
exposure pseudohazards,

Pr (𝑇 ≥ 𝑡 | 𝑥) = exp(−∫

𝑡

0

𝜆 (𝑢 | 𝑥) 𝑑𝑢)

= exp(−∫

𝑡

0

∑

𝑙

𝜆 (𝑢, 𝑙 | 𝑥) 𝑑𝑢)

= exp(−∫

𝑡

0

∑

𝑙

ℓ𝑥𝑙 (𝑢) 𝜙𝑥𝑙𝑑𝑢) .

(B.1)

Then the prospective probabilities can be written in terms
of the exposure pseudohazards: as

𝑃
𝑎

𝑥𝑠
= ∫

𝜏

0

lim
Δ𝑡↘0

Pr (𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝑆 = 𝑠 | 𝑇 ≥ 𝑡, 𝑥)

Δ𝑡
𝑑𝑡

= ∫

𝜏

0

𝜆 (𝑡, 𝑠 | 𝑥) × Pr (𝑇 ≥ 𝑡 | 𝑥) 𝑑𝑡
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= ∫

𝜏

0

ℓ𝑥𝑠 (𝑡) 𝜙𝑥𝑠 Pr (𝑇 ≥ 𝑡 | 𝑥) 𝑑𝑡

= ∫

𝜏

0

ℓ𝑥𝑠 (𝑡) 𝜙𝑥𝑠 exp(−∫

𝑡

0

∑

𝑙

ℓ𝑥𝑙 (𝑢) 𝜙𝑥𝑙𝑑𝑢)𝑑𝑡.

(B.2)

Then if we define the integrated type 𝑠 exposure pseudo-
hazard 𝐹𝑥𝑠(𝑡) ≡ ∫

𝑡

0
ℓ𝑥𝑠(𝑢)𝑑𝑢, we get

𝑃
𝑎

𝑥𝑠
= ∫

𝜏

0

ℓ𝑥𝑠 (𝑡) 𝜙𝑥𝑠 exp(−∫

𝑡

0

∑

𝑙

ℓ𝑥𝑙 (𝑢) 𝜙𝑥𝑙𝑑𝑢)𝑑𝑡

= 𝜃𝑠𝜙𝑥𝑠 ∫

𝜏

0

ℓ𝑥1 (𝑡) exp(−∫

𝑡

0

ℓ𝑥1 (𝑢) 𝑑𝑢∑

𝑙

𝜃𝑙𝜙𝑥𝑙)𝑑𝑡

= 𝜃𝑠𝜙𝑥𝑠 ∫

𝜏

0

ℓ𝑥1 (𝑡) exp(−𝐹𝑥1 (𝑡)∑

𝑙

𝜃𝑙𝜙𝑥𝑙)𝑑𝑡

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−1

∑𝑙 𝜃𝑙𝜙𝑥𝑙

exp(−𝑢∑

𝑙

𝜃𝑙𝜙𝑥𝑙)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐹𝑥1(𝜏)

0

× 𝜃𝑠𝜙𝑥𝑠

= (1 − exp(−𝐹𝑥1 (𝜏)∑

𝑙

𝜃𝑙𝜙𝑥𝑙))
𝜃𝑠𝜙𝑥𝑠

∑𝑙 𝜃𝑙𝜙𝑥𝑙

= (1 − Pr (𝑇 ≥ 𝜏 | 𝑥))
𝜃𝑠𝜙𝑥𝑠

∑𝑙 𝜃𝑙𝜙𝑥𝑙

= 𝑎𝑥

𝜃𝑠𝜙𝑥𝑠

∑𝑙 𝜃𝑙𝜙𝑥𝑙

,

(B.3)

which, since 𝑃
𝑎

𝑥𝑠
= 𝑎𝑥 × 𝑃

𝑟

𝑥𝑠
, implies that

𝑃
𝑟

𝑥𝑠
=

𝜃𝑠𝜙𝑥𝑠

∑𝑙 𝜃𝑙𝜙𝑥𝑙

. (B.4)

This proof relies on the proportional pseudohazards condi-
tion to enable the factorization that separates the integrated
exposure pseudohazard 𝐹𝑥1(𝜏) for an arbitrary mark (𝑠 = 1)
from the time-constant multiples 𝜃𝑠 for 𝑠 > 1 such that
𝐹𝑥𝑠(𝜏) = 𝜃𝑠𝐹𝑥1(𝜏).

Finally, this result guarantees equivalence of retrospec-
tive, prospective, and per-exposure odds ratios, since

OR𝑟 (𝑠) ≡

𝑃
𝑟

V𝑠/𝑃
𝑟

𝑝𝑠

𝑃
𝑟
V1/𝑃
𝑟
𝑝1

=
𝑃
𝑟

V𝑠/𝑃
𝑟

V1

𝑃𝑟
𝑝𝑠
/𝑃
𝑟
𝑝1

=
𝜃𝑠𝜙V𝑠/𝜃1𝜙V1

𝜃𝑠𝜙𝑝𝑠/𝜃1𝜙𝑝1

=
𝜙V𝑠/𝜙V1

𝜙𝑝𝑠/𝜙𝑝1

= OR𝜙 (𝑠) , QED.

(B.5)

C. Conditions for Proportional Pseudohazards

The result of Appendix B is limited to conditions of pro-
portional exposure pseudohazards, which requires balanced
replacement. Technically, balanced replacement means that
for each subject, given her response to the intervention,
any variation in her probability of exposure to a potential
failure of type 𝑠 due to dependence on time or exposure
history must exactly counterbalance the effects of unavoid-
able variation in the probability of exposure history over
time (conditioned on survival up to that time), such that
the relative rate of exposure to one type over another type
remains constant. This is accomplished if we assume that the
type of the exposure is completely independent of the failure
time (and history), an assumption that has been discussed
elsewhere [7, 13].

C.1. Thoroughly Rare Events. Proportional exposure pseu-
dohazards could also be accomplished if we assume that
each subject experiences at most one failure during [0, 𝜏]

(because in that case, every exposure is a “first exposure”
and there are no replacement failures; put another way, in
that case the probability of survival given exposure history
is effectively independent of exposure history, so there is
nothing to balance). It may be tempting to argue that in
rare-event settings, this is a reasonable assumption. We note
however that the requirement of no replacement failures is
stronger than a typical “rare event” scenario, in which the
rates 𝑎𝑥 are small. The condition we require (thoroughly
rare events) means that for all subjects, the probability of a
second exposure is zero. While in very-rare event settings,
violations of this condition may not lead to bias, it should
be noted that the relevant determinant is not the rareness
of the event in the total population but the rareness of the
event in the subset of subjects who experience a failure
during the trial. Since in general, subjects who experience
more than one exposure have more chances of failure, in
expectation, the probability of experiencing more than one
exposure is greater among the subjects who fail than among
the larger population. In other words, there is an enrichment
of multiply exposed subjects among the subjects who expe-
rience a failure during the trial. This is restating our main
finding that high-risk subjects are enriched among infected
vaccinees.

C.2. Risk Homogeneity. Gilbert noted that conditions of
the proof require a “leaky” vaccine in which all subjects
experience the same intervention effect, and he explored
violations of this assumption through simulations [8]. He
showed that if some subjects do not have “take” of the
intervention (i.e., if there is a chance that an intervention-
receiving subject might nevertheless have no change in her
per-exposure probabilities of infection), a bias is introduced.
Here we show why the proof breaks down in the context of
incomplete take. It is analogous to the setting of dichotomous
risk, since for high-risk subjects the leaky vaccine’s effect on
attack-rate vaccine efficacy is reduced, and in some cases it
becomes effectively nil.
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For the example with two risk groups, the exposure
pseudohazard for vaccine recipients becomes

ℓV𝑠 (𝑡) = 𝜔ℎV (𝑡) ℓVℎ𝑠 (𝑡) + (1 − 𝜔ℎV (𝑡)) ℓV𝑙𝑠 (𝑡) , (C.1)

where ℓVℎ𝑠 and ℓV𝑙𝑠 are the type 𝑠 exposure pseudohazards for
high-risk and low-risk subjects, respectively, and

𝜔ℎ𝑥 (𝑡)

≡ Pr (high risk | infected with mark 𝑠 by time 𝑡, 𝑥) .

(C.2)

For placebo recipients analogously

ℓ𝑝𝑠 (𝑡) = 𝜔ℎ𝑝 (𝑡) ℓ𝑝ℎ𝑠 (𝑡) + (1 − 𝜔ℎ𝑝 (𝑡)) ℓ𝑝𝑙𝑠 (𝑡) . (C.3)

Since 𝜔ℎ𝑝(𝑡) varies over time and differently from 𝜔ℎV(𝑡), the
exposure pseudohazards depend on time and risk group and
do not satisfy the proportionality condition, even if the risk
group specific-exposure pseudohazards do satisfy it.

D. Homogeneous Intervention Effects and
Proportional Pseudohazards Are Both
Required for Noninformative Censoring

Gilbert argued in [8] that some time-to-event methods are
robust to violations of the condition thatwe call “proportional
exposure pseudohazards.” He argued that estimates (of retro-
spective odds ratios) using Cox proportional hazards models
without proportional baseline risks could be used to estimate
each per-exposure odds ratio in a separate model. So for
instance, the per-exposure odds ratio for strain 𝑠 versus strain
1 could be estimated by treating all other types of failure as
censoring events. Since the methodology for this estimation
requires an assumption of noninformative censoring, this
argument breaks down unless the time-to-event distribution
of type 1 and type 𝑠 failures is independent of that of the other
failure types. Since the condition must hold for all choices of
𝑠, it effectively requires independence between the time-to-
event distribution 𝑇 and the failure type distribution 𝑆. In
the case of a leaky vaccine with homogeneous risk, this can
be achieved under the conditions of “balanced replacement”
(which requires that the exposure processes exhibit the same
sort of time/type independence that is desired for the failure
hazard).

We now show that any amount of subject heterogeneity
in the intervention effect will lead to a violation of the
noninformative censoring assumption, except under the null
hypothesis of no sieve effect. We have shown that infection
time 𝑇 is not independent from risk group 𝑅, and so if mark
type 𝑆 is also nonindependent from risk, then 𝑆 and𝑇will not
be independent. If time and type are not independent then if
you treat some marks of infection as censoring events, then
those events are not independent of the uncensored infection
times, and noninformative censoring does not hold.

So it remains to show that failure mark type 𝑆 is not
independent of risk. It is clearly the case that if high-risk
subjects have a different mark distribution of exposures,

then by assumption 𝑆 depends on risk. Also, by the same
mechanism of exposure-rate-dependent attack-rate efficacy
that is discussed in Section 2, even if high-risk placebo
recipients have the same mark distribution of exposures
as low-risk placebo recipients, the mark-specific attack-rate
vaccine efficacy will vary across the types unless the infecting
exposure rates are identical across all types. If the mark
distribution of exposures is same for both risk groups and
the rate of exposures is constant acrossmarkswithin each risk
group, then only the overall rate of infection varies across risk
groups, and the VE𝑎

𝑠
is the same for all marks. This condition

clearly precludes sieve effects.
The noninformative censoring assumption will never

hold if there are sieve effects, but even under the null
hypothesis of no sieve effects the assumption will only hold
in the extreme case in which the (placebo-recipient) infecting
exposure processes for all marks are equidistributed within
each risk group. As long as some mark exposures occur at
higher rates than others, then the attack-rate vaccine effect
will differ against the different types, leading to a violation of
the noninformative censoring condition.
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