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The leapfrogging pulses in two unbalanced electrical nonlinear transmission lines (NLTLs) with capacitive couplings are
investigated for efficient modulation of a pulse train. Due to the resonant interactions, the nonlinear solitary waves in the NLTLs
exhibit complementary behaviors of amplitudes and phases called leapfrogging. For maximizing resonance, both solitary waves
should have a common average velocity. Sharing the common velocity, the characteristic impedance can still be freely designed for
two coupled solitary waves. In this study, we characterize the leapfrogging pulses developed in unbalanced NLTLs having distinct
characteristic impedance. Through the soliton perturbation theory and numerical time-domain calculations, it is found that both
the leapfrogging frequency and the voltage variations of pulse amplitudes increase as the difference in the characteristic impedance
becomes large. These properties can improve the on/off ratio of modulated pulse train.

1. Introduction

In coupled nonlinear systems, the resonant energy exchange
can occur between supported nonlinear solitary waves.
Through the energy transfer from the leading solitary wave
to the trailing one, the leading wave is attenuated, whereas
the amplitude of the trailing wave becomes larger than that
of the leading wave. In weakly dispersive cases, the velocity
of a long-wavelength nonlinear solitary wave increases as its
amplitude increases; therefore, the trailing wave overtakes
the leading wave. Then, the direction of energy transfer
is reversed so that the original order of the two waves is
restored. This overtaking is repeated, resulting in oscillatory
behavior called leapfrogging [1]. Leapfrogging solitary waves
have mainly been investigated on separated pycnoclines [2–
6]. When two horizontal pycnoclines are vertically separated
by a small amount, leapfrogging occurs between spatially
localized disturbances in two pycnoclines. For weak cou-
plings, the leapfrogging solitary waves are well modeled by
the coupledKorteweg-deVries (KdV) equations. Recently, we
investigated two identical transmission lines with regularly
spaced Schottky varactors coupled via capacitors, called cou-
pled nonlinear transmission lines (NLTLs), and successfully

observed leapfrogging phenomena for the nonlinear solitary
waves developed in them [7]. Because of easiness in designing
both nonlinearity and dispersion separately, the electronic
system can characterize leapfrogging waves efficiently.

In addition, leapfrogging can be used to manage trav-
eling electrical pulses. Originally, NLTLs have been used in
ultrafast electronic circuits such as a subpicosecond electrical
shock generator and a short-pulse amplifier [8–10]. For
example, the leapfrogging can be used for the detection of
temporal separation between two short pulses inputted to
coupled NLTLs. It has been shown that leapfrogging pulses
with relatively large amplitudes exhibit nontrivial properties
as their initial relative delay varies. The phase and amplitude
of leapfrogging pulses depend on the initial delay between
incident pulses, such that the pulse amplitude at the output
port varies with the initial delay. Accordingly, the temporal
delay between two inputted pulses is converted to the pulse
amplitude at the output [7]. Another potential of electrical
leapfrogging pulses results from their management by the
biasing voltage to the varactors. The leapfrogging frequency
depends on the biasing voltage, so that the line length
required for the pulses on the lines to become maximal
also depends on the biasing voltage. Conversely, the pulse
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Figure 1: Modulation of pulse train using leapfrogging pulses in coupled NLTLs. The performance is considered better when 𝑉out exhibits
larger on/off ratio for smaller |𝑉𝑏1 − 𝑉𝑏2|.

amplitude on one of the lines can be managed by the biasing
voltage at outputs that are separated from the inputs by a fixed
length. The major output is thus switched from one line to
the other by varying the bias voltage. Hence, the leapfrogging
in coupled NLTLs can provide a novel switching method for
the incident pulse by which the incident pulse is selectively
output to one of the two ports of the coupled NLTLs [7].
The same mechanism can be used to modulate the inputted
pulse train by the biasing voltage. Figure 1 illustrates this.The
pulse train 𝑉in inputted to the lines is modulated by 𝑉mod
to be outputted as 𝑉out. In order to obtain fine modulation
efficiency, the modulating signal is applied, such that the
pulse amplitude at the output becomes maximal at 𝑉mod =𝑉𝑏1 and it becomes minimal at 𝑉mod = 𝑉𝑏2. The on/off
ratio of 𝑉out is uniquely determined by the leapfrogging-
pulse dynamics and can become larger than |𝑉𝑏1 − 𝑉𝑏2|.
This means that only small swing of 𝑉mod can give sufficient
modulation. Including these examples, the key is tomaximize
the amplitude variation of the leapfrogging pulse.

Necessarily, the pulse wave in each line should have a
common average velocity for securing sufficient interaction
length. An electrical wave in anNLTL is uniquely determined
only when both the velocity and characteristic impedance
are specified. Even for the fixed velocity, the leapfrogging
pulses still have the freedom to have their own characteristic
impedance. In order to examine the potential for improving
the extinction ratio of leapfrogging amplitudes, we consider
the unbalanced NLTLs, where two leapfrogging pulses have
the coincident velocity but distinct characteristic impedance.

After defining the imbalance, the coupled KdV equations
with linear and dispersion-free coupling terms are derived to
model the coupled NLTLs by applying the standard reductive
perturbation method [11] to the transmission equations.
Using this model, we clarify how imbalance improves the
extinction ratio with the aid of the perturbation theory based
on the inverse scattering transform [12–14]. We then validate
the obtained results using time-domain calculations and
demonstrate the performance of the coupled NLTLs as the
pulse train modulator.

2. Fundamental Properties of Unbalanced
Coupled NLTLs

Figure 2 shows the coupledNLTLs that we investigated. Lines
1 and 2 areweakly coupled via capacitors with a capacitance of𝐶𝑚. The line inductance of line 𝑖 is denoted as 𝐿 𝑖 for 𝑖 = 1, 2.
The Schottky varactors, the capacitance of which depends on
the terminal voltage, are modeled by

𝐶𝑠1 (𝑥) = 𝐶1 (1 + 𝑉𝑏𝑉𝐽)
𝑚 (1 − 𝑥𝑉𝐽)

−𝑚 ,

𝐶𝑠2 (𝑥) = 𝐶2 (1 + 𝑊𝑏𝑉𝐽 )
𝑚 (1 + 𝑥𝑉𝐽)

−𝑚 .
(1)

In this model, 𝐶1,2, 𝑉𝐽, and 𝑚 represent the junction
capacitance for biasing voltages −𝑉𝑏,𝑊𝑏, junction potential,
and grading coefficient, respectively. We consider the case
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Figure 2: The structure of coupled NLTLs. Two NLTLs denoted as
lines 1 and 2 are coupled with capacitors having the capacitance of𝐶𝑚.

when line 1 is connected with loaded Schottky diode anodes
and line 2 is connected with cathodes.Then, the transmission
equations of the coupled NLTL are given by

𝐿1 𝑑𝐼𝑛𝑑𝑡 = 𝑉𝑛−1 − 𝑉𝑛,
𝐿2 𝑑𝐽𝑛𝑑𝑡 = 𝑊𝑛−1 −𝑊𝑛,

𝐶𝑠1 (𝑉𝑛) 𝑑𝑉𝑛𝑑𝑡 + 𝐶𝑚 𝑑𝑑𝑡 (𝑉𝑛 −𝑊𝑛) = 𝐼𝑛 − 𝐼𝑛+1,
𝐶𝑠2 (𝑊𝑛) 𝑑𝑊𝑛𝑑𝑡 + 𝐶𝑚 𝑑𝑑𝑡 (𝑊𝑛 − 𝑉𝑛) = 𝐽𝑛 − 𝐽𝑛+1,

(2)

where 𝑉𝑛(𝑊𝑛) and 𝐼𝑛(𝐽𝑛) represent the line voltage and
current, respectively, at the 𝑛th cell of line 1 (line 2). Because
KdV solitons are long waves, we apply the long-wavelength
approximation to the transmission equations. A continuous
spatial coordinate, 𝑥, is introduced by the relation

𝑉𝑛+1 = 𝑉𝑛 + 𝜕𝑉𝜕𝑥 + 12 𝜕
2𝑉𝜕𝑥2 + 16 𝜕

3𝑉𝜕𝑥3 + 124 𝜕
4𝑉𝜕𝑥4 ,

𝑊𝑛+1 = 𝑊𝑛 + 𝜕𝑊𝜕𝑥 + 12 𝜕
2𝑊𝜕𝑥2 + 16 𝜕

3𝑊𝜕𝑥3 + 124 𝜕
4𝑊𝜕𝑥4 ,

(3)

where 𝑉 = 𝑉(𝑥, 𝑡) and 𝑊 = 𝑊(𝑥, 𝑡) are the continuous
counterparts of 𝑉𝑛 and 𝑊𝑛, respectively. From (2), we then
obtain

{𝐶𝑠1 (𝑉) + 𝐶𝑚} 𝜕2𝑡𝑉 − 𝐶𝑚𝜕2𝑡𝑊+ 𝑑𝐶𝑠1 (𝑉)𝑑𝑉 (𝜕𝑡𝑉)2
= 𝐿−11 (𝜕2𝑥𝑉 + 112𝜕4𝑥𝑉) ,

{𝐶𝑠2 (𝑊) + 𝐶𝑚} 𝜕2𝑡𝑊− 𝐶𝑚𝜕2𝑡𝑉 + 𝑑𝐶𝑠2 (𝑊)𝑑𝑊 (𝜕𝑡𝑊)2
= 𝐿−12 (𝜕2𝑥𝑊+ 112𝜕4𝑥𝑊) ,

(4)

where 𝜕𝑧 = 𝜕/𝜕𝑧 for any 𝑧. To derive coupled KdV
equations modeling coupled NLTLs, we apply the reductive

perturbation method [11]. Initially, new spatial and temporal
variables, 𝜉 and 𝜏, respectively, are introduced according to

𝜉 = 𝜖1/2 (𝑥 − 𝑡
√𝐶1𝐿1) , 𝜏 = 𝜖3/2𝑡. (5)

We then expand 𝑉 and𝑊 in the series of 𝜖 as
𝑉 (𝜉, 𝜏) = −𝑉𝑏 + ∞∑

𝑖=1

𝜖𝑖V(𝑖) (𝜉, 𝜏) ,

𝑊 (𝜉, 𝜏) = 𝑊𝑏 + ∞∑
𝑖=1

𝜖𝑖𝑤(𝑖) (𝜉, 𝜏) .
(6)

Furthermore, 𝐶𝑚 must be 𝜖 order quantity for the coupled
KdV equations to be valid to model the coupled NLTL, such
that we set

𝐶𝑚 = 𝜖𝐶𝑚. (7)

Under this assumption, the velocity and characteristic
impedance of the pulse on line 𝑖 are estimated as 1/√𝐿 𝑖𝐶𝑖
and √𝐿 𝑖/𝐶𝑖 (𝑖 = 1, 2), respectively; therefore, the condition𝐿1𝐶1 = 𝐿2𝐶2 is required to establish the significant resonant
interactions between pulses on lines 1 and 2 and imbalance
is introduced by setting 𝐿1/𝐶1 ̸= 𝐿2/𝐶2. Substituting (5) and
(6) into (4), we obtain the following coupled KdV equations
with the conditions where the 𝑂(𝜖3) terms disappear:

𝜕𝜏V − 6V𝜕𝜉V + 𝜕3𝜉V = 3√12𝐶

𝑚𝐶1 𝜕𝜉 (V

 + 𝑤) ,
𝜕𝜏𝑤 − 6𝑤𝜕𝜉𝑤 + 𝜕3𝜉𝑤 = 3√12𝐶


𝑚𝐶2 𝜕𝜉 (𝑤

 + V) ,
(8)

where we define 𝜏 = 𝜏/2√𝐶1𝐿1, 𝜉 = 3√12𝜉, V =
3√12𝑚V(1)/6(𝑉𝑏 + 𝑉𝐽), and 𝑤 = − 3√12𝑚𝑤(1)/6(𝑊𝑏 + 𝑉𝐽).

At present, a closed-form expression of leapfrogging
frequency is evaluated only through approximation for the
right-hand side of (8) to be sufficiently small to be treated
as perturbative disturbances. As the unperturbed solutions of
(8) for V and 𝑤, we consider 1-solitons defined as

V = −2𝜅21sech2 𝑧1,
𝑤 = −2𝜅22sech2 𝑧2,

(9)

where 𝑧𝑖 = 𝜅𝑖(𝜉 − 𝜁𝑖) for 𝑖 = 1, 2. Then, the perturbation
theory based on the inverse scattering transform predicts the
temporal evolutions of 𝜅𝑖 and 𝜁𝑖 (𝑖 = 1, 2) as
𝑑𝜅𝑖𝑑𝜏 = −

3√12𝐶𝑚4𝐶𝑖𝜅𝑖 ∫
∞

−∞
𝜕𝜉 (V + 𝑤) sech2𝑧𝑖𝑑𝑧𝑖,

𝑑𝜁𝑖𝑑𝜏 = 4𝜅21 −
3√12𝐶𝑚4𝐶𝑖𝜅3𝑖

⋅ ∫∞
−∞
𝜕𝜉 (V + 𝑤) sech2𝑧𝑖 (𝑧𝑖 + 12 sinh 2𝑧𝑖)𝑑𝑧𝑖,

(10)
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where (9) is used for V and 𝑤 [14]. According to [12],
leapfrogging is described by the small oscillations of the
soliton’s amplitudes 𝜅1 and 𝜅2 around their average mean
values, 𝜅01 and 𝜅02, respectively. We then define 𝜆𝑖 as 𝜅𝑖 =𝜅0𝑖(1 + 𝜆𝑖) for 𝑖 = 1, 2. The variables 𝜆𝑖 are assumed to satisfy
the conditions: 𝜆𝑖 ≪ 1. Accordingly, the phase differenceΔ𝜁 ≡ 𝜁1 − 𝜁2 must be small. We then assume that 𝑧2 is
approximately equal to 𝜅02𝑧1/𝜅01+𝜅02(𝜆2−𝜆1)𝑧1/𝜅01+𝜅02Δ𝜁.
Moreover, we define 𝜌 as 𝜅02/𝜅01. Then, (10) give

𝑑𝜆1𝑑𝜏 = −
3√12𝛼 (𝜌) 𝜌2𝐶𝑚𝜅202Δ𝜁𝐶1 , (11)

𝑑𝜆2𝑑𝜏 =
3√12𝛼 (𝜌−1) 𝐶𝑚𝜅201Δ𝜁𝐶2𝜌2 , (12)

𝑑𝜁1𝑑𝜏
= 8𝜅201𝜆1 −

3√12𝐶𝑚𝜌32𝐶1 (3𝛽 (𝜌) + 𝜌𝛾 (𝜌)) (𝜆2 − 𝜆1)
+ 4𝜅201 −

3√12𝐶𝑚2𝐶1 (2 + 𝜌3𝛽 (𝜌))
(13)

𝑑𝜁2𝑑𝜏
= 8𝜅202𝜆2
− 3√12𝐶𝑚𝜌−32𝐶2 (3𝛽 (𝜌−1) + 𝜌−1𝛾 (𝜌−1)) (𝜆1 − 𝜆2)
+ 4𝜅202 −

3√12𝐶𝑚2𝐶2 (2 + 𝜌−3𝛽 (𝜌−1)) ,

(14)

where functions 𝛼, 𝛽, and 𝛾 are defined by

𝛼 (𝑥) = ∫∞
−∞

sech2𝑥𝑧 (1 − 3 tanh2𝑥𝑧) sech2𝑧 𝑑𝑧,
𝛽 (𝑥) = ∫∞

−∞
sech2𝑧 sech2𝑥𝑧 tanh𝑥𝑧

⋅ (2𝑧 + sinh 2𝑧) 𝑑𝑧,
𝛾 (𝑥) = ∫∞

−∞
sech2𝑧 sech2𝑥𝑧 (1 − 3 tanh2𝑥𝑧)

⋅ 𝑧 (2𝑧 + sinh 2𝑧) 𝑑𝑧.

(15)

By subtracting (14) from (13), Δ𝜁 is shown to satisfy

𝑑2Δ𝜁
𝑑𝜏2 = −𝜔lf

2Δ𝜁, (16)

where

𝜔lf 2 = 8 3√18𝐶𝑚𝜅401(𝛼 (𝜌
−1)
𝐶2 + 𝛼 (𝜌) 𝜌4𝐶1 )

+ 3√18𝐶𝑚2𝜅201(𝛼 (𝜌
−1)
𝐶2 + 𝛼 (𝜌) 𝜌6𝐶1 )

× ( 1𝐶2𝜌6 (𝛾 (𝜌
−1) + 3𝛽 (𝜌−1) 𝜌)

+ 𝜌𝐶1 (𝛾 (𝜌) 𝜌 + 3𝛽 (𝜌))) .

(17)

Let the amplitude of a pulse inputted to line𝑖 be 𝐴 𝑖 (𝑖 = 1, 2), by which 𝜅01 and 𝜅02 are,
respectively, given by 𝜖−1/2√𝑚𝐴1/(12)2/3(𝑉𝑏 + 𝑉𝐽) and

𝜖−1/2√𝑚𝐴2/(12)2/3(𝑊𝑏 + 𝑉𝐽). In fact, the voltage fraction𝐴2/𝐴1 is expected to be coincident with that of the 𝜋
mode [15], which becomes 𝐿2/𝐿1 for small 𝐶𝑚 at matched
velocities; therefore, 𝜌 becomes coincident with √𝐿2/𝐿1
in the case of 𝑊𝑏 = 𝑉𝑏. As a result, once 𝜌 is given, the
fraction between 𝐶1 and 𝐶2 is uniquely determined as𝐶2 = 𝜌−2𝐶1. Under these assumptions, the angular frequency
of leapfrogging is obtained in the units of rad/s as

𝜔2lf = 𝑚2𝜌2𝐶𝑚𝐴216𝐶21𝐿1 (𝑉𝑏 + 𝑉𝐽)2 (𝛼 (𝜌
−1) + 𝛼 (𝜌) 𝜌2)

+ 𝑚𝜌4𝐶2𝑚𝐴18𝐶31𝐿1 (𝑉𝑏 + 𝑉𝐽) (𝛼 (𝜌
−1) + 𝛼 (𝜌) 𝜌4)

⋅ (3𝜌−1𝛽 (𝜌) + 𝛾 (𝜌))
+ 𝑚𝜌2𝐶2𝑚𝐴18𝐶31𝐿1 (𝑉𝑏 + 𝑉𝐽) (𝛼 (𝜌) + 𝛼 (𝜌

−1) 𝜌−4)
⋅ (3𝜌𝛽 (𝜌−1) + 𝛾 (𝜌−1)) .

(18)

In addition, we can evaluate the voltage variation on line 1,
denoted as Δ𝑉1, by solving (16) and substituting the resultingΔ𝜁 into (11):

Δ𝑉1 = 24𝛼 (𝜌) 𝜌
3Δ𝑥0 𝐴1(18)1/3 (12)2/3 [8𝐶1𝐶𝑚 (𝛼 (𝜌

−1)

+ 𝛼 (𝜌) 𝜌2) + (12)2/3 (𝑉𝑏 + 𝑉𝐽)𝑚𝐴1 (𝛼 (𝜌−1)

+ 𝛼 (𝜌) 𝜌4) × (𝛾 (𝜌−1) + 3𝛽 (𝜌−1) 𝜌𝜌4

+ 𝜌 (𝛾 (𝜌) 𝜌 + 3𝛽 (𝜌)))]
−1/2

,

(19)
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Table 1: Line parameter values of coupled NLTLs used to obtain Figure 3.
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Figure 3: Performance of unbalanced NLTLs obtained by perturbation theory. The dependence of (a) the leapfrogging frequency and (b)
voltage variations on 𝜌.

where Δ𝑥0 represents the initial spatial separation between
two pulses in units of 𝑐𝑒𝑙𝑙. Similarly, that on line 2 is given by

Δ𝑉2 = 𝛼 (𝜌
−1)

𝛼 (𝜌) 𝜌2Δ𝑉1. (20)

Figure 3 shows the typical dependence of 𝜔lf and Δ𝑉𝑖
(𝑖 = 1, 2) on 𝜌2 obtained by (18), (19), and (20). The
parameter values used to obtain Figure 3 are listed in Table 1.
The balanced-line case, corresponding to 𝜌 = 1.0, is
exemplified by the dashed line. We can see in Figure 3(a)
that the leapfrogging frequency increases as 𝜌 becomes large.
Because the pulse velocity is only slightly dependent on 𝜌,
the increase in frequency results in the reduction of spatial
period of leapfrogging. It is thus expected that the line length
for required amplitude modulation can be reduced for larger𝜌. The most important result is shown in Figure 3(b), where
the voltage variations increase as 𝜌 becomes large. Due to
the increase of voltage variations, together with the reduction
of required line length, the introduction of imbalance con-
tributes to the effective utilization of leapfrogging pulses in
high-speed electrical pulse managements.

3. Numerical Evaluations of
Leapfrogging Pulses

In order to examine the leapfrogging pulses in the unbalanced
NLTLs, we numerically solved (2) using the fourth-order
Runge-Kutta method. For all following calculations, 𝐴1, 𝐿1,𝐶1, 𝑀, 𝑉𝐽, and 𝑉𝑏 were set to the values listed in Table 1.
In addition, 𝑊𝑏 was set equal to 𝑉𝑏. The pulse inputted to
line 2 was delayed against that to line 1 by 50 ps. Figure 4
shows the temporal variations of the pulse amplitudes for

three different values of 𝜌, where lines 1 and 2 amplitudes are
shown by the thick (blue) and thin (red) curves, respectively.
The value of 𝜌 was set to 0.9, 1.0, and 1.5 for Figures 4(a),
4(b), and 4(c), respectively.Note that Figure 4(b) corresponds
to the balanced lines. Due to leapfrogging, the pulse on
line 1 increases (decreases) when that on line 2 decreases
(increases). Because of the instability [16], the leapfrogging
period gradually increases in all the calculated cases and the
amplitude difference also increases, and thus the spatial sep-
aration between leapfrogging pulses gradually increases and
finally becomes so large that the interaction is weakened and
leapfrogging ceases. The temporal separation between the
first and second maximum points of line 2 pulse amplitude,
labeled as 𝑇lf in Figure 5, is calculated to be 18.5, 16.9, and
13.9 ns for 𝜌 = 0.9, 1.0, and 1.5, respectively. The decrease in𝑇lf is qualitatively consistent with the dependence of 𝜔lf on 𝜌
shown in Figure 3(a). The voltage variation between the first
peak and bottom of line 2 pulse amplitude is estimated to be
0.37, 0.51, and 1.09V for 𝜌 = 0.9, 1.0, and 1.5, respectively.The
calculations successfully validate the prediction that the large𝜌 results in the increase in amplitude variations.

Finally, we demonstrate the improvement of efficiency in
a pulse train modulator by introducing imbalance. Figure 5
shows the result.The line parameter values were those used to
obtain Figure 4 except for𝑊𝑏, which was varied sinusoidally
with the frequency of 35MHz and 0.2V amplitude around
1.0 V.This variation in𝑊𝑏 affects leapfrogging frequency and
amplitude variations of pulses in the NLTLs, resulting in
the modulated pulse train at the output. The pulse with the
width of about 60 ps was repeatedly applied to the inputs
with the period of 2 ns.The total cell size was 210. Figure 5(a)
shows the temporal waveform recorded at the output for the
balancedNLTLs. Sinusoidal modulation is established for the
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Figure 4: Amplitude variation of leapfrogging pulses. The cases corresponding to three different values of 𝜌 were examined [(a) 𝜌 = 0.9, (b)𝜌 = 1.0, and (c) 𝜌 = 1.5].
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Figure 5: Improvement of modulation efficiency using unbalanced NLTLs.

outputted pulse train. However, the on/off ratio is about 2.0
at most for both line outputs. On the other hand, Figure 5(b)
shows the output waveforms for 𝜌 = 1.5. Although the
on/off ratio becomes deteriorated at the line 1 output, it is
significantly improved to be beyond 4.0 at the output of line

2. Note that the modulated amplitude of 𝑉out is significantly
greater than 𝑉mod amplitude. It seems possible to reduce the
line length required for sufficient on/off ratio of modulated
pulse train by further optimization of line parameter values
and biasing conditions.
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4. Conclusions

The properties of leapfrogging pulses in two coupled NLTLs,
which share a common wave velocity and possess their own
characteristic impedances, are investigated. The common
wave velocity guarantees the resonance interaction between
pulses traveling in the lines. We investigated the impact
of line imbalance resulting from the different characteristic
impedance on the leapfrogging pulses to show that both
the leapfrogging frequency and voltage variations increase,
based on the analysis using the soliton perturbation theory.
Several numerical calculations validate these observations
and successfully demonstrate the improved performance of
pulse train modulation using leapfrogging pulses.
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