
Research Article
Practical Benefits of Aspect-Oriented Programming
Paradigm in Discrete Event Simulation

Meriem Chibani,1 Brahim Belattar,2 and Abdelhabib Bourouis1

1Research Laboratory on Computer Science’s Complex Systems ReLa(CS)2, University of Oum El Bouaghi,
P.O. Box 358, 04000 Oum El Bouaghi, Algeria
2Department of Computer Science, University of Batna, 5000 Batna, Algeria

Correspondence should be addressed to Meriem Chibani; chibani meriem@live.fr

Received 16 July 2014; Revised 20 October 2014; Accepted 20 October 2014; Published 28 December 2014

Academic Editor: Dimitrios E. Manolakos

Copyright © 2014 Meriem Chibani et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Aspect-orientedmodeling and simulation is a new approach which uses the separation of concerns principle to enhance the quality
of models and simulation tools. It adopts the separation of concerns (SOC) principle.Thus, crosscutting concerns such as processes
synchronization, steady state detection, and graphical animation could be separated from simulation functional modules. The
capture of crosscutting concerns in a modular way is carried out to cope with complexity and to achieve the required engineering
quality factors such as robustness, modularity, adaptability, and reusability. This paper provides a summary of aspect-oriented
paradigmwith its usage in simulation by illustrating themain crosscutting concerns that may infect simulation systems. A practical
example is given with the use of the Japrosim discrete event simulation library.

1. Introduction

When designing software, there are usually certain require-
ments and considerations to be carried out in order to cope
with complexity and to achieve the required engineering
quality factors such as robustness, adaptability, and reusabil-
ity.These requirements or considerations are called concerns.
Obtaining the expected granularity of the identification
and the separation of concerns is named the separation
of concerns (SOC) principle. Aspect-oriented programming
(AOP) has been proposed as a new technology that adopts the
SOC principle with its six “C” properties: Concern-oriented,
Canonicality, Composability, Computability, Closure, and
Certifiability [1]. It grew out in the early 1990s with the aim to
manage crosscutting concerns such as logging, security, and
distribution which scattered in multiple software functional
core modules. In addition to code scattering, when a module
handles multiple concerns simultaneously, code tangling
arises to decrease systems maintainability and increase their
complexity.

The AOP does not introduce a completely new design
process but just a new means to enhance design. As procedu-
ral programming brought functional abstraction and object-
oriented programming gave birth to object abstraction,
aspect-oriented programming introduces concern abstrac-
tion [2]. There are four main AOP programming approaches:
Xerox PARC AOP, subject-oriented programming (SOP),
adaptive programming (AP), and composition filters (CF)
approach [3]. Xerox PARC AOP is the most popular method
[4]. It is often called aspect-oriented programming and has
AspectJ as an implementation language.

In our study,we have usedXeroxPARCapproach, namely,
AOP, and our work focuses on AspectJ the most mature and
the widely used in research area, since it is the first practical
AOP implementation based on Java. It enhances Java with
additional structures to manage crosscutting concerns as
pointcuts, advices, static crosscutting structures, and aspects
[4].

Simulation modeling software requires more and more
features in order to cope with emerging problems. They

Hindawi Publishing Corporation
Modelling and Simulation in Engineering
Volume 2014, Article ID 736359, 16 pages
http://dx.doi.org/10.1155/2014/736359

2 Modelling and Simulation in Engineering

could include many crosscutting concerns. As an instance,
there is synchronization, wheremany simulation tools imple-
ment concurrency trying to provide a more direct way of
modeling real systems, scheduling policies, optimizations
because performance is a desired property in simulation, and
distribution (e.g., using web-based simulation) [5]. Thus, the
applications of aspect-based modeling span a broad range of
simulation software. Applications range from discrete event
simulation (DES) frameworks as Tortuga [6], Simkit [7], SimJ
[8], and the component-based instrumentation framework
OSIF [9] that uses the AOP paradigm to separate its DES
models from the experimental frame to enable software
reuse and evolution to multiagent simulation as [10, 11]
systems. Moreover, AOP has been used for developing large
simulation software systems as in the disaster prevention
simulation system [12] and the conduit and traffic simulators
[13]. Furthermore, several approaches have been proposed to
separate the performance concern from the functional core
of software applications as presented in [14–16].

The aim of this paper is to illustrate key concepts of
aspect-oriented approaches to identify the main crosscutting
concerns that may be implemented in simulation and to dis-
cuss the aspect-oriented version of the Japrosim framework
[17]. The use of the AO simulation is justified by the fact
that the domain requirements for simulation software are
complex and the object-oriented paradigm is unable to deal
with such complexity.

The rest of the paper is organized into six sections.
Section 2 presents themain goal behind the use of the aspect-
oriented paradigm in simulation. Section 3 outlines most
of the works in aspect-oriented simulation. Section 4 casts
light on the AOP approaches. Section 5 presents the main
crosscutting concerns thatmay infect simulation systems and
the general staff for implementing them. In Section 6, a case
study of applying theAOPparadigm to Japrosim is presented.
Finally, a conclusion is given to open doors for future
research.

2. Problem Statement and Contribution

Although the object-oriented simulation provides a rich and
intuitive paradigm for buildingmodels of real-world systems,
it suffers from the inherent weakness of object-oriented
programming (OOP) methodology which is the inability to
modularize all concerns.The limitation of the OOP approach
is its inability to localize concerns that do not naturally fit
into a single program module or even several closely related
modules. Such concerns are called crosscutting concerns as
they crosscut or span implementation modules.

OOP code suffers from two phenomena resulting from
misalignment between requirements and code: tangling and
scattering. Tangling occurs when multiple concerns are
addressed in a single module making the module harder to
understand and maintain. Scattering results occur when the
implementation of a concern is spread overmultiple modules
leading to the risk of inconsistencies at each point of use.
The AOP paradigm puts a greater focus on crosscutting con-
cerns than OOP and other language paradigms. It provides

language mechanisms that explicitly capture crosscutting
concerns in a modular way and thus achieving the benefits
that result from improved modularity. These benefits lay in
making code easier to design, implement, maintain, reuse,
and evolve. The AOP takes crosscutting concerns out of
functional modules and place them in a separated location
called aspect [20].

Besides that, simulation systems comprise concerns that
not necessarily align with the functional components as
synchronization, scheduling, optimizations, and distribution
concerns. The way in which these factors affect software
artifacts usually produces a messed design. The tangling
code increases the dependencies between the functional com-
ponents, thus making the source code difficult to develop,
understand, and evolve. As a result, simulation system
properties such as reusability and adaptability become fairly
restricted. In this context, simulation domains need specific
separation of concerns.

Figure 1 presents a motivation example for the simu-
lation of a thermic control system which has a building
with rooms requiring specific temperatures and a network
consisting of heaters, pipes, and a boiler. The boiler is the
heat source, and it generates a heat flow that is distributed
through the circuit. Each heater has a valve, with a regulation
mechanism, to transfer part of this heat flow to the rooms
until they reach the selected temperatures. Each room has
predefined dimensions, materials, and convection properties.
The heaters store information about size, radiation area,
and convection properties. The user can set up the desired
temperature for a room, andwhen the current temperature in
the room is lower than this value, a control action is activated
asking a certain heat amount to the boiler.

To simulate this thermic control system, a mathematical
model is required for describing the heat flow between
the different components. The mathematical model adds
new relationships between the components of the object
model: each heater needs to know the temperature of its
associated room, each room knows the temperatures of its
neighbors, and the boiler is able to set heater valves during
its computation. In addition, to specify how the simulation
run, a natural modeling comprises the implementation of the
components as independent threads are adopted. This situa-
tion implies taking synchronization and scheduling concerns
into account, for example, to synchronize communication
between heaters and rooms regarding to heat transference or
valve manipulations in the heaters because race conditions
might arise if the boiler try to use them. Synchronization
code is scattered across several classes. The latter depends
on the different relationships among variables defined by
the mathematical model. Algorithm 1 shows how aspects
related to mathematical models, concurrency, scheduling,
and optimizations are scattered across the architecture. This
is a simplified example and it is not difficult to deal with
the relatively small amount of tangling existent in the code.
But in real programs the complexity due to such tangling
quickly expands to become a major obstacle regarding to
maintenance and reusability [5].

Discrete event simulators implement a number of con-
cerns, such as event scheduling, event handling, and keeping

Modelling and Simulation in Engineering 3

extends HeatPropagator { protect double generateHeat⟨⟩ {

synchronized (qroomslook) {
// instance variables - vector valves;

private double qT; ⋅ ⋅ ⋅

private double qrooms; for (Enumeration e − heaters.elements⟨⟩;
private Vector heaters; e.hasMoreElements⟨⟩; } {

Heater heater − (Heater) (e.nextElement⟨⟩);
private object qroomslook = new object[0]; ⋅ ⋅ ⋅

valves.add(h.getValve⟨⟩);
// Instance methods -- }

public void requestHeat(double q,vector h) { ⋅ ⋅ ⋅

synchronized (qroomsLock) { double q;

qrooms = qrooms + q; q = MathPackage.RungeKutta(qi, qrooms, qT, . . .);
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

heaters.addAll(h); for (Enumeration e = heaters.elements ⟨⟩;
} e.hasMoreElements⟨⟩; } {
} Heater heater − (Heater) (e.nextElement⟨⟩);
protected propagate⟨⟩ { ⋅ ⋅ ⋅

qT − this.generateHeat⟨⟩; h.setValve(valves.elementAt(1));
next.addHeat(qT); }

} return (q);

protected double transferredHeat⟨⟩ { }

synchronized (qlock) { }

⋅ ⋅ ⋅ } // End Boilar

}

}

Bold code corresponds to tangled code due to concurrency aspects.
Underlined code corresponds to tangled code due to mathematical aspects.

Algorithm 1: Resulting boiler class (with tangled code) [5].

Room 1

Room 2

Room 3

(b) qask1

(b) qask2

(b) qask3

(a) qr1

(a) qr2

(a) qr3

(c) qT

(a) qr4

(a) qr5

Heater 1 Heater 2

Heater 3

Heater 4

Heater 5Boiler

Ti: current temperature in room i

To: external temperature
Qi: heat value in room i

qi: heat value in heater i

qri: heat transferred from the heater i to the room
qT: total heat produced in boiler
pi: threshold valve in heater i

Heat net

To Outside
qi, qri

qT

pi

Ti

Qi
Room

House

Heater

Boiler

Pipeline

Figure 1: Diagram of the thermic control system [5].

4 Modelling and Simulation in Engineering

track of a simulation’s state which crosscut over multiple
modules in the system. This increases the complexity and
reduces the maintainability. The separation of systems’ cross-
cutting concerns improves their quality attributes as mod-
ularity, understandability, maintainability, reusability, and
testability [21]. This paper exploits the aspect-oriented on
simulation modeling domain through:

(i) giving an overview of aspect-oriented programming
(AOP) approaches as a comparative study;

(ii) identifying the most crosscutting concerns of sim-
ulation systems and their general implementation
process;

(iii) proposing the aspect-oriented (AO) full version of
Japrosim library;

(iv) evaluating the AOP Japrosim packages using AOMet-
rics tool.

3. Literature Review

The use of the AOP in the discrete event simulation domain
depends on several considerations related to the aspect-
oriented paradigm itself as the level of its application
(specification, design, or implementation phase), the coexist
methodology (multiagent, components, or object oriented),
and the used aspect-oriented language (e.g., AspecJ, AspectS,
or MAML). Besides that, the aspect-oriented simulation
systems could be classified from a simulation point of view,
that is, the kind of the separated crosscutting concerns. The
latter are specific for simulation modeling domain as steady
state detection or they may be found in any application as
exception handling. In the following, a summary of most of
the existing works in the literature is provided.

Simkit is an open source tool based on the OO paradigm
and event graph formalism for modeling. The authors in
[7] proposed its AO versions in terms of AspectJ solutions
for separating the simulation termination rules, restoring a
simulation run, and resource pooling crosscutting concerns.
However, they miss to separate all crosscutting concerns,
especially those which could be found in any mature frame-
work as steady state detection and graphical user interface. In
[9], the component-based instrumentation framework OSIF
uses the AOP paradigm to separate its DES models from the
experimental frame to enable software reuse and evolution.
Moreover, the AOP has been used in the development of
the Open Simulation Architecture (OSA) [22] for the same
purpose as in OSIF. It allows better reuse of components in
both sides, reuse of a given model with various scenarios, or
reuse of a given scenario with various models in order to save
time, money, and human effort. A simple use case of network
security study has been used to illustrate the benefits of the
previous technique.

SimJ framework is an academic framework containing
only the logging crosscutting concern. The authors in [8]
confirmed their hypothesis in which AO GoF 20 design pat-
terns decrease the code complexity, eliminate scattering code,
and allow to design additional AO hot spots in frameworks
and the loss of performance is minimal and fully acceptable
by means of SimJ case study where the AO Adapter design

pattern is used. The authors view SimJ as an application
framework without giving any importance to its discrete
event simulation domain. Next to this, in [6] the authors
introduced their Java-based Tortuga simulation framework,
which used AO to ensure the synchronization aspect only.

In [10], a multiagent simulation system is discussed,
and it consists of two types of agents, a set for describing
the simulation model and another for observational mech-
anisms. This collection of independent agents is interacting
by discrete events where every agent has a schedule that
generates its plan of activities. The system is executed on a
framework that uses the OO paradigm to define its agent
models and web technology to interact with the modeling
and simulation environment. The kernel of this framework
is the programming language MAML (Multiagent Modeling
Language) which has the capacity of the dissociation between
the model and the observational mechanisms thanks to the
aspect-oriented paradigm from the design phases until the
implementation phase, thereby increasing themaintainability
of the system and decreasing its complexity. MAML has the
xmc compiler which generates Objective-C code from the
MAML source code after weaving the model object and the
observation object. Despite the richness of MAML syntax to
support AOP, it remains in its infancy when compared to
AspectJ.

In [11], the AO paradigm has been used to develop a mul-
tiagent system dedicated to simulate physical phenomena.
The MAFES system (Multiagent Finite Environment System)
consists of an environment in the form of a node matrix and
a set of agents operating on these nodes. Aspects are used
to assign tasks to agents by adding appropriate functionality
to perform their task. In addition, these aspects weave the
appropriate resources and attributes to the environments
nodes. MAFES contains three other types of aspects for
control, visualization, and storing simulation results. The
implementation of MAFES is based on AspectJ and makes
the system generic to build versions for specific requirements
(it is enough to weave appropriate aspects). The authors
experiment their system with two phenomena. The first is
heat exchange and amotion phenomenon.The second is heat
exchange and crystallization.

In [12], a new aspect-oriented approach for disaster
prevention simulation system (ABR) has been addressed.
The proposed approach separates the core functionality
of the simulation application from simulation crosscutting
concerns thanks to horizontal decomposition (HD) method
which relies on the AOP paradigm. The approach is imple-
mented on AoSiF (Aspect-Oriented Simulation Framework)
which is an extension of distributed simulation framework
(DiSiF) [23]. It uses the resource paradigm, actor-based
workflow modeling, web services, and Grid computing as
implementation technology and Java Annotations for declar-
ative programming in addition to AspectJ for the aspect-
oriented implementation. To demonstrate the applicability of
the approach, two crosscutting concerns, namely, distribution
and tool integration, are implemented. Unfortunately, con-
cerns are not specific to the simulation modeling domain.

In [13], the authors implemented a conduit simulator
system which uses the AOP paradigm at the code level. The

Modelling and Simulation in Engineering 5

simulator has crosscutting concerns as synchronization and
order of execution, user interface (UI), and logging which are
written in different aspect-specific languages (ASLs). It has a
modular aspect-weaver mechanism that offers the generality
of a general-purpose aspect language without losing the
ability and advantages of defining aspects in aspect-specific
languages.

In [24], an AO real-time traffic simulator has been devel-
oped. It uses AOP to encapsulate seven real-time crosscutting
concerns using AspectJ: thread scheduling and dispatching,
synchronization and resource sharing, asynchronous thread
termination, memorymanagement, physical memory access,
asynchronous event handling, and asynchronous transfer
of control. A comparison of the two systems, a real-time
sentient traffic simulator and its aspect-oriented equivalent, is
performed to indicate both benefits and drawbacks with AO
approach. It is based onOOChidamber andKemerer (C\&K)
metric suite. The aforementioned concerns are general, they
could be found in any real-time systems. Moreover, despite
the fact that C\&K metric suite is adapted to AO systems,
further investigation is required into the metrics that are
suitable for evaluating AO applications.

In [25], a simulation based design level performance
analysis method has been proposed where the performance
concern of the software application is separated from the
functionality model since the design phase by the use of
aspect-oriented programming. Unlike the design of the soft-
ware systemwhich ismodeled usingUML class diagrams and
sequence diagrams, the performancemodel is an XML-based
representation derived from the UML performance profile.
After code generation from the design model, the AspectJ
weaver is introduced in order to formulate the simulation
code. The authors experiment their approach using a dis-
tributed map viewer system. In [14], they argue that their
approach is generic and could be used for analysis of other
quality attributes of software systems as reliability. In [26],
another approach for analyzing performance is proposed.
Unlike the precedent approaches, it defines performance as
a collection of aspects which includes a long list of metrics
such as response time, rate throughput, probability, and time
between errors over aspect-oriented formal design analysis
framework (FDAF). The authors focus on modeling the
response time performance aspect and they have chosen
real-time UML as the base notation which is translated
into Architecture Description Language (ADL) Rapide. The
authors use the simulation technique to evaluate response
time for the DNS query processing subsystem.

In [15], the authors propose an aspect-oriented frame-
work for agent-oriented software that separates the per-
formance concern at the design level using the aSideML
language, which is a UML extension for representing aspects
at different levels of abstraction. This framework provides
separation of performance concerns among the differ-
ent agenthood properties (mobility, autonomy, adaptability,
interaction, and learning) and scenario specific application
concerns. The design model for scenario specific application
concerns and agent-hood concerns has its own Java imple-
mentation code while the performance model has a separate
AspectJ implementation. Later, these are all woven together

using the AspectJ compiler. The framework architecture is
composed of performance component, agent concerns, the
agent platform component, workload and resources con-
cerns, IInformatioGathering interface, and IperformanceRe-
porting interface.

In [16], the authors propose a new approach that studies
the performance effects of crosscutting aspects as security
on the overall system performance. The approach proceeds
by adding performance annotations to both the primary
and aspect models using the UML performance profile and
then instantiating the generic aspect model into a context-
specific one by following a set of binding rules provided by
the designer who transforms the parametric annotations of
the generic aspect model into concrete ones. The latter is
composed with the primary model according to a set of com-
position directives. The result is a composed annotated UML
which can be transformed automatically into a performance
model (Layered Queueing Networks (LQN) in this case)
by using the transformation techniques. The LQN model is
analyzed with existing solvers.

In [27], the authors discuss a new approach for separation
of functional (qualitative) behavior and quantitative perfor-
mance constraints since the specification phase. Thanks to
AOP, the aspects of a specification are written in different
languages: the process algebra LOTOS for an abstract specifi-
cation of functional behavior and the probabilistic temporal
logic for quantitative aspects (performance constraints). The
aspect weaving composes the two aspect specifications and
the result of this composition is an automata-style global
model which can be generated from the composition of
a labeled transition system (derived from LOTOS). Event
schedulers are derived from temporal logic formulae. Finally,
the global model can be used for performance analysis-based
simulation.

This work is similar to these proposals in terms of
harnessing the AOP paradigm for refactoring a discrete event
simulation framework. In our case, it is Japrosim. From
another side, this paper identifies the main simulation cross-
cutting concerns as steady state detection and graphical
animation, which do not exist in the previous works and
evaluate their impact on simulation systems design quality
properties.

Moreover, in order to benefit from the advanced sep-
aration of concerns techniques such as subject-oriented
programming, adaptive programming, composition filter,
and AOP in the simulation modeling domain, a comparative
study is presented, to clarify their principle constructs and the
relation between them.

4. The Aspect-Oriented Approaches

Aspect-oriented programming paradigm aims to manage
crosscutting concerns, that is, concerns that span across mul-
tiple modules leading to scattering and tangling code. It has
two main features, quantification and obliviousness. Filman
and Friedman in [28] say this “AOP can be understood as
the desire to make quantified statements about the behavior
of programs and to have these quantifications hold over

6 Modelling and Simulation in Engineering

Aspect
Relates

∗

∗System
Exposes∗

Join point Selects Pointcut

Crosscutting
element

Static crosscutting
element

Dynamic crosscutting
element

Weave time
declarations

Intertype
declarations

Advice

“Use”

Figure 2: Generic model of an AOP system [4].

programs written by oblivious programmers.” A closer look
at four main AOP approaches is provided in the following.

4.1. Xerox PARC Aspect-Oriented Programming. Aspect-
oriented programming grew out of Xerox Palo Alto Research
Centre (PARC). It separates crosscutting concerns into new
modularization units which are called aspects [29]. It has
AspectJ as an implementation language which is an exten-
sion to Java, but there are other implementations languages
like AspectC for C and Pythius for Python. To implement
crosscutting concerns, an AOP system may include many
constructs where the central one is the join point model
which consists of two parts: join points that are points in
the execution of an application and pointcuts which are a
mechanism for selecting join points.The aspects have advices
that are attached to one ormore join points to inject the cross-
cutting concern. When an advice is attached to join points,
it will be executed. Besides that, it has a modifier which
may specify the execution time relative to the join points:
before, after, around, after exception, or also after return
value. Advice is a dynamic crosscutting element because
it affects the execution of the system. Furthermore, AOP
implementation may contain static crosscutting elements
which alter static structure of the system as intertype and the
weave-time declaration constructs. Figure 2 shows all these
concepts and their relationships to each other in an AOP
system. Each AOP system may implement a subset of the
model.

4.2. Subject-Oriented Programming. Subject-oriented pro-
gramming paradigm was introduced in 1993 at IBM Thomas
J. Watson Research Centre. It is an extension of object-
oriented programming that supports building systems with
different subjective perspectives. Subject-oriented program-
ming philosophy is based on two central ideas: the division
of the system on several subjects and the composition
rules. A subject is a complete or partial object model. It is

a collection of related classes or a fragment of classes for
particular purpose as shown in Figure 3 with shipping and
transportation subjects. A subject could be complete or just
parts of an application. These different subjects could define
and operate upon shared objects in independentmanner [18].

Composition rules are applied to compose different
subjects together. The composition creates a new subject
that merges the functionality of the existing subjects. There
are three kinds of rules: correspondence rules, combi-
nation rules, and correspondence-and-combination rules.
Correspondence rules define correspondences between the
classes, methods, and members of different subjects. Com-
bination rules specify how corresponding and noncorre-
sponding classes, methods, and members of different sub-
jects are composed together to form a composite subject.
Correspondence-and-combination rules can do both simul-
taneously [30]. Each subject is compiled separately to produce
a binary subject.The binary subject consists of a label provid-
ing information about it and a binary code produced by the
compiler. The subject-oriented compositor uses information
in the labels to tie the subjects together. It does not examine
or modify the individual subjects’ binary code.

The overall goal of subject-oriented programming is to
facilitate the development and evolution of suites of cooper-
ating applications. It supports decentralization in time as well
as in space. It can also add extensions to an existing system in
a noninvasive way. From its supports, “C++ Subjectifier” and
the “Binary Subject Compositor” tools are built for C++ [31].

4.3. Adaptive Programming. Adaptive programming was int-
roduced around 1991 by Demeter group at Northeastern
University in Boston. The group has used the ideas of AOP
several years before the name aspect-oriented programming
was coined. After the collaboration with the Xerox PARC
group had begun, the group redefined AP and the term AOP
was introduced. AP is a kind of concern-shy programming. A
program is concern-shy if it hides the details of a certain con-
cerns it cuts across, and then it adapts automatically.Themost

Modelling and Simulation in Engineering 7

Shipping subject

Public:
Capacity(. . .)

Private:
Length
Width
Height

Public:
Capacity(. . .)
Pack(. . .)

Private:

Public:
Capacity(. . .)
Pack(. . .)

Private:

+ =

Transportation subject

Public:
SetRoute(. . .)
Range(. . .)

Private:
Route
GasTankCapacity

Public:
Name(. . .)

Private:

Composed subject

Public:
SetRoute(. . .)
Range(. . .)
Capacity(. . .)

Private:
Route
GasTankCapacity
Length
Width
Height

Public:
Name(. . .)

Private:

Figure 3: Application suite formed by composition of shipping and transportation subjects [18].

used form of AP is structure-shy programming. Structure-
shy programming eliminates the concern structural details
by making its behavior adaptive; that is, the behavior and
the structure of the program are separated. The AP approach
applies the Law of Demeter which argues that an object
should only talk to its immediate friends by handling traversal
strategy and visitor pattern concepts. There are various tools
for developing adaptive software as DJ-tool, DemerterJ, and
DAJ [32].

4.4. Composition Filters. Composition filter is an aspect-
oriented programming approach in which the CF model
distinguishes two kinds of constructs: (class-like) concerns
and filters. Briefly, a concern is the unit for defining the
primary behavior, while filters are used to extend or enhance
concerns so that (crosscutting) propriety can be represented
more effectively [19]. A message sent to an object is evaluated
and manipulated by the filters of that object which are
defined in an ordered set until it is discarded or dispatched
to another object as shown in Figure 4. Filter behavior is
simple: each filter can either accept or reject the received
message, but the semantics of the operations depends on
the filter type. For example, if an error filter accepts the
received message, it is forwarded to the next filter, but if it
was a dispatch filter, the message would be executed [2]. JAC
(Java Aspect Component) framework and Sina language are
implementations of this approach.

The AOP is the mature and the most used approach [4].
IBM members considered it as offspring of SOP by identi-
fying and illustrating several useful nonfunctional concerns

to be separated, such as concurrency properties, distribution
properties, and persistence. AOP distinguishes the notion
of “core classes” which encapsulates a system’s functional
requirements from “aspects” which encapsulate nonfunc-
tional, crosscutting requirements. Aspects are written with
respect to core classes and each aspect contains its part of
the rule specifying how that aspect is to be woven into
the base classes [33]. The AOP approach is used widely
in simulation field in order to increase simulation system’s
reusability and developing large simulation software with
less complexity as presented in [20]. In order to benefit
from the advanced separation of concerns techniques in
the simulation modeling domain, a comparative study is
presented in Table 1, which clarifies their principle constructs
and the relation between them.

5. Materials and Methods

5.1. Main Crosscutting Concerns of Simulation Systems. There
are several nonfunctional concerns that may span simulation
applications functional modules as follows.

5.1.1. Steady State Detection Crosscutting Concern. Steady
state detection concern detects the system stabilization where
the output data collected during the warming-up period
of a simulation can be misleading and bias the estimated
response measure. Thus, the removal of initialization bias
is important for obtaining accurate performance estimators.
There are five categories ofmethods for steady state detection:

8 Modelling and Simulation in Engineering

Table 1: Comparison between AOP approaches.

Xerox PARC AOP SOP AP CF
Atomic unit Aspect Subject Propagation pattern Filter

Coexisting methodology Object-
oriented/components/mutiagents Object-oriented Object-oriented Object-oriented

Composition mechanism Weaving mechanism Composition rules Weaving mechanism Superimposition
mechanism

The mechanism used to
determine crosscutting
concerns injection places

Pointcuts specification Labels specification Traversal strategies
specifications Matching part of filters

The places of the crosscutting
concerns injection Join points Subject parts Traversal object

model

The implementation part
of the CF object after
messages intercepting

Implementation languages AspectJ IBM VisualAge C++ DemeterJ ComposeJ

Composition time Compile time, load time, or run
time

During the
compilation

Compile time or run
time

Compile time or run
time

Received
messages

Sent
messagesInterface declaration

Input filters

Filterset
Filterset

Internals

External
declarations

Method
declarations

Condition
declarations

Output filters

Methods
Conditions

Implementation

Instance
variables

Figure 4: Composition filters object [19].

graphical, heuristic, statistical, initialization bias tests, and
hybrid methods [34].

5.1.2. Graphical Animation. Graphical animation is a way
of visualizing the system behavior during experimentation.
This visualization is of use in validating a design model
and interpreting the meaning and significance of simulation
results. Further, it helps users to better understand the
dynamics of the system under study and useful for teaching.

5.1.3. Graphical User Interface Crosscutting Concern. TheGUI
is used for presenting simulation statistics and increasing
the interaction with users. Its code may crosscut various
functional modules making GUIs hard to maintain.

5.1.4. Exception Handling. Exception handling is a nonfunc-
tional requirement for any application to gracefully handle
any erroneous condition like resource unavailability, invalid
input, null input, and so on. Thereby, the solutions proposed
for exceptions handling pollute simulation systems code and
make it incoherent.

5.1.5. Calculation Accuracy. Unfortunately, during the oper-
ations of addition, multiplication, and division, overflow or
underflow exceptions do not occur. This is the case of most
programming languages, including Java where its arithmetic
operators do not report overflow and underflow conditions.
They simply override them. Hence, such a crosscutting
concern will ensure the accuracy of calculation results, which
is crucial in simulation systems.

Modelling and Simulation in Engineering 9

5.1.6. Simulation Trace. In simulation systems, it is important
to register the state of all resources, passive and active entities
in separate time sequence. These registrations pollute the
simulation functional code in crosscutting manner.

5.1.7. Synchronization. For process interaction modeling
worldview, largely adopted by the discrete event simulation
community, the model consists of a collection of interacting
processes. Each process models the life cycle of a system’s
object, namely, a well ordered sequence of activities which are
logically related. Further, mutual exclusion synchronization
restricts concurrent activities in critical sections to protect
them against data inconsistency due to simultaneous access
for writing. For example, in Java multithread programming,
an object could be accessed by many threads simultaneously.
In consequence, data conflicts could occur if applications are
not prepared to deal with concurrency. Thus, the synchro-
nization should be implemented by using the synchronized
modifier at the method level or the synchronized (object)
construct at the instruction or block level [35]. Thus, the
synchronization of simulation processes and the mutual
exclusion synchronization are a crosscutting concern in
simulation function code.

5.2. The Process of Implementing an Aspect-Oriented Sim-
ulation System. Generally, the process of developing an
aspect-oriented simulator contains three phases, as shown
in Figure 5, the identification of systems’ concerns, their
implementation, and the development of the final system by
combining them in the following way.

(1) First, the crosscutting concerns as synchronization
and steady state detection are separated from simula-
tion engine concerns.This phase is comparedwith the
passage of a beam of light through a prism to separate
its different color components.

(2) Next to this, each crosscutting concern is imple-
mented independently by using an aspect-oriented
language as AspectJ which reduces the overall com-
plexity of design and implementation. In addition to
that, a procedural or OOP languages are used for the
implementation of simulation functional concerns.

(3) Finally, an aspect weaver as AspectJ compiler is used
to compose all crosscutting concerns and simulation
functional concerns to produce the final system.

6. Experimental Work

6.1. Japrosim Library. Japrosim is a free and open source
object oriented simulation library that adopts the widespread
process interaction worldview. The library is implemented
in Java programming language allowing profound access to
its powerful features and is documented using the UML. Its
classes are organized into packages that reflect important
functional areas. Either experimented programmers in Java
or simulation experts with elementary programming knowl-
edge could effortlessly build discrete event simulationmodels
using JAPROSIM. The library is extensible and customizable

Simulation
functional
concerns

Simulation
crosscutting

concerns

AOP
weaver

Si
m

ul
at

or

Figure 5: The process of implementing an aspect-oriented simula-
tion system.

which allow it to serve as a basis for the development of
domain specific simulation environments. Furthermore, it
is used as an academic material for teaching discrete event
modeling and simulation. The key feature of Japrosim is
the implicit and automatic collection of all well-known and
useful performance measures [17].

The library is divided into eight main packages:

(i) kernel: it is a set of classes dealing with active
entities, scheduler, queues, and resources as shown in
Figure 6;

(ii) random: it contains classes for uniform random
stream generation;

(iii) random.distributions: it contains a rich set of classes
for useful probability distributions;

(iv) statistics: it contains classes representing intelligent
statistical variables;

(v) gui: it is a set of graphical user interface classes to use
for project parameterization, trace, and simulation
results presentation;

(vi) utilities: it is a set of useful classes for express model
development;

(vii) statistics.steady: it is useful to detect the steady state;
(viii) animation: it is a set of classes used to provide a real

time animation of simulation models.

6.2. The Proposed AOP Solutions. The main crosscutting
concerns, discussed in the precedent section, are identified
and separated in Japrosim using AJDT tool [36]. The aspect-
oriented (AO) version of Japrosim is enhanced with the
uoeb.Japrosim.crosscutting.concerns package which consists
of eight aspects: SingletonConcern, Animation, Exception-
Handling, GraphicalUserInterface, SimulationTrace, Steady-
StateDetection, Synchronization, and CalculationAccuracy.
Thus, every aspect gives a solution to a separate crosscutting
concern which pollutes the framework packages as shown in
Figure 7.

6.2.1. SingletonConcern Aspect. The “Singleton” pattern pre-
vents the use of two objects for the same class. The Scheduler

10 Modelling and Simulation in Engineering

uoeb.japrosim.kernal

Queue
+ capacity : int

∼ name : String
+ length : TimeIntStatVar
+ waitingTime : DoubleStatVar
+ Queue ()
+ Queue (n:String)

+ Queue (n:String, cap:int, disc:int):[]
+ Queue (n:String, cap:int)

+ insert (e:Entity)
+ remove (e:Entity)
+ remove ()
+ getLength ():int
+ getCapacity ():int
+ getWBar ():double
+ getGWBar ():double
+ isBound ():boolean
+ reset ()

Scheduler

+ initialize() : void
getInstance() : Scheduler
+ body() : void
+ run() : void

SimProcess

∼ Scheduler.getInstance ()
mainResume ()
dispose ()
+ body ()

+ launch ()

+ addTrace (tr:String)
+ getVersion ():String
+ setStartingTime (st:double)

Entity
+ arrivalTime : double

+ pri : int = 0

+ Entity ()
+ run ()
+ enqueue (q:Queue)
+ dequeue (q:Queue)

∼ pick ()

∼ schedule (e:StaticEntity)
∼ getStatistics ()

Resource

+ availability : TimeIntStatVar

+ name : String
+ Resource ()
+ Resource (labl:String)
+ Resource (s:String, cap:int)
+ getCapacity ():int
+ getAvailability ():int
+ seize (q:int)
+ release (q:int)
+ reset ()
+ resetSteady ()

StaticEntity
+ eventTime : double
+ StaticEntity ()
+ run ()
+ beginAfter (a:double)
+ hold (duration:double)
+ passivate ()
+ release (res:Resource, units:int)

+ body ()

+ entName : String = “”

+ seize (res:Resource, units:int)

- bound : boolean = false

- rvg : RandomStream
- instance : Scheduler
- Scheduler()

- getResourceStat ()
- getQueueStat ()

- capacity : int

- lastAvail : double

Figure 6: The kernel package.

Figure 7: The interaction between aspects and AO Japrosim pack-
ages.

class uses it to prevent multiple instances and ensure that the
event list management is done exclusively by a unique thread.
In the old object-oriented (OO) version, Japrosim ensures
that only one Scheduler instance may exist by declaring its
constructor as private, providing a public method, namely,
getInstance(), to return the single existing instance and saving
the single existing instance as a static member variable. The
SingletonConcern aspect is nowproposed as a solutionwhich
includes an around advice that applies at the moment of
the constructor call that has the similar role of getInstance()
methodwithout the need to declare the singleton constructor
as private. Furthermore, the Scheduler instance is saved in
a static variable declared inside the aspect as a member
introduction.

6.2.2. Animation Aspect. Thegraphical animation, insideOO
Japrosim, is provided by means of the “observer” pattern.
This pattern creates a relationship between a subject and
an observer. An object is called a subject when its changes
are interesting for other objects, namely, observers. Observer
pattern elements are scattered inside the domain classes,
which decreases their cohesion and maintainability; thus,
AOP proposes the encapsulation of these observer elements
in an aspect and the domain classes remainwithout infection.
The SimAnim class is part of the animation package used
to provide a real-time animation. It gets useful data by
means of the “EventObserver” interface. Moreover, each of
the “Queue,” “Resource,” and “StaticEntity” classes register
listeners of “EventObserver” type to inform them in case
of event occurrence. This mechanism is ensured by the
observer pattern. The animation aspect is proposed as a
solution. It separates these elements by providing the link
between subject and observer using the “EventObserver” as
inner interface in addition tomember introduction and type-
hierarchymodification which affected subjects and SimAnim
class, respectively.

6.2.3. SteadyStateDetection. TheSteadyStateDetection aspect
is proposed to solve the problem of the Japrosim classic ver-
sion which offers twomethods that are Conway and Crossing
the Means by means of factory and observer design patterns.
The observer elements are tangled in the Entity, SteadyS-
tateTechnique, Conway, and CrossingTheMean classes. The
SteadyStateDetection aspect implements the AO version of

Modelling and Simulation in Engineering 11

observer pattern to improve the modularity of Japrosim
library.

6.2.4. Synchronization. For process synchronization, Japro-
sim implements the coroutine mechanism through SimPro-
cess, Scheduler, StaticEntity, and Entity classes. A collection
of threads run in quasiparallel mode under the Scheduler
thread control. Each coroutine is an object with its own
execution state, so that it may be suspended and resumed.
At any instance of real-time, only one coroutine is active. The
method processResume (Entity e) is called by the scheduler to
reactivate a simulation process, and mainResume() is called
by a simulation process to reactivate the scheduler. Each
simulation process has its own lock object while the scheduler
has the mainLock object. Locks are used in combination
with wait() and notify() to synchronize the implementation
threads. A thread which calls any of the previous methods
will block on its own lock after notifying the appropriate one.
At the end of its life cycle, a simulation process calls auto-
matically the dispose() method to reactivate the scheduler
without blocking itself. So the corresponding thread could
be terminated [36]. The elements that ensure the coroutine
mechanismare the processResume (Entity e),mainResume(),
and dispose() methods in addition to the mainLock and lock
objects.These elements are, respectively, separated in a single
synchronization aspect that clears the design and increases
understandability.

From another side, OO Japrosim methods which have
a critical property are enhanced with the synchronized
keyword as the getInstance() method in Scheduler class.
This tends to pollute the Japrosim functional code. In
order to overcome this problem, an around advice inside
the synchronization aspect is developed to ensure methods
synchronization by using a shared aspect lock.

6.2.5. GraphicalUserInterface. The Japrosim gui package inc-
ludes a set of classes (TraceFrame, PresentationFrame, Main-
Frame, andGraphicFrame) used for project parameterization
like the number of replications, experiment duration, trace,
and simulation results presentation. Despite the benefits and
flexibility provided by the GUI concern, its crosscutting
nature leads to code pollution. It decreases the cohesion
specifically inside Japrosim kernel classes. As an AOP solu-
tion, the GraphicalUserInterface aspect is proposed.

6.2.6. SimulationTrace. This aspect saves simulation trace,
separately from Japrosim functional modules, through the
generation of three files. One is in text format and the two
others are conforming to XML format.

6.2.7. ExceptionHandling. The ExceptionHandling aspect
contains five pointcuts and five advices that deal with all
exceptions types inside Japrosim library.

6.2.8. CalculationAccuracy. This aspect handles the under-
flow and overflow of int, float, double, and long primitive

types, over addition, subtraction,multiplication, and division
arithmetic operators, as shown in Algorithm 2.

6.3. Result andDiscussion. Tomeasure the impact of applying
the AOP paradigm to Japrosim design quality as flexibility,
maintainability, and reusability, an automatic assessment of
software metrics is achieved for AOP Japrosim version using
the AOPMetrics tool [37] which is a common metrics tool
for both java and AspectJ programs. It provides package
dependencies metrics suite that is based on Robert Martin’s
suite proposed in [38].

(i) Number of Types (NOT). It is a number of types within
given package. This is an indicator of the extensibility
of the package.

(ii) Abstractness (A). It is the ratio of the number of
abstract modules to the total number of modules in
the package.

(iii) Afferent Couplings (Ca). It is the number of mod-
ules outside the package that depend upon modules
within the package. This is an indicator of the pack-
age’s responsibility.

(iv) Efferent Couplings (Ce). It is the number of modules
inside the package that depend uponmodules outside
the package. This is an indicator of the package’s
independence.

(v) Instability (I). 𝐼 is the ratio of efferent coupling (Ce)
to total coupling (Ce + Ca) such that 𝐼 = Ce/(Ce
+ Ca). This metric is an indicator of the package’s
resilience to change. A value of zero indicates a
completely stable package and a value of one indicates
a completely instable package.

(vi) Normalized Distance from Main Sequence (Dn). It is
the normalized perpendicular distance of the package
from the idealized line 𝐴 + 𝐼 = 1. This metric
is an indicator of the package’s balance between
abstractness and stability.

Table 2 shows the results obtained from the measurement of
these metrics for AOP Japrosim packages. The crosscutting
package is characterized by the high (Ce) metric value
because it implements the all crosscutting concerns of other
packages and the null value of (Ca) which expresses the
obliviousness of theAOPparadigm.The crosscutting package
is completely unstable which confirms its crosscutting nature
without any functional concern.

The difference between all package dependencies metrics
values for both OO Japrosim and AO versions is registered
as presented in Figure 8. A remarkable change roughly
62% in Japrosim packages is obtained except for the
uoeb.Japrosim.gui, uoeb.Japrosim.random.distributions, and
uoeb.Japrosim.utilities which are not affected because they
have the minimal interaction with other packages in OO
Japrosim version. Furthermore, the AO Japrosim version
offered total decrease in (𝐼) metric value after aspects imp-
lementation because the packages are flexible enough to be
extended without requiring modification. The “Open/
Closed” principle [38] is implemented in ideal way through

12 Modelling and Simulation in Engineering

Ta
bl

e
2:

Th
em

ea
su

re
m

en
tr

es
ul
ts

fo
rA

O
Ja
pr

os
im

pa
ck

ag
es

us
in

g
AO

PM
et
ric

st
oo

l.

Pa
ck

ag
en

am
e

N
O
T

𝐴
RM

ar
tin

C
e

RM
ar

tin
Ca

RM
ar

tin
𝐼

RM
ar

tin
𝐷

C
e

C
a

𝐼
D
n

uo
eb

.ja
pr

os
im

.cr
os

sc
ut

tin
g.
co

nc
er

ns
10

0.
2

9
0

1
0.
2

43
0

1
0.
2

uo
eb

.ja
pr

os
im

.k
em

el
7

0.
28

57
14

5
42

0.
10

63
83

0.
60

79
03

7
42

0.
14

28
57

0.
57

14
29

uo
eb

.ja
pr

os
im

.st
at
ist

ic
s.s

te
ad

y
4

0.
25

3
2

0.
6

0.
15

2
2

0.
5

0.
25

uo
eb

.ja
pr

os
im

.g
ui

9
0

3
2

0.
6

0.
4

2
2

0.
5

0.
5

uo
eb

.ja
pr

os
im

.ra
nd

om
.d
ist

rib
ut

io
ns

19
0.
05

26
32

18
2

0.
9

0.
04

73
68

2
2

0.
5

0.
44

73
68

uo
eb

.ja
pr

os
im

.an
im

at
io
n

8
0

2
3

0.
4

0.
6

1
3

0.
25

0.
75

uo
eb

.ja
pr

os
im

.st
at
ist

ic
s

2
0

2
11

0.
15
38

46
0.
84

61
54

1
11

0.
08

33
33

0.
91

66
67

uo
eb

.ja
pr

os
im

.u
til

iti
es

3
0

3
0

1
0

5
0

1
0

uo
eb

.ja
pr

os
im

.ra
nd

om
6

0.
16

66
67

5
2

0.
71
42

86
0.
119

04
8

1
2

0.
33

33
33

0.
5

Modelling and Simulation in Engineering 13

Object around (Object aa, Object bb):

call (static public Object add(Object, Object)) && args(aa,bb)

{

String ca = aa.getClass().getSimpleName();

String cb = bb.getClass().getSimpleName();

if(ca.equals(cb)&&ca.equals(“Integer”)) {
int a=((Integer)aa).intvalue();

int b=((Integer)bb).intValue();

long c=(long)a+b;

if(c <Integer.MIN VALUE)

throw new ArithmeticException(“int underflow”);
else if(c> Integer.MAX VALUE)

throw new ArithmeticException(“int overflow”);
return (new Integer((int)c));}

if(ca.equals(cb)&&ca.equals(“Float”)) {
float a=((Float)aa).floatValue();

float b=((Float)bb).floatValue();

float c=a+b;

if(c==0 && (a!=−b))

throw new ArithmeticException(“float underflow”);
else if(c==Float.POSITIVE INFINITY||c==Float.NEGATIVE INFINITY)

throw new ArithmeticException(“float overflow”);
return (new Float(c));

}

if(ca.equals(cb)&&ca.equals(“Double”)) {
Double a=((Double) aa).doubleValue();

Double b=((Double)bb).doubleValue();

double c=a+b;

if(c==0 && (a!=−b))

throw new ArithmeticException(“double underflow”);
else if(c==Double.POSITIVE INFINITY| |c==Double.NEGATIVE INFINITY)

throw new ArithmeticException(“double overflow”);
return (new Double(c));}

if (ca.equals(cb)&&ca.equals(“Long”)) {
long a=((Long)aa).longValue();

long b=((Long)bb).longValue();

long c=a+b;

if (a > 0 && b > 0 && (c < a | | c < b))

throw new ArithmeticException(“long Overflow”);
else if (a < 0 && b < 0 && (c > a | | c > b))

throw new ArithmeticException(“long underflow”);
return (new Long(c));

}

return null;

}

Algorithm 2: Calculation accuracy aspect snippet code for capturing addition operation overflow and underflow.

the specification of the uoeb.Japrosim.crosscutting.concerns
package which has a total resilience and the high (Ce) metric
value. Additionally, the overall increase in (Ce) gives an
idea of the improvement in packages independency, thus
increasing package reusability. A decrease in (NOT) and
(𝐴) for both uoeb.Japrosim.animation and uoeb.Japrosim
.statistics.steady refers to the transfer of EventObserver
and StatObserver interfaces to the animation and Steady-
StateDetection aspects, respectively. Further, the increase in
(Ca) metric refers to the presence of additional package, that

is, uoeb.Japrosim.crosscutting.concerns. Finally, the increase
in the (Dn) value refers to (𝐼) value variation.

7. Conclusions

Aspect-oriented simulation is a promising research field
that offers a solution for the main problem of the object-
oriented simulation which is the separation of the simula-
tion crosscutting concerns in modular way. Aspect-oriented

14 Modelling and Simulation in Engineering

10

5

0

−5

−10

−15

−20

−25

uoeb.japrosim.kernal
uoeb.japrosim.statistics.steady
uoeb.japrosim.gui
uoeb.japrosim.random.distributions
uoeb.japrosim.animation
uoeb.japrosim.statistics
uoeb.japrosim.utilities
uoeb.japrosim.random

NOT

0 0 7

−1

−1 −22

−2

0

0

0

0

−1 −3 −3

30

0

0

0

0

0

0

0

0

0

0

0

0 0

1

0

0

0

0

0

0

7

−3

3

0 0

1

0

0

0

0

0

0

0

0

0

0

0

A

−0.15

−0.15

0

0

−0.16

−0.16

0.15

0.15

0

0

0.18

0.26

0.16

−0.03

−0.02

0

0.02

−0.31 0.31

−0.03

0.03

−0.04

0

0.04

−0.11

−0.11 0.11

RMartin
Ce

Ce
RMartin

Ca
Ca

RMartin
I

I
RMartin

D
Dn

Figure 8: The difference in measurement results for both AO and OO Japrosim packages metrics.

simulation systems have several features as the high mod-
ularity, reusability, maintainability, and visibility. The stated
objective of this paper is to enhance the discrete event
simulation with new programming paradigms as the aspect-
oriented paradigm.This objective is realized in specific terms
through the identification of the main simulation crosscut-
ting concerns such as steady state detection, graphical ani-
mation, graphical user interface, exception handling, calcu-
lation accuracy, simulation trace, and synchronization which
degrade simulation systems quality. At the experimental level,
the object-oriented version of the Japrosim framework has
been chosen as a practical example. The main simulation
crosscutting concerns identified earlier are separated from
the core concerns. The new aspect-oriented version of the
framework has been successfully obtained and it is avail-
able at: http://sourceforge.net/projects/Japrosim/files/AOP-
Japrosim. Additionally, to prove the impact of the AOP
paradigm on Japrosim design quality as flexibility, maintain-
ability, and reusability properties, an automatic assessment of
softwaremetrics for AO version of Japrosim is achieved using
theAOPMetrics tool which is a commonmetrics tool for both
Java and AspectJ programs.

Besides that, a brief overview of the advanced separation
of concerns approaches, namely, SOP, AOP, CF, and AP with
a comparative study is discussed, so the exploitation of each
one in simulation domain could be considered as a future
issue.

Recently, aspect-oriented ideas are spread through earlier
stages of the software development process by means of the
aspect-oriented software development (AOSD) techniques.
An area of future research would be to assess the benefits
of the integration of the AOSD techniques within simulation
systems and using Japrosim library as a practical example.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors are grateful to the anonymous reviewers for their
significant roles in improvement of this research quality.

References

[1] M. Akşit, B. Tekinerdoğan, and L. Bergmans, “The six con-
cerns for separation of concerns,” in Proceedings of the Work-
shop on Advanced Separation of Concerns (ECOOP ’01), 2001,
http://trese.cs.utwente.nl/workshops/ecoop01asoc/.

[2] L. Lucian and I. Despi, “Aspect oriented programming chal-
lenges,” Anale Seria Informatica, vol. 2, no. 1, pp. 65–70, 2005.

[3] V. Vranié, “Towards multi-paradigm software development,”
Journal of Computing and Information Technology, vol. 10, no.
2, pp. 133–147, 2002.

[4] R. Laddad, Aspectj in Action: Enterprise AOP with Spring
Applications, Greenwich, Conn, USA, Manning Publications,
2nd edition, 2009.

[5] J. A. P. Dı́az, M. R. Campo, and M. E. Fayad, “A language
for simulation: bringing separation of concerns to the front,”
in Proceedings of the 14th Aspects and Dimensions of Concerns
Workshop (ECOOP ’00), Cannes, France, 2000.

[6] W. Weiland, R. Weatherly, K. Ring et al., “Simplified con-
currency: a java simulation framework,” in Proceedings of the
Object-Oriented Programming, Systems, Languages and Applica-
tions Conference, 2005.

[7] A. U. Aksu, F. Belet, and B. Zdemir, “Developing aspects for
a discrete event simulation system,” in Proceedings of the 3rd

Modelling and Simulation in Engineering 15

Turkish Aspect-Oriented Software Development Workshop, pp.
84–93, Bilkent University, Ankara, Turkey, 2008.

[8] Z. Vaira andA. Caplinskas, “Application of pure aspect-oriented
design patterns in the development of ao frameworks: a case
study,” Information Sciences, vol. 56, pp. 146–155, 2011.

[9] J. Ribault, O. Dalle, D. Conan, and S. Leriche, “OSIF: a
framework to instrument, validate, and analyze simulations,” in
Proceedings of the 3rd International Conference on Simulation
Tools and Techniques (SIMUTools ’10), pp. 56–60,Malaga, Spain,
2010.

[10] L. Gulyás and T. Kozsik, “The use of aspect-oriented program-
ming in scientific simulations,” inProceedings of the Fenno-Ugric
Symposium on Software Technology (FUSST ’99), J. Penjam, Ed.,
Technical Report CS 104/99, pp. 17–28, Tallinn, Estonia, August
1999.

[11] V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J.
Dongarra, “Multiagent simulation of physical phenomena by
means of aspect programming,” in Computational Science—
ICCS 2006, S. Bieniasz, S. Ciszewski, and B. Śnieżyśki, Eds., vol.
3993 of Lecture Notes in Computer Science, pp. 759–766, 2006.

[12] T. B. Ionescu, A. Piater, W. Scheuermann, and E. Laurien,
“An aspect-oriented approach for the development of complex
simulation software,” The Journal of Object Technology, vol. 9,
no. 1, pp. 161–181, 2010.

[13] J. Brichau, K. Mens, and K. D. Volder, “Building composable
aspect-specific languages with logic metaprogramming,” in
Generative Programming and Component Engineering: Pro-
ceedings of the ACM SIGPLAN/SIGSOFT Conference, GPCE
2002 Pittsburgh, PA, USA, October 6–8, 2002, vol. 2487 of
Lecture Notes in Computer Science, pp. 110–127, Springer, Berlin,
Germany, 2002.

[14] D. Park, S. Kang, and J. Lee, “Design phase analysis of software
qualities using aspect-oriented programming,” in Proceedings of
the 7th International Conference on Software Engineering, Artifi-
cial Intelligence, Networking and Parallel/Distributed Computing
(SNPD ’06), Y.-T. Song, C. Lu, and R. Lee, Eds., pp. 29–34, IEEE
Computer Society, Las Vegas, Nev, USA, June 2006.

[15] T. Mehmood, N. Ashraf, K. Rasheed, and S. Tauseef-ur-
Rehman, “Framework formodeling performance inmulti agent
systems (MAS) using aspect-oriented programming (AOP),” in
Proceedings of the 6th Australasian Workshop on Software and
System Architectures (AWSA '05), 2005.

[16] H. Shen andD.C. Petriu, “Performance analysis ofUMLmodels
using aspect-oriented modeling techniques,” in Proceedings of
the 8th International Conference on Model Driven Engineering
Languages and Systems (MoDELS ’05), pp. 156–170, Springer,
Montego Bay, Jamaica, 2005.

[17] B. Belattar and A. Bourouis, “Ascertaining important features
of the JAPROSIM simulation library,” in Proceedings of the
EUROPMENT International Conference on Systems, Control,
Signal Processing and Informatics, pp. 515–522, Rhodes Island,
Greece, 2013.

[18] W. Harrison and H. Ossher, “Subject-oriented programming (a
critique of pure objects),” in Proceedings of the Conference on
Object-Oriented Programming: Systems, Languages, and Appli-
cations, pp. 411–428, Washington, DC, USA, 1993.

[19] L. Bergmans and M. Aksit, Composing Multiple Concerns Using
Composition Filters, TRESE Group, Department of Computer
Science, University of Twente, 2001.

[20] M. Chibani, B. Belattar, and A. Bourouis, “Toward an aspect-
oriented simulation,” International Journal of New Computer
Architectures and Their Applications, vol. 3, no. 1, pp. 1–10, 2013.

[21] M. Chibani, B. Belattar, and A. Bourouis, “Aspect Oriented
simulation: a case study with the JAPROSIM framework,”
in Proceedings of the 27th Annual European Simulation and
Modelling Conference (ESM ’13), S. Onggo and A. Kavička, Eds.,
pp. 91–98, Lancaster University, Lancaster, UK, October 2013.

[22] J. Ribault and O. Dalle, “Enabling advanced simulation scenar-
ios with new software engineering techniques,” in Proceedings of
the 20th European Modeling and Simulation Symposium (EMSS
’08), pp. 515–520, Briatico, Italy, September 2008.

[23] A. Piater, T. B. Ionescu, and W. Scheuermann, “A distributed
simulation framework for mission critical systems in nuclear
engineering and radiological protection,” International Journal
of Computers, Communications & Control, vol. 3, pp. 448–453,
2008.

[24] S. L. Tsang, An evaluation of AOP for Java-based real-time
systems development [M.S. thesis], University of Dublin, Dublin,
Ireland, 2004.

[25] D. Park and S. Kang, “Design phase analysis of software per-
formance using aspect-oriented programming,” in Proceedings
of the 5th International Workshop on Aspect-Oriented Modeling,
Lisbon, Portugal, 2004.

[26] K. Cooper, L. Dai, and Y. Deng, “Modeling performance as an
aspect: a UML based approach,” in Proceedings of the 4th AOSD
Modeling with UMLWorkshop, 2003.

[27] L. Blair, G. Blair, and A. Andersen, “Separating functional
behaviour and performance constraints: aspect oriented speci-
cation,” Tech. Rep., 1998.

[28] R. E. Filman and D. P. Friedman, “Aspect-oriented program-
ming is quantification and obliviousness,” in Proceedings of the
Workshop on Advanced separation of Concerns (OOPSLA ’00),
October 2000.

[29] G. Kiczales, J. Lamping, A. Mendhekar et al., “Aspect-oriented
programming,” in Proceedings of the European Conference on
Object-Oriented Programming (ECOOP ’97), vol. 1241 of Lecture
Notes in Computer Science, pp. 220–242, 1997.

[30] H. Ossher, M. Kaplan, W. Harrison, A. Katz, and V. Kruskal,
“Subject-oriented composition rules,” in Proceedings of the 10th
Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA ’95), vol. 2, pp. 235–250,
Austin, Tex, USA.

[31] H. Ossher, W. Harrison, F. Budinsky et al., “Subject-oriented
programming: supporting decentralized development of obj-
ects,” in Proceedings of the 7th IBM Conference on Object-
Oriented Technology, IBM, Santa Clara, Calif, USA, July 1994.

[32] K. Lieberherr and D. H. Lorenz, “Coupling aspect-oriented and
adaptive programming,” in Aspect-Oriented Software Develop-
ment, R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, Eds., pp.
145–164, Addison-Wesley, Boston, Mass, USA, 2005.

[33] P. Tarr, H. Ossher, W. Harrison, and S. Sutton Jr., “N degrees
of separation: multi-dimensional separation of concerns,” in
Proceedings of the 21st International Conference on Software
Engineering (ICSE ’99), pp. 107–119, 1999.

[34] K. Hoad, S. Robinson, and R. Davies, “Automating warm-
up length estimation,” in Proceedings of the Winter Simulation
Conference, S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T.
Jefferson, and J. W. Fowler, Eds., pp. 532–540, 2008.

[35] C. A. S. D. Cunha, Reusable aspect-oriented implementations of
concurrency patterns and mechanisms [M.S. thesis], University
of Minho, Braga, Portugal, 2006.

[36] B. Abdelhabib and B. Brahim, “JAPROSIM: a Java framework
for process interaction discrete event simulation,” Journal of
Object Technology, vol. 7, no. 1, pp. 103–119, 2008.

16 Modelling and Simulation in Engineering

[37] M. Stochmialek, AOPmetrics, 2005, http://aopmetrics.tigris
.org.

[38] R. Martin, “OO design quality metrics—an analysis of depen-
dencies,” in Proceedings of the Pragmatic and Theoretical Direc-
tions in Object-Oriented Software Metrics Workshop, OOPSLA,
1994.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

