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The characterization of a class of electrical circuits is carried out in terms of both stability properties and steady-state behavior.The
main contribution is the interpretation of the electrical topology (how the elements that conform the circuits are interconnected)
in terms of mathematical properties derived from the structure of their models. In this sense, at what extent the topology by itself
defines the dynamic behavior of the systems is explained.The study is based on the graph theory allowing capturing, departing from
the well-known Kirchhoff laws, the topology of the circuits into several matrices with specific structure. The algebraic analysis of
these matrices permits identifying conditions that determine whether the system is stable in the sense of Lyapunov and the kind of
steady-state behavior that it exhibits. The approach is mainly focused on typical topologies widely used in practice, namely, radial,
ring, and mesh networks.

1. Introduction

Mathematical characterization of electrical circuits is a topic
with a very long history. From the celebrated Kirchhoff laws,
the maturity achieved in this field is widely recognized and
reflected on classical references like [1, 2], among a vast
number of them.

Fortunately, the richness of the available knowledge has
become in an impelling force that continually opens new
perspectives to take advantage of the known theory [3–5].
Indeed, modern applications, which range from microcir-
cuits found in integrated circuit design to complexmacronet-
works like electrical power systems, are approached using the
solid results formulated to characterize this kind of system.

One particular research activity that has received great
attention is the control of electrical networks, whose interest
is to modify the behavior of the circuit with the objective
that some variables attain a prescribed value. In this context,
several results have been reported about the reformulation of
well-known features of circuits or even the establishment of
new properties. Thus, it is possible to find results covering
from characterization [6, 7] to control [8] and applications
that include both small [5] and large [9] size systems.

Another quite interesting approach to control electrical
circuits is based on the modification of their structure to
achieve a given operation. Viewing the control problem from
this perspective is not new; for example, in the field of electri-
cal power systems [10], both voltage and frequency stability
problems are usually confronted by adding to the network
new elements, called compensators, adequately located. This
compensation action means the addition of new capacitors,
inductors, and resistors in specific locations and in such away
that the desired behavior of the power system is achieved.
Under the latter approach, several recent results have been
reported whose interest lies in exploiting the structure of a
given circuit to reach a specific goal. For example, in [11],
the problem of shaping a resistive circuit behavior through
the interconnection of another resistive circuit is studied,
leading to a methodology denoted by “partial synthesis by
interconnection” which, in turn, belongs to a more general
controller design approach called Control by Interconnection
(CbI) design [12]. Roughly speaking, under this perspective,
the objective is to look at the controller as one dynamical
system that when interconnected with other ones (the plant)
generates a new dynamical system with desired properties.
Considering this scenario, if it is well understood how the
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dynamic behavior of a given circuit is determined by its
structure, then this knowledge can be used to redesign or
to control the system in order to satisfy some prescribed
specifications.

The aim of this paper is to provide an answer to the
question stated above for the class of networks most used in
practice, namely, radial, ring, and mesh topologies, which in
the sequel will be identified as typical electrical circuits. The
main objective is to recast both the stability properties and the
steady-state behavior exhibited by these networks in terms of
structural features of their mathematical models, in particu-
lar the matrices involved in them which are characterized by
the interconnection of the different elements that compose
the circuit.

From a technical perspective, the identification of the
aforementioned properties is carried out using arguments
from graph and matrix theory [13, 14] while the stability
properties are formulated in terms of Lyapunov theory.
Concerning the steady-state behavior, it is considered as the
value to which the trajectories of the system tend as time
tends to infinity; that is, these can be time-varying or constant
(equilibrium points) trajectories.

In order to present the contributions of the paper,
Kirchhoff ’s laws of a generic circuit are first formulated
in terms of basic cutsets and loopsets [15]. After this, the
fundamental concept of admissible trajectories that refers to
the dynamic behavior that can be exhibited by the system
is introduced. With this knowledge, the stability analysis
of these behaviors is developed going from simple (linear)
to more complex (nonlinear) structures, placing special
attention on the typical networks. The last part of the paper
concerns the characterization of the model components that
influences the steady-state behavior of the typical topologies.
A couple of illustrative case studies are included to illustrate
the usefulness of the presented results. These analyses are
related to the operation often found in practice given by
a Mesh network equipped with Direct Current (DC) and
Alternate Current (AC) voltage sources. For the former, some
consensus operation [16] is concluded, while for the latter it
is evidenced that compensation procedures can be developed
in a systematic way.

The rest of the paper is organized as follows. In Section 2,
using well-known results from the graph theory, Kirchhoff ’s
laws are stated, in terms of basic cutsets and loopsets, for a
model that includes a broad class of electrical circuits, while
Section 3 is devoted to the presentation of its dynamicmodel.
In Section 4, the stability analysis is carried out and the bases
for the characterization of the steady-state behavior of typical
networks are included in Section 5. The usefulness of the
presented results is illustrated in Section 6. Some concluding
remarks are discussed in Section 7.

2. Electrical Circuit Graphs

An electrical network can be defined as an oriented graph 𝐺
consisting of a finite set of nodes V(𝐺) = {V

1
, V
2
, . . . , V

𝑛
} and

a finite set of edges E(𝐺) = {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑏
} such that E is a

subset ofV2, with pairs ofVwhere no self-loops are allowed.

In this case, the set of 𝑛 nodes is the interconnection points of
elements whereas the set of 𝑏 edges is associated, one to one,
with lumped one-port (two-terminal) elements. Additionally,
it is considered that the graph is connected in the sense that
each node can be reached from any other node by tracing a
path through the edges.

With each edge (each lumped one-port element), a
voltage V across its terminals and a current 𝑖 that flows through
it are associated. The orientation of the edge coincides with
the direction of a positive current and a decreasing voltage.

Once the lumped elements are interconnected, their port
variables must satisfy the constraints stated by the Kirchhoff
Current and Voltage Laws (KCL and KVL, resp.) that in this
paper are stated in terms of basic cutsets and basic loopsets for
a given spanning tree [14, 15]. A basic cutset (or fundamental
cutset) is composed of one edge of the tree (branch) and some
or all of the edges of the cotree (chords). A basic loopset (or
fundamental cycle) is conformed by one chord and some or
all of the branches in such a way that a closed loop is formed.
In this way, there are two natural matrices associated with the
graph, the basic cutset matrix 𝐶

𝑏
∈ R(𝑛−1)×𝑏 and the basic

loopset matrix 𝐵
𝑏
∈ R(𝑏−𝑛+1)×𝑏, so that KCL and KVL are

given, respectively, by

𝐶
𝑏
𝑖 = 0;

𝐵
𝑏
V = 0.

(1)

If the currents 𝑖 and voltages V associated with the 𝑏 edges are
ordered in such a way that

𝑖 = [
𝑖
𝑡

𝑖
𝑐

] ∈ 𝐶
1
;

V = [
V
𝑡

V
𝑐

] ∈ 𝐶
1
,

(2)

with 𝑖
𝑡
∈ R(𝑛−1) and V

𝑡
∈ R(𝑛−1) being the currents and

voltages of the tree and 𝑖
𝑐
∈ R(𝑏−𝑛+1) and V

𝑐
∈ R(𝑏−𝑛+1)

being the currents and voltages of the cotree, respectively, it
is possible to write down the network constraints [14] as

𝑖
𝑡
= −𝐻𝑖

𝑐
,

V
𝑐
= 𝐻
𝑇V
𝑡
,

(3)

where 𝐻 ∈ R(𝑛−1)×(𝑏−𝑛+1) is called the fundamental loop
matrix.

From this last expression, it can be noticed that the 𝑖th
row of 𝐻 indicates which of the cotree elements is incident
to the 𝑖th basic cutset and that, in correspondence, the 𝑗th
column shows which of the tree elements belongs to the 𝑗th
basic loopset.

At this point, it is important to state that the matrix 𝐻
determines the topological structure of the system and its
dynamic behavior. The analysis of this matrix is the main
interest of the paper. All the results presented throughout this
contribution are related to its structure.
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3. Electrical Circuit Dynamic

In this section, the dynamic equations for the electrical circuit
presented in Section 2 are obtained following ideas of, for
example, [11]. The analysis is restricted to networks where
capacitor-only loops and inductor-only cutsets are not admit-
ted [1]. In addition, the circuit elements are grouped such that
voltage sources, all the capacitors, and some resistors appear
at the tree, while inductors and the rest of the resistors are
in the cotree (For the sake of simplicity, presentation of the
current sources will be omitted from the analysis.), leading to

𝑖
𝑡
=
[
[

[

𝑖
1

𝑖
𝐶

𝑖
𝑅𝑡

]
]

]

;

V
𝑐
= [

V
𝑅𝑐

V
𝐿

] ,

(4)

with voltage tree and current cotree vectors

V
𝑡
=
[
[

[

V
1

V
𝐶

V
𝑅𝑡

]
]

]

;

𝑖
𝑐
= [

𝑖
𝑅𝑐

𝑖
𝐿

] ,

(5)

where V
1
, 𝑖
1
∈ R𝑛1 , V

𝐶
, 𝑖
𝐶
∈ R𝑛2 , V

𝑅𝑡
, 𝑖
𝑅𝑡

∈ R𝑛3 , such that
𝑛
1
+ 𝑛
2
+ 𝑛
3
= 𝑛 − 1, and V

𝑅𝑐
, 𝑖
𝑅𝑐

∈ R𝑛4 , V
𝐿
, 𝑖
𝐿
∈ R𝑛5 , with

𝑛
4
+ 𝑛
5
= 𝑏 − (𝑛 − 1).

If the total stored energy of the circuit 𝐻
𝑎
: R𝑛2×𝑛5 →

R
≥0

is defined as 𝐻
𝑎
(𝑞, 𝜙) = 𝑉

𝑞
(𝑞) + 𝑉

𝜙
(𝜙), it is well known

[15] that the port variables of the capacitors, inductors, and
resistors can be represented as

�̇� = 𝑖
𝐶
,

V
𝐶
=
𝜕𝐻
𝑎
(𝑞, 𝜙)

𝜕𝑞
= ∇
𝑞
𝐻
𝑎

(6a)

�̇� = V
𝐿
,

𝑖
𝐿
=
𝜕𝐻
𝑎
(𝑖, 𝜙)

𝜕𝜙
= ∇
𝜙
𝐻
𝑎

(6b)

𝑖
𝑅𝑡
= −𝑓
𝑡
(V
𝑅𝑡
) ,

V
𝑅𝑐
= −𝑓
𝑐
(𝑖
𝑅𝑐
) ,

(6c)

where 𝑓
𝑡
and 𝑓

𝑐
are assumed to be bijective functions.

The partition introduced above results in the fact that
matrix𝐻, in turn, can be partitioned as

𝐻 =
[
[

[

𝐻
1𝑅

𝐻
1𝐿

𝐻
𝐶𝑅

𝐻
𝐶𝐿

𝐻
𝑅𝑅

𝐻
𝑅𝐿

]
]

]

, (7)

where the subscript stands for the interconnections between
tree and cotree elements.

Remark 1. The partition of matrix 𝐻 presented in (7) is
important from the point of view of the analysis developed in
this paper. It allows, as will be clear below, identifying which
part of the model influences the stability properties of the
system and which part determines the steady-state behavior.

As already reported in the literature, substitution of (6a)–
(6c) into (3) leads to the dynamical model given by

�̇� = J∇
𝑥
𝐻
𝑎
(𝑥) + F (𝑥, V

1
, V
𝑅𝑡
, 𝑖
𝑅𝑐
) + G𝐸

1 (8)

under the definitions

𝑥 = [
𝑞

𝜙
] ;

∇
𝑥
𝐻
𝑎
(𝑥) = [

∇
𝑞
𝐻
𝑎
(𝑥)

∇
𝜙
𝐻
𝑎
(𝑥)

] ;

𝐸
1
= [

V
1

0
] ,

(9)

with matrices

J = [
0 −𝐻

𝐶𝐿

𝐻
𝑇

𝐶𝐿
0

] ;

G = [

0 0

𝐻
𝑇

1𝐿
0
]

(10)

F (𝑥, V
1
, V
𝑅𝑡
, 𝑖
𝑅𝑐
) = [

0 −𝐻
𝐶𝑅

𝐻
𝑇

𝑅𝐿
0

] [
V
𝑅𝑡

𝑖
𝑅𝑐

] , (11)

where

[
V
𝑅𝑡

𝑖
𝑅𝑐

] = [

[

−𝑓
−1

𝑡
(−𝐻
𝑅𝑅
𝑖
𝑅𝑐
− 𝐻
𝑅𝐿
∇
𝜙
𝐻
𝑎
(𝑥))

−𝑓
−1

𝑐
(𝐻
𝑇

1𝑅
V
1
+ 𝐻
𝑇

𝑅𝑅
V
𝑅𝑡
+ 𝐻
𝑇

𝐶𝑅
∇
𝑞
𝐻
𝑎
(𝑥))

]

]

, (12)

and complemented by the algebraic constraint

𝑖
1
= −𝐻
1𝑅
𝑖
𝑅𝑐
− 𝐻
1𝐿
𝑖
𝐿
. (13)

It is important to notice that if we concentrate on circuits
with linear resistive elements, then

𝑖
𝑅𝑡
= −𝑅
−1

𝑡
V
𝑅𝑡
,

V
𝑅𝑐
= −𝑅
𝑐
𝑖
𝑅𝑐
,

(14)

where 𝑅
𝑡
= 𝑅
𝑇

𝑡
> 0, a diagonal matrix with entries in the

resistances of the tree resistors, and𝑅
𝑐
= 𝑅
𝑇

𝑐
> 0 also diagonal

and composed of the resistances of the cotree. As usual, all
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circuit resistances are assumed to be strictly positive [11]. For
this linear representation, it holds that

[
V
𝑅𝑡

𝑖
𝑅𝑐

] = [

𝐼
2

𝑅
𝑡
𝐻
𝑅𝑅

−𝑅
−1

𝑐
𝐻
𝑇

𝑅𝑅
𝐼
3

]

−1

× {[

0 −𝑅
𝑡
𝐻
𝑅𝐿

𝑅
−1

𝑐
𝐻
𝑇

𝐶𝑅
0

]∇
𝑥
𝐻
𝑎
(𝑥)

+ [

0

𝑅
−1

𝑐
𝐻
𝑇

1𝑅
V
1

]} ,

(15)

where 𝐼
2
∈ R𝑛3×𝑛3 and 𝐼

3
∈ R𝑛4×𝑛4 are identities matrices

and, consequently, models (8) and (15) can be equivalently
represented as a port-controlled Hamiltonian system with
dissipation [17] of the form

�̇� = [𝐽 − 𝑅] ∇𝑥𝐻𝑎 (𝑥) + 𝐺𝐸1 (16)

defining

𝐽 = [

0 𝐽
12

−𝐽
𝑇

12
0
] ;

𝑅 = [
𝑅
1

0

0 𝑅
2

]

(17a)

𝐺

= [

[

−𝐻
𝐶𝑅
[𝑅
𝑐
+ 𝐻
𝑇

𝑅𝑅
𝑅
𝑡
𝐻
𝑅𝑅
]
−1

𝐻
𝑇

1𝑅
0

𝐻
𝑇

1𝐿
− 𝐻
𝑇

𝑅𝐿
𝑅
𝑡
𝐻
𝑅𝑅
[𝑅
𝑐
+ 𝐻
𝑇

𝑅𝑅
𝑅
𝑡
𝐻
𝑅𝑅
]
−1

𝐻
𝑇

1𝑅
0

]

]

,

(17b)

where 𝐽 = −𝐽𝑇, 𝑅 = 𝑅𝑇 ≥ 0, and

𝐽
12
= 𝐻
𝐶𝑅
[𝑅
𝑐
+ 𝐻
𝑇

𝑅𝑅
𝑅
𝑡
𝐻
𝑅𝑅
]
−1

𝐻
𝑇

𝑅𝑅
𝑅
𝑡
𝐻
𝑅𝐿
− 𝐻
𝐶𝐿

𝑅
1
= 𝐻
𝐶𝑅
[𝑅
𝑐
+ 𝐻
𝑇

𝑅𝑅
𝑅
𝑡
𝐻
𝑅𝑅
]
−1

𝐻
𝑇

𝐶𝑅

𝑅
2
= 𝐻
𝑇

𝑅𝐿
[𝑅
−1

𝑡
+ 𝐻
𝑅𝑅
𝑅
−1

𝑐
𝐻
𝑇

𝑅𝑅
]
−1

𝐻
𝑅𝐿
.

(18)

The following remarks about the obtained model are in
order.

Remark 2. The algebraic constraint (13) represents the cur-
rent demanded to the voltage sources for a given operation
point. Along the paper, it is considered that the sources are
ideal; that is, they can supply any amount of current, and
therefore the constraint is always satisfied.

Remark 3. Notice that the matrix 𝐻
𝐶𝐿
, which includes the

relationship between capacitors and inductances, appears
in a skew-symmetric form in the model. It will be shown
that this condition implies that it does not modify the
energy balance equation of the circuit. However, it will be
fundamental to determine the steady-state behavior of the
circuit.

Remark 4. Also related to matrix 𝐽, the time derivative of
𝐻
𝑎
(𝑥) along the trajectories of (16), considering 𝐸

1
= 0, is

given by

�̇�
𝑎
(𝑥) = (∇

𝑥
𝐻
𝑎
(𝑥))
𝑇

F (𝑥, V
1
, V
𝑅𝑡
, 𝑖
𝑅𝑐
) (19)

putting in evidence the fact that stability of the network
depends on the matrices𝐻

𝐶𝑅
,𝐻
𝑅𝐿
,𝐻
𝑅𝑅
, and𝐻

1𝑅
.

Remark 5. If the network is conformed by linear elements,
the property above is stronger since

�̇�
𝑎
(𝑥) = (∇

𝑥
𝐻
𝑎
(𝑥))
𝑇

𝑅∇
𝑥
𝐻
𝑎
(𝑥) ≤ 0. (20)

Thus, since 𝑅 = 𝑅
𝑇
> 0, a solution 𝑥⋆ of 𝑦 = ∇

⋆

𝑥
𝐻
𝑎
(𝑥
⋆
) =

0 will be asymptotically stable if the system is zero state
detectable considering as output the variable 𝑦 and 𝑥⋆ is a
minimum argument of the scalar function𝐻

𝑎
(𝑥).

4. Structural Properties for Stability

The purpose of this section is to identify conditions for
stability when 𝐸

1
is different from zero. In this context, it

is necessary to identify the steady-state trajectories that are
achievable by the system, denoted by admissible trajectories.
These behaviors are solution of

�̇�
⋆
= J∇
𝑥
⋆𝐻
𝑎
(𝑥
⋆
) + F (𝑥

⋆
, V⋆
1
, V⋆
𝑅𝑡
, 𝑖
⋆

𝑅𝑐
) + G𝐸

⋆

1
, (21)

where the existence of an input V⋆
1
that generates the behavior

𝑥
⋆ has been implicitly assumed. A particular case is when 𝑥⋆

is an equilibrium point. Under this condition, V⋆
1
is constant

and the steady-state operation (equilibrium point) is input
dependent and is determined by

J∇
𝑥
⋆𝐻
𝑎
(𝑥
⋆
) + F (𝑥

⋆
, V⋆
1
, V⋆
𝑅𝑡
, 𝑖
⋆

𝑅𝑐
) + G𝐸

⋆

1
= 0. (22)

The admissible trajectories directly depend on the matrix
𝐻 presented in (7). Therefore, the results presented below
concentrate the attention in finding structural properties of
thismatrix such that some stability properties are guaranteed.

The first result states the stronger result concerning
the achievable admissible trajectories although the simplest
structure for the network, namely, conditions for 𝐻, is
identified to guarantee tracking of a time-varying solution of
(21) but this result applies only when the circuit is composed
of elements that exhibit a linear constitutive relationship, that
is, when the total stored energy 𝐻 : R𝑛2 × R𝑛5 → R

>0
takes

the form

𝐻
𝑎
(𝑥) =

1

2
𝑥
𝑇
𝑃𝑥; 𝑃 = diag {𝐶−1, 𝐿−1} = 𝑃𝑇 > 0 (23)

with positive and diagonal matrices 𝐿 ∈ R𝑛5×𝑛5 and 𝐶 ∈

R𝑛2×𝑛2 of inductances and capacitances, respectively. In this
case, it is clear that

∇
𝑥
𝐻
𝑎
(𝑥) = 𝑃𝑥 (24)

while the resistors satisfy (14).
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Proposition 6. Consider a linear electrical network described
by (16) and (23) with V

1
(𝑡) being a time-varying input such that

its steady-state behavior, characterized by

�̇�
⋆
= [𝐽 − 𝑅] 𝑃𝑥

⋆
+ 𝐺𝐸
⋆

1
, (25)

is well posed.
Under these conditions,

lim
𝑡→∞

�̃� = 0 (26)

with �̃� = 𝑥 − 𝑥⋆ if

ker {𝐻𝑇
𝐶𝑅
} = ker {𝐻

𝑅𝐿
} = 0. (27)

Proof. Under the linear characteristic assumed for the sys-
tem, it is possible to describe the error dynamic by

̇̃𝑥 = [𝐽 − 𝑅] 𝑃�̃� + 𝐺�̃�1 (28)

with the energy-like function

𝐻
𝑎
(�̃�) =

1

2
�̃�
𝑇
𝑃�̃� (29)

and the identities Ṽ
𝐶
= ∇
�̃�
1

𝐻
𝑎
(�̃�) = 𝐶

−1
�̃�, �̃�
𝐿
= ∇
�̃�
2

𝐻
𝑎
(�̃�) =

𝐿
−1
�̃�.
Since the purpose is to analyze the stability properties of

the equilibrium point (�̃�, Ṽ
1
) = (0, 0) of (28), function (29)

can be considered as Lyapunov function candidate. Hence, it
is straightforward to show that its time derivative along the
trajectories of (28) satisfies

�̇�
𝑎
= −�̃�
𝑇
𝑃𝑅𝑃�̃� ≤ 0 (30)

which can be written in an equivalent way as

�̇�
𝑎
= −𝑧𝑅

−1

𝑇
𝑧 (31)

with 𝑅
𝑇

= diag{𝑅
11
, 𝑅
22
} and 𝑅

11
, 𝑅
22

being symmetric
positive definite matrices defined by

𝑅
11
= 𝑅
𝑐
+ 𝐻
𝑇

𝑅𝑅
𝑅
𝑡
𝐻
𝑅𝑅

𝑅
22
= 𝑅
−1

𝑡
+ 𝐻
𝑅𝑅
𝑅
−1

𝑐
𝐻
𝑇

𝑅𝑅

(32)

while

𝑧 = [
𝐻
𝑇

𝐶𝑅
Ṽ
𝐶

𝐻
𝑅𝐿
�̃�
𝐿

] . (33)

The proof is completed by noting that the maximal
invariant set where ̇̃

𝐻
𝑎
= 0 is 𝑧 = 0, which leads to𝐻𝑇

𝐶𝑅
Ṽ
𝐶
= 0

and 𝐻
𝑅𝐿
�̃�
𝐿
= 0. Therefore, the necessity to guarantee that

Ṽ
𝐶
= �̃�
𝐿
= 0 are the only solutions that satisfy these constraints

brings out ker{𝐻𝑇
𝐶𝑅
} = ker{𝐻

𝑅𝐿
} = 0 as the sufficient

conditions that assure asymptotic stability of (�̃�, Ṽ
1
) = (0, 0).

Remark 7. An interesting feature in the proof of the presented
result is that the zero state detectability that could be invoked
in (31) in order to conclude asymptotic stability has been
recast, via (33), in terms of the structural properties of the
system. In this scenario, to what extent the stability properties
of the network are determined by its structure has been stated.

Remark 8. Even though Proposition 6 is related to linear
systems, in the authors’ opinion, it is important since this kind
of representation for electrical networks is still widely used
under a great variety of applications.

In the proposition below, the result presented above is
extended in the sense that the asymptotic stability properties
are still guaranteed considering nonlinear capacitors and
inductors. However, this is achieved at the expense that
the admissible trajectories are no longer time-varying but
equilibrium points.

Proposition 9. Consider an electrical network described by
model (8) with V⋆

1
being a constant input such that the steady-

state behavior is well posed. In addition, assume the following:

(A.1) The resistors involved in the circuit are characterized by
linear constitutive relationships satisfying (15).

(A.2) The equilibrium point 𝑥⋆ that corresponds to V⋆
1
locally

satisfies 𝑥⋆ = argmin{𝐻
𝑎
(𝑥)}.

Under these conditions, the equilibrium point (𝑥⋆, V⋆
1
) is

locally asymptotically stable if

ker {𝐻𝑇
𝐶𝑅
} = ker {𝐻

𝑅𝐿
} = 0. (34)

Proof. In this case, the total stored energy𝐻
𝑎
(𝑥) is a nonlin-

ear function.Therefore, under assumption (A.1), the dynamic
behavior of the system is described by (16) while its equilibria
are characterized by the solutions of

[𝐽 − 𝑅] ∇𝑥⋆𝐻𝑎 (𝑥
⋆
) + 𝐺𝐸

⋆

1
= 0. (35)

If assumption (A.2) holds, then, following ideas reported
in [18], it is possible to consider the Lyapunov function
candidate𝐻

0
: R𝑛2+𝑛5 → R

≥0
given by

𝐻
0
(𝑥) = 𝐻

𝑎
(𝑥) − 𝑥

𝑇
∇
𝑥
⋆𝐻
𝑎
(𝑥
⋆
)

− (𝐻
𝑎
(𝑥
⋆
) − 𝑥
⋆𝑇
∇
𝑥
⋆𝐻
𝑎
(𝑥
⋆
))

(36)

whose time derivative along the trajectories of (16), under the
condition V

1
= V⋆
1
, yields

�̇�
0
(𝑥) = − (V

𝐶
− V⋆
𝐶
)
𝑇

𝑅
1
(V
𝐶
− V⋆
𝐶
)

− (𝑖
𝐿
− 𝑖
⋆

𝐿
)
𝑇

𝑅
2
(𝑖
𝐿
− 𝑖
⋆

𝐿
)

(37)

with 𝑅
1
, 𝑅
2
defined in (17a), where we exploited the fact

that, in spite of the nonlinear nature of 𝐻
𝑎
(𝑥), the identities

introduced in (6a) and (6b) are valid.
The proof is completed following a similar procedure to

Proposition 6 since it is possible to get that

�̇�
0
(𝑥) = −𝑧

𝑇
𝑅
−1

𝑇
𝑧 (38)
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with

𝑧 = [
𝐻
𝑇

𝐶𝑅
Ṽ
𝐶

𝐻
𝑅𝐿
�̃�
𝐿

] . (39)

Remark 10. Notice that the function 𝐻
0
(𝑥) qualifies as

Lyapunov function candidate only for equilibrium points.
Current research is carried out trying to find an alternative
analysis to deal with the tracking problem but, to the authors’
knowledge, this imposes an open problem in the related
literature.

Remark 11. If 𝑥⋆ is a global minimum of 𝐻
𝑎
(𝑥), with 𝐻

𝑎
(𝑥)

radially unbounded, then the equilibrium point is globally
asymptotically stable.

Motivated by the identified role played by matrices 𝐻
𝐶𝑅

and 𝐻
𝑅𝐿

in the presented results, the next two propositions
are focused on a practically important class of circuits which
is characterized by a particular interconnection, first among
resistors and inductors and second among resistors and
capacitors.

Property 1. If the number of tree resistors is equal to the num-
ber of inductors and they are one-to-one series connected,
then

𝐻
𝑅𝐿
= 𝐼
2
∈ R
𝑛
3
×𝑛
3 ;

𝐻
𝑅𝑅
= 0
1
∈ R
𝑛
3
×𝑛
4 ,

(40)

with 𝐼
2
as already defined and 0

1
being a zero matrix.

Proof. If there exists the same number of tree resistors as
inductors, then 𝑛

3
= 𝑛
5
. On the other hand, from (3), the

constraint

𝑖
𝑅𝑡
= 𝐻
𝑅𝑅
𝑖
𝑅𝑐
+ 𝐻
𝑅𝐿
𝑖
𝐿 (41)

must be satisfied. Hence, the fact that tree resistor currents 𝑖
𝑅𝑡

must be, one-to-one, equal to the inductor currents 𝑖
𝐿
leads

to the results stated in (40).

Property 2. If the number of cotree resistors is equal to
the number of capacitors and they are one-to-one parallel
connected, then

𝐻
𝐶𝑅

= 𝐼
3
∈ R
𝑛
2
×𝑛
2 ;

𝐻
1𝑅
= 0
2
∈ R
𝑛
1
×𝑛
2 ,

(42)

with 𝐼
3
as already defined and 0

2
being a zero matrix.

Proof. If there exists the same number of cotree resistors as
capacitors, then 𝑛

2
= 𝑛
4
. In this case, also obtained from (3),

the constraint that must be satisfied is

V
𝑅𝑐
= 𝐻
𝑇

1𝑅
V
1
+ 𝐻
𝑇

𝐶𝑅
V
𝐶
+ 𝐻
𝑇

𝑅𝑅
V
𝑅𝑡
, (43)

where, due to Property 1,𝐻
𝑅𝑅
= 0
1
, leading to the expression

V
𝑅𝑐
= 𝐻
𝑇

1𝑅
V
1
+ 𝐻
𝑇

𝐶𝑅
V
𝐶
. (44)

The proof concludes by noting that each entry of V
𝑅𝑐

must be
equal to its corresponding entry in V

𝐶
, a condition that holds

only if (42) is true.

Remark 12. An immediate implication of the presented prop-
erties is that the networks that enjoy them automatically
satisfy the conditions stated in Propositions 6 and 9 to
guarantee asymptotic stability of the admissible trajectories.

Remark 13. In the context of this paper, the stated properties
are important since all the considered typical networks enjoy
them, as will be shown in Section 5.

In order to present the last result of this section, writing
model (8) under the effect of Properties 1 and 2 is convenient.
Hence, the dynamical behavior of the electrical network is
described by

�̇� = J∇
𝑥
𝐻
𝑎
(𝑥) + F

1
(𝑥) + G𝐸

1
, (45)

where

F
1
(𝑥) = [

[

−𝑓
−1

𝑐
(∇
𝑞
𝐻
𝑎
(𝑥))

−𝑓
−1

𝑡
(∇
𝜙
𝐻
𝑎
(𝑥))

]

]

. (46)

Due to the achieved drastic simplification in the model
structure, which illustrates how a proper interconnection
of the elements determines to a large extent the dynamic
behavior of the system, previous results can be extended by
relaxing the assumptions about 𝑓

𝑐
(⋅) and 𝑓

𝑡
(⋅), which under

the new conditions only depend on the system state.

Proposition 14. Consider the electrical network described by
(45) with V⋆

1
being a constant input such that the steady-state

behavior is well posed. Assume (A.2) holds and in addition
assume the following:

(A.3) The maps 𝑓
𝑐
(⋅) and 𝑓

𝑡
(⋅) define incremental output

strictly passive operators in the sense that

(𝑥
1
− 𝑥
2
)
𝑇

[𝑓
−1

𝑐
(𝑥
1
) − 𝑓
−1

𝑐
(𝑥
2
)] > 0

(𝑥
1
− 𝑥
2
)
𝑇

[𝑓
−1

𝑡
(𝑥
1
) − 𝑓
−1

𝑡
(𝑥
2
)] > 0

(47)

hold for 𝑥
1

̸= 𝑥
2
and considering 𝑥

𝑖
as input.

Under these conditions, the equilibrium point (𝑥⋆, V⋆
1
) is

locally asymptotically stable.

Proof. The equilibria of the system are characterized by

J∇
𝑥
⋆𝐻
𝑎
(𝑥
⋆
) + F
1
(𝑥
⋆
) + G𝐸

⋆

1
= 0. (48)

Thus, if (A.2) holds, it is possible to consider the Lya-
punov function candidate 𝐻

0
: R𝑛2+𝑛5 → R

≥0
, reported in
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[18] and defined in (36), which leads, under the condition
V
1
= V⋆
1
, to

�̇�
0
(𝑥)

= − (∇
𝑥
𝐻
𝑎
(𝑥) − ∇

𝑥
⋆𝐻
𝑎
(𝑥
⋆
))
𝑇

[F
1
(𝑥) − F

1
(𝑥
⋆
)] .

(49)

Using identities (6a) and (6b), this expression can be
equivalently written as

�̇�
0
(𝑥) = − (V

𝐶
− V⋆
𝐶
)
𝑇

[𝑓
−1

𝑐
(V
𝐶
) − 𝑓
−1

𝑐
(V⋆
𝐶
)]

− (𝑖
𝐿
− 𝑖
⋆

𝐿
)
𝑇

[𝑓
−1

𝑡
(𝑖
𝐿
) − 𝑓
−1

𝑡
(𝑖
⋆

𝐿
)] .

(50)

Since (A.3) holds, it is clear that �̇�
0
(𝑥) < 0 with maximal

invariance set defined as

𝜀 = {(𝑞, 𝜙) | (V
𝐶
− V⋆
𝐶
) = 0, (𝑖

𝐿
− 𝑖
⋆

𝐿
) = 0} (51)

which concludes the proof.

Remark 15. It must be clear that if the dissipation functions
𝑓
𝑐
(⋅) and 𝑓

𝑡
(⋅) define linear mappings, introduction of Prop-

erties 1 and 2 does not destroy the results presented either in
Proposition 6 or in Proposition 9.

5. Topological Structure of Typical Networks

In this section, the dynamic characterization started in
Section 4 is complemented for the class of typical electrical
networks. The main objective of the analysis is to explicitly
state the structure of the matrix 𝐻 for the aforementioned
typical networks. In this sense, the usefulness of this study
is twofold:

(i) With this structure at hand, it is possible to determine
in a systematicway the stability properties and steady-
state behavior of the networks.

(ii) An interpretation is provided, given via structural
characterization, to the widely recognized advantages
exhibited by these networks, for example, reliability
properties.

In order to present the results mentioned above, first a
generic network that captures in a unified way the character-
istics of the three typical networks is considered. Once the
topology of this network is identified, each particular case is
presented.

The first condition that the model of the generic network
satisfies is that Properties 1 and 2 stated in Section 4 hold.
Hence, its dynamic behavior is represented by model (45)
leaving 𝐻

𝐶𝐿
∈ R𝑛2×𝑛5 and 𝐻

1𝐿
∈ R𝑛1×𝑛5 as the two matrices

that remain to be characterized; that is, it is necessary
to consider the interconnections between capacitors and
inductors, for the former matrix, and sources and inductors,
for the latter.

Consider that the 𝑛
5
inductors are divided into three

types, namely, 𝑛
𝑟
𝑟-inductors that belong to a trajectory that

connects a source with a capacitor, 𝑛
𝑠
𝑠-inductors that belong

to a trajectory that connects a source with another source,

and 𝑛
𝑝
𝑝-inductors that belong to a trajectory that connects

a capacitor with another capacitor, such that 𝑛
𝑟
+𝑛
𝑠
+𝑛
𝑝
= 𝑛
5
.

Moreover, assume that the capacitors belong at least to one of
the following classes:

(C.1) The 𝑖th capacitor, 𝑖 ∈ {1, . . . , 𝑛
2
}, shares cutset with

𝑟
𝑖
𝑟-inductors.

(C.2) The 𝑖th capacitor, 𝑖 ∈ {1, . . . , 𝑛
2
}, shares cutset with

𝑝
𝑖
𝑝-inductors.

However, the voltages source satisfies the following:

(C.3) The 𝑖th voltage source, 𝑖 ∈ {1, . . . , 𝑛
1
}, shares cutset

with𝑚
𝑖
∈ {1, . . . , 𝑛

5
} inductors.

Under the above classification, the variables associated
with capacitors and inductors can be organized such that
the rows of matrix 𝐻

𝐶𝐿
can be divided into two parts: the

first corresponding to capacitors that hold simultaneously
conditions (C.1) and (C.2) and the second corresponding to
those capacitors that hold only with condition (C.2). As will
be clear below, capacitors that satisfy only condition (C.1) are
included as a particular case of the former.

On the other hand, the columns of 𝐻
𝐶𝐿

are divided
into three blocks each one corresponding to 𝑟-, 𝑠-, and 𝑝-
inductors, respectively. Moreover, the 𝑟

𝑖
inductors connected

to the 𝑖th capacitor as in (C.1) are grouped for each of the
capacitors connected to them.

Following the stated organization, matrix 𝐻
𝐶𝐿

takes the
form

−𝐻
𝐶𝐿
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1𝑇
𝑟
1

0 ⋅ ⋅ ⋅ 0 0
𝑠

𝑁
1

0 1𝑇
𝑟
2

⋅ ⋅ ⋅ 0 0
𝑠

𝑁
2

.

.

.
.
.
. d

.

.

.
.
.
.

.

.

.

0 0 ⋅ ⋅ ⋅ 1𝑇
𝑟
𝑧

0
𝑠

𝑁
𝑧

0 0 ⋅ ⋅ ⋅ 0 0
𝑠
𝑁
𝑧+1

.

.

.
.
.
. d

.

.

.
.
.
.

.

.

.

0 0 ⋅ ⋅ ⋅ 0 0
𝑠
𝑁
𝑛
2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (52)

where one has the following:

(i) Theminus sign appears since, from (3), the constraint
that must be satisfied is

𝑖
𝐶
= −𝐻
𝐶𝐿
𝑖
𝐿 (53)

considering that𝐻
𝐶𝑅

= 0.

(ii) 1𝑇
𝑟
𝑖

∈ R1×𝑟𝑖 , 𝑖 = 1, . . . , 𝑧, are vectors filled with ones
denoting the condition stated in (C.1). In this case, it
has been assumed that there exist 𝑧 capacitors of this
kind. In addition, it holds that 𝑟

1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑧
= 𝑛
𝑟
.

(iii) The zero columns 0
𝑠
∈ R1×𝑛𝑠 reflect the fact that any

capacitor can be connected to 𝑠 type inductors.
(iv) Row vectors 𝑁

𝑖
∈ R1×𝑛𝑝 include the possibility that

a given capacitor can be simultaneously connected
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to 𝑟 and 𝑝 type inductors. If the 𝑖th capacitor is
connected to one of the 𝑝-inductors, a 1 appears in
the corresponding entry; otherwise, a 0 appears. If the
capacitor only holds with (C.1), the 𝑁

𝑖
vector is the

zero vector.
(v) In the rows that go from 𝑧 + 1 to 𝑛

2
, only vectors 𝑁

𝑖

appear since they correspond to (C.2) class capacitors.

Two consequences of structure (52) are presented below.

Property 3. Each column of the matrix 𝑁 = col{𝑁
1
,

. . . , 𝑁
𝑛
2

} ∈ R𝑛2×𝑛𝑝 is composed of one 1 and one −1 and the
rest of the entries equal to zero.

Proof. The columns of matrix 𝑁 denote how the capacitors
are connected to other capacitors. Since for each pair of
capacitors this connection is carried out by one 𝑝-inductor,
the current leaves one cutset and enters another, which is
represented by the 1 in one row and the −1 in the other
row.

The second property is actually a corollary of Property 3.

Property 4. The vector 1
𝑛
2

∈ R𝑛2 , that is, the vector filled
with ones of dimension 𝑛

2
, is a left eigenvector of matrix 𝑁

satisfying 1𝑇
𝑛
2

𝑁 = 0.

Proof. The proof can be carried out by direct computation.

Concerning matrix 𝐻
1𝐿

∈ R𝑛1×𝑛5 , its structure comes
from (13) under the condition𝐻

1𝑅
= 0; that is, the constraint

𝑖
1
= −𝐻
1𝐿
𝑖
𝐿 (54)

must be satisfied. Thus, the columns of 𝐻
1𝐿

are divided into
three blocks corresponding to 𝑟, 𝑠, and 𝑝 type inductors,
respectively, where the third one is zero due to the fact
that sources do not belong to cutsets where 𝑝-inductors are
involved. Hence, this matrix takes the form

𝐻
1𝐿
= [𝑀𝑟 𝑀𝑠 0𝑝] , (55)

where one has the following:

(i) The entries different from zero of each row of 𝑀
𝑟
∈

R𝑛1×𝑛𝑟 stand for the connection of sources with 𝑟-
inductors.

(ii) In concordance with the partition of matrix 𝐻
𝐶𝐿
,

which in turn comes from (C.1), the 𝑖th row of𝑀
𝑟
, 𝑖 =

1, 2, . . . , 𝑛
1
, must be divided into 𝑧 sections leading to

𝛽
𝑖
= [𝛽𝑖𝑟

1

𝛽
𝑖𝑟
2

⋅ ⋅ ⋅ 𝛽
𝑖𝑟
𝑧
] , (56)

where each 𝛽
𝑖𝑟
𝑗

∈ R1×𝑟𝑗 , 𝑗 = 1, 2, . . . , 𝑧, has only one
entry equal to 1 if the 𝑖th source is connected to the
𝑗th capacitor. Otherwise, the vector is zero.

(iii) Since two sources cannot be connected to the same 𝑟-
inductor, each column of𝑀

𝑟
also has only one entry

different from zero.

Rt1

Rt2

Rt3

L1

L2

L3

Rc1

Rc2

Rc3

C1

C2

C3

e1

+
−

Figure 1: Example of radial topology.

(iv) The sum of the entries different from zero of the 𝑖th
row of𝑀

𝑟
equals 𝜌

𝑖
.

(v) The entries different from zero of each column of
𝑀
𝑠
∈ R𝑛1×𝑛𝑠 stand for the connection of sources with

other sources.
(vi) The sum of the entries different from zero of the 𝑖th

row of𝑀
𝑠
equals 𝛾

𝑖
. Therefore, 𝜌

𝑖
+ 𝛾
𝑖
= 𝑚
𝑖
of (C.3).

(vii) Matrix 0
𝑝
∈ R𝑛1×𝑛𝑝 is a zero matrix that exhibits the

fact that sources cannot be related to 𝑝-inductors.

Due to structure (55), the following properties hold.

Property 5. The vector 1
𝑛
1

∈ R𝑛1 , that is, the vector filled
with ones of dimension 𝑛

1
, is a right eigenvector of matrix

𝑀
𝑇

𝑠
satisfying𝑀𝑇

𝑠
1
𝑛
1

= 0.

Proof. The columns of matrix 𝑀
𝑠
denote how a source is

connected to another source. Since for each pair of sources
this connection is carried out by one 𝑠-inductor, the current
leaves one cutset and enters another, which is represented by
the fact that, in each column of thematrix, only a 1 in one row
and a −1 in another row appear. The proof is ended by direct
computation.

Property 6. The following identity holds:

−𝐻
𝑇

𝐶𝐿
1
𝑛
2

= 𝐻
𝑇

1𝐿
1
𝑛
1

=
[
[
[

[

1
𝑟

0
𝑇

𝑠

0
𝑇

𝑝

]
]
]

]

∈ R
𝑛
5 , (57)

where 1
𝑟
∈ R𝑛𝑟 , with 0

𝑠
as previously defined, and 0

𝑝
∈ R1×𝑛𝑝 .

Proof. The proof comes as a direct consequence of the
previous propositions.

The last part of this section shows that the general
network presented above can be specialized to three typical
circuits.

(1 ) Radial Network. A radial network is the simplest topology
that can be found in the literature and can appear under
several scenarios [10, 19, 20]. It is equipped with only one
source connected to all the loads, as illustrated in Figure 1.

The main advantage of this class of circuits lies in its
simplicity, which in terms of the characterization carried out
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Rt1 Rt2
Rt3

Rt4Rt5

L1 L2

L3

L4L5

Rc1

Rc2

Rc3
Rc4

C1
C2

C3
C4

e1

e2

+
−

+
−

Figure 2: Example of ring topology.

in this paper is reflected in the fact that it is conformed only
by 𝑟-inductors. Thus, 𝑛

1
= 1 and since there are as many

inductors as capacitors, 𝑛
2
= 𝑛
5
.

Under these conditions, a radial network is topologically
characterized by

𝐻
𝐶𝐿
= −𝐼
𝑛
2

𝐻
1𝐿
= 1𝑇
𝑛
2

.

(58)

(2) Ring Network. This configuration looks for improving
reliability by connecting each load to a second source, aiming
that in case of a failure in one source the loads continue being
connected to an energy supplier. One example of this kind of
network is shown in Figure 2.

The topological properties of this kind of circuit are as
follows:

(i) There are no 𝑠-inductors.
(ii) Only two sources are included 𝑛

1
= 2 leading to the

fact that 𝑛
𝑟
= 2 and that the number of capacitors that

simultaneously satisfy (C.1) and (C.2) is also 2.
(iii) Due to the last item, 𝑛

𝑝
= 𝑛
2
− 2, hence, the first two

row vectors of matrix𝑁 are zero.

Taking into account the listed features, the matrices of a
ring network take the form

−𝐻
𝐶𝐿
= [

𝐼
2
0
𝑝

0
𝑇

𝑝
𝑁
1

] ;

𝐻
1𝐿
= [𝐼2 0𝑝] ,

(59)

where in this case 0
𝑝
∈ R2×(𝑛2−2) while 1𝑇

𝑛
2
−2
𝑁
1
= 0.

(3) Mesh Network. This is the most complex but at the same
time the most reliable network. Its main advantage comes
from the fact that every load is connected to all sources of
the circuit. Actually, it can be viewed as a radial circuit with
links between sources, allowing, in addition, the sources to
be connected between them. A typical configuration of this
class is presented in Figure 3.

Regarding the general structure introduced before, only
few particularizations can be done:

C1

C2

C4C3

R11

R21

R12

R22

L11

L21

L12

L22

Rs Ls

Z1

Z2

G1
G2

Figure 3: Example of mesh topology.

(i) The number of sources equals the number of capaci-
tors; then, 𝑛

1
= 𝑛
2
.

(ii) Since all the capacitors are connected to all sources,
𝑟
𝑖
= 𝑛
1
for all 𝑖 ∈ {1, 2, . . . , 𝑟}.

(iii) There are no 𝑝-inductors or (C.2) class capacitors.

As a consequence of the properties listed above, the
matrices that topologically characterize a mesh network are

𝐻
𝐶𝐿
=

[
[
[
[
[
[
[

[

−1𝑇
𝑛
1

0 ⋅ ⋅ ⋅ 0 0
𝑠

0 −1𝑇
𝑛
1

⋅ ⋅ ⋅ 0 0
𝑠

.

.

.
.
.
. d

.

.

.
.
.
.

0 0 ⋅ ⋅ ⋅ −1𝑇
𝑛
1

0
𝑠

]
]
]
]
]
]
]

]

∈ R
𝑛
1
×𝑛
5 , (60)

where 𝑛
1
is the number of sources and 𝑛

𝑠
< 𝑛
1
is the number

of sources connected to other sources, while

𝐻
1𝐿
= [𝑀𝑟 𝑀𝑠] (61)

with the particular feature that all the partitions 𝛽
𝑖𝑟
𝑗

of the 𝑖th
row of𝑀

𝑟
include an element different from zero since all the

sources are connected to all capacitors.
Equations (58)–(61) fully characterize the topological

structure of the three typical networks. It is the authors’ belief
that this unifiedmodel can be used to further analyze current
topologies or to develop new designs.

6. Steady-State Characterization:
Two Case Studies

The aim of this section is to exploit the structure of the
fundamental loop matrix𝐻 under two different scenarios to
exhibit the systematization that can be achieved to determine
the dynamic behavior of a given network. Although the main
objective is to point out the advantages of the approach, it
is important to mention that the two case studies are closely
related to situations often found in practice.

6.1. Lossless DC Network. The first case study considers a
network operating under constant voltage sources, with pos-
sibly nonlinear capacitors and inductors, with linear cotree
resistances and assuming that the tree resistances are equal to
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zero; that is, 𝑅
𝑡
= 0. This scenario is frequently considered in

practice, for example, in electrical power systems, when it is
considered that the transmission lines are very long [10]. In
addition, it is considered that Properties 1 and 2 hold.

Under the aforementioned conditions, model (16)
reduces to

�̇� = [

𝑅
−1

𝑐
−𝐻
𝐶𝐿

𝐻
𝑇

𝐶𝐿
0

]∇
𝑥
𝐻
𝑎
(𝑥) + [

0

𝐻
𝑇

1𝐿

] V
1
. (62)

Regarding the stability properties of the network, Propo-
sition 9 can be directly applied although in this case, due to
the lossless assumption, only stability of the equilibriumpoint
can be concluded, since

�̇�
0
(𝑥) = − (V

𝐶
− V⋆
𝐶
)
𝑇

𝑅
−1

𝑐
(V
𝐶
− V⋆
𝐶
) ≤ 0. (63)

However, it is easy to verify, by direct substitution of V⋆
𝐶
in

(62), that themaximal invariant set of the system corresponds
to 𝑖
𝐿
= 𝑖
⋆

𝐿
, a condition that proves that asymptotic stability is

attained.
The characterization of the steady-state behavior of the

circuit is defined by the equilibria of the system, which are
the solutions of

−𝑅
−1

𝑐
V⋆
𝐶
− 𝐻
𝐶𝐿
𝑖
⋆

𝐿
= 0 (64a)

𝐻
𝑇

𝐶𝐿
V⋆
𝐶
+ 𝐻
𝑇

1𝐿
V⋆
1
= 0. (64b)

At this point, it is clear that, for a given V⋆
1
, the charac-

terization can be carried out for the capacitor voltages or the
inductor currents. Motivated by the stability analysis, if the
capacitor voltages are chosen, it is possible to write that

V⋆
𝐶
= − [𝐻

𝐶𝐿
𝐻
𝑇

𝐶𝐿
]
−1

𝐻
𝐶𝐿
𝐻
𝑇

1𝐿
𝑒
⋆

1
(65)

since, from Property 3,𝐻
𝐶𝐿

is row full rank.
Departing from this last expression, in the following

proposition, we illustrated that, exploiting the structures for
𝐻
𝐶𝐿

and 𝐻
1𝐿
, it is straightforward to conclude the steady-

state operation achieved by a given network. This result is
illustrated for the case of a mesh circuit.

Proposition 16. Consider a mesh electrical circuit character-
ized by (60) and (61). Assume the following:

(i) The network is lossless; that is, 𝑅
𝑡
= 0.

(ii) Propositions 6 and 9 hold.
(iii) The vector of voltage sources V

1
is composed of 𝑛

1

constant values.

Under these conditions, capacitor voltage achieves average
consensus [16] in the sense that

V⋆
𝐶
= 𝛼1
𝑛
1

, (66)

with

𝛼 =
1

𝑛
1

𝑛
1

∑

𝑚=1

V⋆
1𝑚

(67)

being the steady-state average value of V
1
.

Proof. From (60), it is directly obtained that

𝐻
𝐶𝐿
𝐻
𝑇

𝐶𝐿
=

[
[
[
[
[
[
[

[

1𝑇
𝑛
1

1
𝑛
1

0 ⋅ ⋅ ⋅ 0

0 1𝑇
𝑛
1

1
𝑛
1

⋅ ⋅ ⋅ 0

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅ 1𝑇
𝑛
1

1
𝑛
1

]
]
]
]
]
]
]

]

(68)

leading to [𝐻
𝐶𝐿
𝐻
𝑇

𝐶𝐿
]
−1
= (1/𝑛

1
)𝐼
𝑛
1

, where 𝐼
𝑛
1

∈ R𝑛1×𝑛1 is the
identity matrix.

On the other hand, from (61), all the partitions 𝛽𝑇
𝑖𝑟
𝑗

of
the columns of matrix𝑀𝑇

𝑟
contain an element different from

zero; thus, the product

−𝐻
𝐶𝐿
𝐻
𝑇

1𝐿
=

[
[
[
[

[

1𝑇
𝑛
1

𝛽
𝑇

1𝑟
1

⋅ ⋅ ⋅ 1𝑇
𝑛
1

𝛽
𝑇

𝑛
1
𝑟
1

.

.

. d
.
.
.

1𝑇
𝑛
1

𝛽
𝑇

1𝑟
𝑧

⋅ ⋅ ⋅ 1𝑇
𝑛
1

𝛽
𝑇

𝑛
1
𝑟
𝑧

]
]
]
]

]

(69)

leads to the result that −𝐻
𝐶𝐿
𝐻
𝑇

1𝐿
= 1
𝑛
1

1𝑇
𝑛
1

, that is, an 𝑛
1
× 𝑛
1

matrix filled with ones.
Putting all the obtained results together in (65), it holds

that

V⋆
𝐶
=
1

𝑛
1

1
𝑛
1

1𝑇
𝑛
1

V⋆
1 (70)

which is equivalent to (66).

Remark 17. A direct corollary of the last proposition, which
can be alternatively proved from Property 6, refers to the case
when V⋆

1
= V
1
1
𝑛
1

, with V
1
∈ R. Under this condition, voltage

capacitor consensus [16] is achieved in the sense that V⋆
𝐶
= V⋆
1
.

Remark 18. It is easy to verify that for radial and ring
topologies consensus on the voltages V⋆

𝐶
is attained.

Remark 19. If inductive loses are included, 𝑅
𝑡
̸= 0, consensus

is no longer preserved. Instead, the entries of the matrix
𝑅
−1

𝑐
+ 𝐻
𝐶𝐿
𝑅
−1

𝑡
𝐻
𝑇

𝐶𝐿
depend on the values of the tree resistors.

However, it seems that this situation allows for designing
compensation techniques, that is, adding new lumped ele-
ments to the circuit, such that a prescribed behavior is
accomplished.

6.2. AC Steady-State Behavior. The second approached case
study consists of an electric network operating under sinu-
soidal voltage sources. In this case, for facility of analysis, all
the passive elements are considered to be linear although, in
contrast to the first case study, inductive loses are included.
Hence, the circuit dynamic is described by (16) together with
(23) and, for convenience, is represented as

𝑃
−1
�̇� = [𝐽 − 𝑅] 𝑧 + 𝐺𝑒1, (71)

where 𝑧 = [V𝑇
𝐶
𝑖
𝑇

𝐿
]
𝑇

with 𝐽, 𝑅, and 𝐺 as previously defined.
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Since the steady-state behavior is now time-varying, the
admissible trajectories are given as solution of

𝑃
−1
�̇�
⋆
= [𝐽 − 𝑅] 𝑧

⋆
+ 𝐺V⋆
1
. (72)

As usual [2], to carry out the analysis, it is assumed that
voltage and currents are of the form

𝑓 (𝑡) = 𝐹 cos (𝜔𝑡 + 𝜙) = Re (F𝑒𝑗𝜔𝑡) (73)

with the phasor F = 𝐹𝑒
𝑗𝜙. Therefore, admissible trajectories

are defined by

Re [𝑗𝜔𝑃Z⋆𝑒𝑗𝜔𝑡 − (𝐽 − 𝑅)Z⋆𝑒𝑗𝜔𝑡] = Re (𝐺) (V⋆
1
𝑒
𝑗𝜔𝑡
) (74)

leading to

Z
⋆
= [𝑗𝜔𝑃 − (𝐽 − 𝑅)]

−1

𝐺V
⋆

1
. (75)

Considering that the circuit satisfies Properties 1 and 2 (i.e.,
identities (40) and (42) hold), the model reduces to

𝑠𝑃 − (𝐽 − 𝑅) = [

𝑠𝐶 + 𝑅
−1

𝑐
𝐻
𝐶𝐿

−𝐻
𝑇

𝐶𝐿
𝑠𝐿 + 𝑅

𝑡

] , (76)

where 𝑠 = 𝑗𝜔, 𝐶 ∈ R𝑛2×𝑛2 is the capacitance matrix, and 𝐿 ∈
R𝑛5×𝑛5 is the inductance matrix. Hence, it is obtained that

Z
⋆
= [

V⋆
𝐶

I⋆
𝐿

] = [
𝐴
1
𝐻
𝑇

1𝐿
V⋆
1

𝐴
2
𝐻
𝑇

1𝐿
V⋆
1

] (77)

with

𝐴
1
= − [𝑌

𝐶𝑅
+ 𝐻
𝐶𝐿
𝑌
𝐿𝑅
𝐻
𝑇

𝐶𝐿
]
−1

𝐻C𝐿𝑌𝐿𝑅

𝐴
2
= 𝑌
𝐿𝑅
− 𝑌
𝐿𝑅
𝐻
𝑇

𝐶𝐿
[𝑌
𝐶𝑅
+ 𝐻
𝐶𝐿
𝑌
𝐿𝑅
𝐻
𝑇

𝐶𝐿
]
−1

𝐻
𝐶𝐿
𝑌
𝐿𝑅

(78)

and diagonal admittance matrices

𝑌
𝐶𝑅

= 𝑠𝐶 + 𝑅
−1

𝑐
(79)

𝑌
𝐿𝑅
= (𝑠𝐿 + 𝑅

𝑡
)
−1

= 𝑠
−1
(𝐿 + 𝑠

−1
𝑅
𝑡
)
−1

= 𝑠
−1
𝐷. (80)

In the next proposition, for illustrative purposes, the
steady-state behavior of capacitor voltages is characterized
assuming that the network is of the mesh type, giving conti-
nuity to the first case study. It is convenient to introduce some
partitions of several matrices that facilitate the computations
involved in the result.

In accordance with the results presented in Section 5, the
inductance matrix takes the form

𝐿 = diag {𝐿
𝑟
, 𝐿
𝑠
} (81)

with 𝐿
𝑟
∈ R𝑛𝑟×𝑛𝑟 , 𝐿

𝑠
∈ R𝑛𝑠×𝑛𝑠 . In addition, the former must

be divided into 𝑧matrices as

𝐿
𝑟
= diag {𝐿

𝑟𝑖
} ; 𝑖 = 1, 2, . . . , 𝑧, (82)

where 𝐿
𝑟𝑖
∈ R𝑛1×𝑛1 since for a mesh network 𝑛

𝑟
= 𝑛
1
.

From Properties 1 and 2, the dimension of 𝑅
𝑐
is 𝑛
1
× 𝑛
1
,

due to the fact that 𝑛
1
= 𝑛
2
, while𝑅

𝑡
∈ R𝑛5×𝑛5 ; that is, it equals

the dimension of 𝐿.
Under the aforementioned partitions, matrix 𝐷 intro-

duced in (80) is given by

𝐷 = diag {𝐷
𝑟
, 𝐷
𝑠
} , (83)

where 𝐷
𝑟

= diag{𝐷
𝑟𝑖
} with 𝐷

𝑟𝑖
= (𝐿

𝑟𝑖
+ 𝑠
−1
𝑅
𝑡𝑖
)
−1,

𝑖 = 1, 2, . . . , 𝑧, and 𝑅
𝑡𝑖
are submatrices of 𝑅

𝑡
of dimension

corresponding to 𝐿
𝑟𝑖
.

Concerning matrix 𝐻
1𝐿
, whose structure is presented in

(61), the submatrix𝑀
𝑟
∈ R𝑛1×𝑛𝑟 is represented as

𝑀
𝑟
= [𝑀𝑟1 𝑀𝑟2 ⋅ ⋅ ⋅ 𝑀𝑟𝑧] (84)

with𝑀
𝑟𝑖
∈ R𝑛1×𝑟𝑖 , 𝑖 = 1, 2, . . . , 𝑧, matrices composed of the

vectors introduced in (56) exhibiting only one entry different
from zero on each of their columns.

Proposition 20. Consider a mesh electrical circuit character-
ized by (60) and (61). Assume the following:

(i) Propositions 6 and 9 hold.
(ii) The vector of voltage sources V

1
is composed of 𝑛

1

sinusoidal functions.

Under these conditions, the input/output relationship
between the capacitor voltage phasorsV⋆

𝐶
and the voltage source

phasors V⋆
1
is given by

V
⋆

𝐶
= −M

−1

[
[
[
[
[
[
[

[

1𝑇
𝑛
1

𝐷
𝑟1
𝑀
𝑇

𝑟1

1𝑇
𝑛
1

𝐷
𝑟2
𝑀
𝑇

𝑟2

.

.

.

1𝑇
𝑛
1

𝐷
𝑟𝑟
𝑀
𝑇

𝑟𝑧

]
]
]
]
]
]
]

]

V
⋆

1
, (85)

whereM = [𝑠
2
𝐶 + 𝑠𝑅

−1

𝑐
+ diag{1𝑇

𝑛
1

𝐷
𝑟𝑖
1
𝑛
1

}], 𝑖 = 1, 2, . . . , 𝑧.

Proof. Defining and factorizing 𝑠 = 𝑗𝜔, the first equation of
(77) can be equivalently written as

V
⋆

𝐶
= − [𝑠

2
𝐶 + 𝑠𝑅

−1

𝑐
+ 𝐻
𝐶𝐿
𝐷𝐻
𝑇

𝐶𝐿
]
−1

𝐻
𝐶𝐿
𝐷𝐻
𝑇

1𝐿
V
⋆

1
, (86)

where, using (60), it is straightforward to compute

𝐻
𝐶𝐿
𝐷𝐻
𝑇

𝐶𝐿

=

[
[
[
[
[
[
[

[

1𝑇
𝑛
1

𝐷
𝑟1
1
𝑛
1

0 ⋅ ⋅ ⋅ 0

0 1𝑇
𝑛
1

𝐷
𝑟2
1
𝑛
1

⋅ ⋅ ⋅ 0

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅ 1𝑇
𝑛
1

𝐷
𝑟𝑧
1
𝑛
1

]
]
]
]
]
]
]

]

,

(87)
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while, recalling (61), it is easy to show that

𝐻
𝐶𝐿
𝐷𝐻
𝑇

1𝐿
= −

[
[
[
[
[
[
[

[

1𝑇
𝑛
1

𝐷
𝑟1
𝑀
𝑇

𝑟1

1𝑇
𝑛
1

𝐷
𝑟2
𝑀
𝑇

𝑟2

.

.

.

1𝑇
𝑛
1

𝐷
𝑟𝑧
𝑀
𝑇

𝑟𝑧

]
]
]
]
]
]
]

]

, (88)

where𝑀
𝑟
has been partitioned in a congruent way.

The proof concludes by substituting (87) and (88) into
(86).

The usefulness of the presented result lies in the very
well defined structure of (85) which allows for systematic
manipulation of the capacitance, inductance, and resistance
values in order to force a prescribed steady-state behavior for
the capacitor voltages. For example, consider themesh circuit
of Figure 3 which has associated the matrices

𝐻
1𝐿
= [

1 0 1 0 1

0 −1 0 1 −1
]

𝐻
𝐶𝐿
= [

−1 1 0 0 0

0 0 −1 −1 0
] .

(89)

In this case, the expressions for the capacitor voltages are
given by

V
⋆

𝐶1
= −

𝐷
11
V⋆
1
− 𝐷
12
V⋆
2

𝐶
1
𝑠2 + 𝑍

−1

1
𝑠 + 𝐷
11
+ 𝐷
12

V
⋆

𝐶2
= −

𝐷
21
V⋆
1
+ 𝐷
22
V⋆
2

𝐶
2
𝑠2 + 𝑍

−1

2
𝑠 + 𝐷
21
+ 𝐷
22

(90)

with 𝐷
11

= (𝐿
11
+ 𝑠
−1
𝑅
11
), 𝐷
12

= (𝐿
12
+ 𝑠
−1
𝑅
12
), 𝐷
21

=

(𝐿
21
+ 𝑠
−1
𝑅
21
), and 𝐷

22
= (𝐿
22
+ 𝑠
−1
𝑅
22
). It is clear that

for a given value of the voltages sources a proper choice of
the circuit parameters can lead to consensus in the capacitor
voltages.

Remark 21. Evidently, the idea tomanipulate the capacitance,
inductance, and resistance values in order to attain a given
steady-state behavior is not new. Actually, in many appli-
cations, this procedure is recognized as compensation and
is related to the addition of new elements parallel or series
connected with the original ones. The advantage offered by
the approach presented in this paper is that the compensation
analysis can be carried out in a systematic way.

7. Concluding Remarks

In this paper a dynamic characterization of a class of electrical
circuits has been presented. The approached circuit topolo-
gies are the most used in practice, namely, radial, ring, and
mesh typical networks. The characterization contemplates
both stability properties and steady behavior and its main
feature is that it is based on the structural properties of the
networks which have been obtained by using arguments from

the graph theory. It has been shown that the structure of
these circuits, initially conceived for reliability issues, strongly
defines their dynamic behavior. The usefulness of the results
reported in this paper lies in the possibility of carrying out
the characterization in a very systematic way. In addition, it
has been shown that these reported results offer an alternative
to deal with problems like compensator location to attain a
prescribed behavior.
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