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We compare three attempts that have been made to decompose the angular momentum of the electromagnetic field into
components of an “orbital” and “spin” nature. All three expressions are different, and there seems to be no reason to prefer one to
another. It appears, on the basis of classical electrodynamics, that there is no unique way of decomposing the angular momentum
of the electromagnetic field into orbital and spin components, even in a fixed inertial frame.

1. Introduction

The total angular momentum J of the electromagnetic field
is given (in SI units) [1] by

J(t) = ε0

∫
d3xx × [E(x, t)× B(x, t)]. (1)

Henceforth, we will suppress the time coordinate t of the
fields, all of which depend on time, and also the ε0 factor.

There has been debate for a long time over whether the
total angular moment J of the electromagnetic field can be
decomposed into an orbital part L and a spin part S so that

J = L + S. (2)

Some authors [2] argue that on the basis of the first principles
it is not possible to do this; others [3–5] show that forms can
be demonstrated that appear to be, at least algebraically, of a
spin and orbital nature.

By means of partial integration Ohanian [4] effected a
decomposition with J = L′ + S′ + J

′
b,

S′ =
∫
d3xE(x)×A(x), (3)

L′ =
∑
i

∫
d3xEi(x)(x×∇x)Ai(x), (4)

where A is the vector potential {B(x) = ∇x × A(x)} and
∇x is the gradient operator that operates on functions of
x. Ohanian assumed that the electric charge density ρ was
zero and deemed (3) and (4) to be the spin and orbital
components, respectively, of the electromagnetic field on the
basis that the integrand of (3) was not explicitly linear in
the x coordinate whereas the integrand of (4) was. When the
charge density is not zero, a bound term J

′
b, considered also

to be of an orbital nature

J
′
b =

∫
d3xx × A(x)∇x · E(x) =

∫
d3xx× A(x)ρ(x), (5)

is obtained on whose form all writers agree [6]. Although
the sum of (3) and (4) and (5) J = L′ + S′ + J

′
b is gauge

invariant, the individual terms are not and so have no
physical interpretation until the gauge of the vector potential
is fixed completely.

Cohen-Tannoudji et al. [3] used the Coulomb (or
transverse) gauge, defined by the gauge condition∇·At = 0,
which gives

S′′ =
∫
d3xE(x)× At(x), (6)

L′′ =
∑
i

∫
d3xEi(x)(x ×∇x)Ai

t(x), (7)

J′′b =
∫
d3xρ(x)x ×At(x). (8)
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Since the Coulomb gauge is a completely fixed gauge and
has no remaining gauge arbitrariness, (6), (7), and (8) are
individually well defined with J = L′′ + S′′ + J′′b .

Cohen-Tannoudji et al. [3] went further and expanded
the electric field E into transverse Et = −Ȧt = −∂At/∂t and
longitudinal El = −∇φ parts, where φ is the scalar potential
with E = Et + El, to get

S′′′ =
∫
d3xEt(x)×At(x) = −

∫
d3xȦt(x)× At(x), (9)

L′′′ =
∑
i

∫
d3xEi

t(x)(x ×∇x)Ai
t(x)

= −
∑
i

∫
d3xȦi

t(x)(x ×∇x)Ai
t(x).

(10)

The bound component remains the same as (8). It will
be shown in Section 2 that the terms that involve the scalar
potential in (6) and (7) cancel so that J = L′′ + S′′ + J′′b in (6),
(7), and (8) and J = L′′′+S′′′+J′′b in (9), (10), and (8) but S′′

in (6) differs from S′′′ in (9) and L′′ in (7) differs from L′′′ in
(10). The forms of (9) and (10) have also been used by van
Enk and Nienhuis [5]. The general explicit form for At , given
in (13), was not specified by these writers.

On the other hand, Stewart [7] found a decomposition
J = L′′′′ + S′′′′ + J′′b from decomposing the electric field by
the Helmholtz theorem [8]:

S′′′′ = 1
4π

∫
d3x

∫
d3 y

B(x)× Ḃ
(

y
)

∣∣x− y
∣∣ , (11)

L′′′′ = 1
4π

∫
d3x

∫
d3 yB(x) · Ḃ

(
y
) x× y∣∣x− y

∣∣3 . (12)

This decomposition uses the E and B fields throughout so no
issues of gauge arbitrariness arise. Nor is there any complica-
tion that arises from using the longitudinal and transverse
components of the fields, as B is entirely transverse. The
expression for J′′b was again given by (8) [6]. Equations (8),
(11), and (12) have been used elsewhere [9] to show that
the electromagnetic field makes zero contribution to the
angular momentum of the physical electron described by
the Lagrangian of quantum electrodynamics and to resolve
the paradox concerning the angular momentum of a plane
electromagnetic wave [10]. Application has also been made
to paraxial rays [11] where it has been shown that the same
results are obtained from (11) and (12) as from (9) and (10).

The question addressed in this paper is how (11) and (12)
are related to (9) and (10) when the relation below (13) [12,
13] that expresses the vector potential of the Coulomb gauge
explicitly in terms of the instantaneous magnetic field is used:

At(x) = ∇x ×
∫
d3 y

B
(

y
)

4π
∣∣x− y

∣∣

= −
∫
d3 y

4π
B
(

y
)×∇x

1∣∣x− y
∣∣ .

(13)

In Section 2 we summarise the derivation [3] leading from
(1) to (9) and (10). In Section 3 we obtain an expression for

S′′′ of (9) and L′′′ of (10) using (13) and demonstrate that
L′′′ + S′′′ = L′′′′+S′′′′. Section 4 summarises the conclusion
of the paper that there is, on the basis of classical physics,
no unique decomposition of the angular momentum of the
electromagnetic field into spin and orbital components, even
in a fixed inertial frame.

2. Derivation of the Standard Version of
the Angular Momentum Decomposition

To obtain (3) and (4) from (1) we consider the component
of the cross product

E× (∇x ×A)|i = εi jkεklmE j ∂A
m

∂xl
. (14)

By multiplying the Levi-Civita symbols we find [4]

E× (∇x × A) = En∇xA
n − (E · ∇x)A. (15)

Next, consider the identity

∂

∂xm

(
x jEmAk

)
= δj,mEmAk + x j

(
Ak ∂E

m

∂xm
+ Em ∂Ak

∂xm

)

(16)

and integrate this over xm from minus infinity to plus
infinity. The left-hand side vanishes because the integrand is
zero at those points. Integrate over the other two components
of x to produce a volume integral over all space of d3x
then sum over m. The result, when multiplied by εi jk and
integrated, substituted into the angular momentum obtained
from (15), and specialised to the Coulomb gauge, is

J =
∫
d3x

{
x× At(∇x · E) + E× At + En(x×∇x)An

t

}
.

(17)

This reproduces (3), (4), and (5) for general gauge and (6),
(7), and (8) for the Coulomb gauge.

The next step is to decompose the electric field into its
longitudinal −∇φ and transverse Et components. Since the
divergence of a transverse vector field is zero, the first term
in (17) is unchanged from (8). The term associated with the
potential in the third term of (17) is

ΔJ3|i = −
∑
j,k,n

∫
d3x εi jk

∂φ

∂xn
x j ∂A

n
t

∂xk
. (18)

Consider the identity

∂

∂xk

(
x jAn

t

∂φ

∂xn

)
= δj,kAn

t

∂φ

∂xn
+ x j

(
∂An

t

∂xk
∂φ

∂xn
+ An

t

∂2φ

∂xk∂xn

)
.

(19)

When (19) is put into (18), the term coming from the first
term of the right-hand side of (19) vanishes because of the
product of the Kronecker delta and the Levi Civita functions,
and we get

ΔJ3|i =
∑
j,k,n

∫
d3x εi jkx jAn

t

∂2φ

∂xk∂xn
. (20)
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From the identity

∂

∂xn

(
x jAn

t

∂φ

∂xk

)
= δj,nAn

t

∂φ

∂xk
+ x j

(
∂An

t

∂xn
∂φ

∂xk
+ An

t

∂2φ

∂xk∂xn

)

(21)

and noting that∇ ·At = 0, we find

ΔJ3|i = −
∑
j,k,n

∫
d3x εi jkδ j,nA

n
t

∂φ

∂xk
= −

∑
j,k

∫
d3x εi jkA

j
t
∂φ

∂xk
.

(22)

The angular momentum of the second term of (17) arising
from the potential is

ΔJ2|i = −
∑
j,k

∫
d3x εi jk

∂φ

∂x j A
k
t . (23)

Noting the order of the indices, (22) and (23) sum to zero;
so we find that the contribution of the longitudinal electric
field to the total angular momentum is zero, so J = L′′′ +
S′′′ + J′′b with the components L′′′ and S′′′ given by (9)
and (10). We see already that the angular momentum of
the electromagnetic field can be expressed in two different
ways, as J = L′′′ + S′′′ + J′′b given by (6), (7), and (8) and as
J = L′′ + S′′ + J′′b given by (9), (10), and (8).

3. Confirmation of the New Version of
the Angular Momentum Decomposition

In this section of the paper we substitute the expression for
the vector potential of the Coulomb gauge (13) into (9) and
(10) in order to find how (9) and (10) are related to (11) and
(12). We will find that the sum of (9) and (10) is equal to the
sum of (11) and (12). First we examine L′′′ of (10). This may
be expressed as

L′′′ = −
∫
d3xx×∇x

[
Ȧt(z) · At(x)

]∣∣∣
z=x

= −
∫
d3xx×

{
Ȧt(x)× B(x) +

[
Ȧt(x) · ∇x

]
At(x)

}
.

(24)

Using (13), the first term of (24) comes to

L′′′1 = −
∫
d3x

∫
d3 y

4π
x×

{
B(x)×

[
Ḃ
(

y
)×∇x

1∣∣x − y
∣∣
]}

,

(25)

and, by multiplying out the triple vector product, this
becomes

L′′′1 = −
∫
d3x

∫
d3 y

4π
x×

{
Ḃ
(

y
)[

B(x) · ∇x
1∣∣x − y
∣∣
]

−∇x
1∣∣x− y
∣∣
[

Ḃ
(

y
) · B(x)

]}
.

(26)

When the gradient in the second term of (26), L′′′12, is
expressed explicitly, the term becomes

L′′′12 = 1
4π

∫
d3x

∫
d3 y Ḃ

(
y
) · B(x)

x× y∣∣x− y
∣∣3 . (27)

The first term in (26) is expressed in components as

L′′′11|i = −
∑
j,k,m

∫
d3x

∫
d3 y

4π
εi jkx j Ḃk

(
y
)
Bm(x)

∂

∂xm
1∣∣x− y
∣∣ .

(28)

By considering the identity

∂

∂xm

[
Ḃk
(

y
)
x jBm(x)∣∣x− y

∣∣
]

= Ḃk
(

y
){

δj,m
Bm(x)∣∣x− y

∣∣

+x j

[
Bm(x)

∂

∂xm
1∣∣x− y
∣∣ +

1∣∣x− y
∣∣
∂Bm(x)
∂xm

]}
,

(29)

we obtain, with ∇ · B = 0,

L′′′11|i =
∑
j,k,m

∫
d3x

∫
d3y

4π
εi jkḂk

(
y
)δjmBm(x)∣∣x − y

∣∣ (30)

or

L′′′11 = 1
4π

∫
d3x

∫
d3 y

B(x)× Ḃ
(

y
)

∣∣x− y
∣∣ . (31)

The second term L′′′2 of (24) is simplified by writing it in
components and using the relation

∂

∂xm

(
x j Ȧm

t A
k
t

)
= δjmȦm

t A
k
t + x j

(
∂Ȧm

t

∂xm
Ak
t + Ȧm

t
∂Ak

t

∂xm

)
(32)

with the gauge condition∇ · At = 0 to get

L′′′2 =
∫
d3xȦt(x)× At(x). (33)

Accordingly, L′′′ = L′′′11 + L′′′12 + L′′′2 and

L′′′ = 1
4π

∫
d3x

∫
d3 y

B(x)× Ḃ
(

y
)

∣∣x − y
∣∣

+
1

4π

∫
d3x

∫
d3yḂ

(
y
) · B(x)

x × y∣∣x − y
∣∣3

+
∫
d3xȦt(x)× At(x).

(34)

Since S′′′ of (9) is given by the negative of the last term of
(34), it follows that L′′′ + S′′′ = L′′′ + S′′′, confirming the
validity of (11) and (12).
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4. Conclusion

In this paper we have compared three different expressions
for the angular momentum of the electromagnetic field; they
are

J =
∫
d3x

{
x × At ρ(x) + ε0E× At + ε0E

n(x ×∇x)An
t

}
,

(35)

J =
∫
d3x

{
x × At ρ(x) + ε0Et × At + ε0En

t (x ×∇x)An
t

}
,

(36)

J =
∫
d3xx × At(x)ρ(x) +

ε0

4π

∫
d3x

∫
d3 y

B(x)× Ḃ
(

y
)

∣∣x− y
∣∣

+
ε0

4π

∫
d3x

∫
d3yB(x) · Ḃ

(
y
) x× y∣∣x− y

∣∣3 ,

(37)

where the vector potential of the Coulomb gauge At is given
by (13) and the ε0 factor has been restored. The expressions
all have the algebraic form of the sum of a spin and an orbital
components, and each component of all three expressions
is gauge invariant. All three expressions are different, and,
on the basis of classical electrodynamics, there seems to be
no reason to prefer one to another. The last form (37) [7]
has the pedagogical advantage of being derived entirely in
terms of fields through the Helmholtz theorem; issues of
gauge arbitrariness do not have to be addressed. It appears
that there is no unique way of decomposing the angular
momentum of the classical electromagnetic field into orbital
and spin components, even in an inertial frame.
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