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“An exact matrix conformation model” associated with the equations describing the exact behavior of
the Fourier-Bessel multiple scattering coefficients of the diffraction grating consisting of an infinite
number of infinitely long parallel penetrable circular cylinders, corresponding to the obliquely
incident transverse-magnetic plane waves in “Twersky-Wait-Kavaklıoğlu representation,” originally
excogitated in (Kavaklıoğlu, 2000), is acquired, and the exact solution for “the Fourier-Bessel multiple
scattering coefficients of the diffraction grating at oblique incidence” is obtained by a matrix inversion
procedure.

1. Introduction

Twersky [1] solved the problem of multiple scattering of radiation by an arbitrary
configuration of parallel cylinders by the infinite grating of insulating dielectric circular
cylinders at normal incidence in terms of cylindrical wave functions as long ago as 1952,
considering all possible contributions to the excitation of a particular cylinder by the radiation
scattered by the remaining cylinders. He later extended his solution for the case where
all axes of cylinders lie in the same plane [2] by expressing the scattered wave as an
infinite sum of orders of scattering and derived the solution for the scattering of waves
by the finite grating of cylinders [3] at normal incidence. In addition, Twersky introduced
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a “scalar functional equation” [4] for the grating in order to describe the relationship between
the multiple scattered amplitude of the grating in terms of the “multiple scattered amplitude
of an isolated cylinder within the grating.” He [5] then utilized the separation-of-variables
technique to derive a set of algebraic equations for the “multiple scattering coefficients of the
infinite grating” in terms of his famous elementary function representations of “Schlömilch
series” [6], and in terms of the “well-known scattering coefficients of an isolated cylinder at
normal incidence,” which was originally derived by Rayleigh [7, 8]. His results since then
have been reiterated and extensively used by many other authors.

For the more generalized case of conical incidence, Sivov [9] first studied the problem
of determining the coefficients of reflection and transmission by an infinite plane grating
of parallel conductors assuming the period small in comparison with the wavelength. Lee
[10] treated the multiple scattering by an arbitrary configuration of parallel, nonoverlapping
infinite cylinders, and provided the solution for the “scattering by closely spaced radially-
stratified parallel cylinders with an arbitrary number of stratified layers” [11]. Furthermore,
Smith et al. [12] developed a formulation for cylinder gratings in conical incidence using a
multipole method in modeling photonic crystal structures and study scattering matrices and
“Bloch modes” in order to investigate the photonic band gap properties of woodpile structures
[13]. In a more recent study, Henin et al. [14] presented a semianalytical solution by an array
of circular dielectric cylinders and parallel-coated circular cylinders of arbitrary radii and
positions [15].

The exact equations describing the behavior of the Fourier-Bessel multiple scattering
coefficients of an infinite grating of dielectric circular cylinders, which are aligned along the
y-axis and parallel to the z-axis, for obliquely incident plane electromagnetic waves, θi
being the obliquity angle made with z-axis, were first derived by Kavaklıoğlu [16–18] for
both TM and TE polarizations. The generalized representations associated with the reflected
and transmitted fields were formulated in terms of these Fourier-Bessel multiple scattering
coefficients for obliquely incident plane H-polarized waves in Kavaklıoğlu and Schneider
[19]. In addition, they [20] derived the generalized form of Twersky’s functional equation [4] for
the infinite grating at oblique incidence in matrix form in terms of the “Fourier-Bessel scattering
coefficients of an isolated dielectric circular cylinder at oblique incidence” originally derived by
Wait [21]. Moreover, Kavaklıoğlu and Schneider [22] acquired the asymptotic solution for the
Fourier-Bessel multiple scattering coefficients of the infinite grating associated with obliquely
incident and vertically polarized waves up to and including third order as a function of
the cylinder radius to grating spacing when the grating spacing “d” is small compare to
a wavelength. Recently, Kavaklıoğlu and Lang [23] demonstrated a rigorous proof for the
validity of this asymptotic solution derived in [22].

The purpose of this investigation is to acquire the exact conformation model for the
Fourier-Bessel multiple scattering coefficients of an infinite array of penetrable circular
cylinders associatedwith obliquely incident vertically polarized plane electromagnetic waves
and to capture the exact representation of the aforementioned coefficients of the diffraction
grating at oblique incidence in “matrix form.” In the generalized oblique incidence solution
presented in this article, the direction of the incident plane wave makes an arbitrary oblique
angle of arrival θi with the positive z-axis as depicted in Figure 1.

In addition, we have explicated and connoted that our proposed method of solution
for the scattering coefficients is a new technique and an exact representation. Besides,
the paper clearly describes how one can generate a numerical algorithm from this exact
solution by the truncation of the system matrices associated with the undetermined multiple
scattering coefficients. On the other hand, the objective of this paper is not to discover some
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Figure 1: The configuration of the problem of scattering of waves by an infinite array of penetrable circular
cylinders at oblique incidence (side view).

numerical algorithm as its title designates, which would be completely approximate and
requiring an error analysis.

2. Description of the Transverse Magnetic Multiple Scattering
Coefficients of the Infinite Array at Oblique Incidence

We consider a vertically polarized obliquely incident plane electromagnetic wave upon an
infinite array of insulating circular dielectric cylinders having infinite length with radii a,
dielectric constant εr , and relative permeability μr . The constituent cylinders of the infinite
array are placed periodically along the y-axis, with their axis parallel to the z-axis, located at
positions r0, r1, r2,. . ., and so forth, and separated by a distance of d.

For this configuration, the incident wave can be written in the cylindrical coordinate
system (Rs, φs, z) of the sth cylinder in terms of the cylindrical waves referred to the axis of
sth cylinder [16] as

Eincident
v

(
Rs, φs, z

)
= v̂iE0ve

ikrsd sinψi

{ ∞∑
n=−∞

e−inψiJn(krRs)ein(φs+π/2)
}
e−ikzz. (2.1)

In the representation above, v̂i denotes the vertical polarization vector associated with a
unit vector having a component parallel to all the cylinders, φi is the angle of incidence
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in x-y plane measured from x-axis in such a way that ψi = π +φi as it is delineated in Figure 1,
implying that the wave is arbitrarily incident in the first quadrant of the coordinate system,
and Jn(x) denotes Bessel function of order n. In expression (2.1), we have

kr = k0 sin θi,

kz = k0 cos θi,
(2.2)

where k0 denotes the free space wave number with k0 := 2π/λ0 and where λ0 is the
wavelength of the incident radiation; θi is the obliquity angle made with z-axis. e−iωt time
dependence is suppressed throughout the article, where ω represents the angular frequency
of the incident wave in radians per second and t stands for time in seconds (Figure 2).

The exact solution associated with the z-component of the electric field intensity in the
exterior of the infinite grating can be expressed in terms of the incident electric field in the
coordinate system of the sth cylinder located at rs, plus a summation of cylindrical waves
outgoing from the individual nth cylinder located at rn, which satisfies Silver-Müller radiation
condition as |r − rn| → ∞, that is,

E
(exterior, TM)
z

(
Rs, φs, z

)
= E(incident, TM)

z

(
Rs, φs, z

)
+

+∞∑
n=−∞

E
(nth scatterer, TM)
z

(
Rn, φn, z

)
. (2.3)

The generalized exact representation of the multiple scattered fields by an infinite grating
of dielectric cylinders for obliquely incident plane waves has been rigorously treated by
Kavaklıoğlu [16] for an arbitrary oblique angle of arrival θi with the positive z-axis, and it
has been proved that the z-component of the total electric and magnetic fields in the exterior
of the infinite grating for obliquely incident and vertically polarized plane electromagnetic waves
can be written as

E
(exterior, TM)
z

(
Rs, φs, z

)
=

{
eikrsd sinψi

+∞∑
n=−∞

[(
Ein +Qn

)
Jn(krRs) +AnH

(1)
n (krRs)

]
ein(φs+π/2)

}
e−ikzz,

H
(exterior, TM)
z

(
Rs, φs, z

)
=

{
eikrsd sinψi

+∞∑
n=−∞

[
QH
n Jn(krRs) +AH

n H
(1)
n (krRs)

]
ein(φs+π/2)

}
e−ikzz.

(2.4)

The infinite set of undetermined coefficients {An, A
H
n } ∞

n=−∞ arising in (2.4) denotes the
Fourier-Bessel multiple scattering coefficients for the infinite array of insulating dielectric
cylinders corresponding to the vertically polarized obliquely incident plane electromagnetic waves,
for all n ∈ Z where Z represents the set of all integers, and Ein in (2.4) is given as

Ein = sin θiE0ve
−inψi . (2.5)
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Figure 2: The geometry of the infinite grating problem (top view).

In addition, Qn and QH
n represent the multiple scattering effects, which are expressed as a

linear combination of the undetermined Fourier-Bessel multiple scattering coefficients of the
infinite grating at oblique incidence as

Qn = J0An +
∞∑

m=−∞
m/=n

Jn−m Am,

QH
n = J0A

H
n +

∞∑
m=−∞
m/=n

Jn−m AH
m ,

(2.6)

for all n ∈ Z. Jn(krd) is the generalized form of the Schlömilch series for obliquely incident waves
(Twersky [4–6], Kavaklıoğlu [18]) explicitly given as

Jn(2πΔ) =
+∞∑
p=1

H
(1)
n

(
2πpΔ

)[
e2πipΔ sinψi(−1)n + e−2πipΔ sinψi

]
, (2.7)
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where, Δ ≡ krd/2π and H
(1)
n (x) denotes the nth order Hankel function of first kind, for all

n ∈ Z. The series Jn−m(krd) in expression (2.7) is the generalization of the “Schlömilch series
for obliquely incident electromagnetic waves” (Twersky [6], Kavaklıoğlu [18]) and converges
provided that krd(1 ± sin ψi)/2π does not equal integers. The integral values of krd(1 ±
sinψi)/2π are known as the “grazing modes” or “Rayleigh values” (Twersky [6]).

3. The Generalized Fourier-Bessel Multiple Scattering Coefficients
of the Infinite Grating for Vertically Polarized Obliquely Incident
Plane Electromagnetic Waves in Matrix Form

The equations describing the scattering coefficients for vertically polarized and obliquely incident
plane electromagnetic waves are first derived in Kavaklıoğlu [16], which can be described as

An + aεn

[
Ein +

+∞∑
m=−∞

AmJn−m(krd)

]
− bεn
[
AH
n + cn

+∞∑
m=−∞

AH
mJn−m(krd)

]
= 0

[
AH
n + aμn

+∞∑
m=−∞

AH
mJn−m(krd)

]
+ bμn

{
An + cn

[
Ein +

+∞∑
m=−∞

AmJn−m(krd)

]}
= 0,

(3.1)

for all n ∈ Z. In the equations above, we have

cn =
Jn(kra)

H
(1)
n (kra)

, (3.2)

a
ζ
n =

[
Jn(k1a)J

′
n(kra) − ζr(kr/k1)Jn(kra)J

′
n(k1a)

Jn(k1a)H
(1)′
n (kra) − ζr(kr/k1)H(1)

n (kra)J
′
n(kra)

]
, (3.3)

b
ζ
n =

iF

cζ0

[
Jn(k1a)H

(1)
n (kra)

Jn(k1a)H
(1)′
n (kra) − ζr(kr/k1)H(1)

n (kra)J
′
n(kra)

]⎛⎝ n

kra

⎞⎠ (3.4)

for all n ∈ Z for ζ ∈ {ε, μ}, where k1 is defined as k1 = k0
√
εrμr − cos2θi, F is defined as

F =

(
μrεr − 1

)
cos θi

μrεr − cos2θi
, (3.5)

and c stands for the speed of light in free space as

c =
1√
μ0ε0

, (3.6)
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J
′
n(ς) and H

(1)
n

′
(ς) in expression (3.3) and (3.4) are described as the first derivatives of

these functions with respect to their arguments, that is, J
′
n(ς) ≡ (d/dς)Jn(ς) and H

(1)
n

′
(ς) ≡

(d/dς)H(1)
n (ς).

Introducing the intrinsic impedance of free space as

ξ0 =
√
μ0

ε0
:= η−10 ∼= 377Ω, (3.7)

two parameters that appears in the equations of the Fourier-Bessel multiple scattering
coefficients of the infinite grating in (3.1), namely, bεn and b

μ
n, can be acquired by employing

(3.7) in (3.4) for ζ ∈ {ε, μ} as

bεn =

⎡⎣ Jn(k1a)H
(1)
n (kra)

Jn(k1a)H
(1)
n

′
(kra) − εr(kr/k1)H(1)

n (kra)J
′
n(k1a)

⎤⎦⎛⎝ inFξ0
kra

⎞⎠,

b
μ
n =

⎡⎣ Jn(k1a)H
(1)
n (kra)

Jn(k1a)H
(1)
n

′
(kra) − μr(kr/k1)H(1)

n (kra)J
′
n(k1a)

⎤⎦⎛⎝ inFη0
kra

⎞⎠,

(3.8)

for all n ∈ Z. Rearranging the equations in (3.1), we have modified the equations for the
Fourier-Bessel multiple scattering coefficients as

(1 + aεnJ0)An + aεn
+∞∑

m=−∞
m/=n

AmJn−m − bεn

⎡⎢⎣(1 + cnJ0)AH
n + cn

+∞∑
m=−∞
m/=n

AH
mJn−m

⎤⎥⎦ = −aεnEin,

(
1 + aμnJ0

)
AH
n + aμn

+∞∑
m=−∞
m/=n

AH
mJn−m + bμn

⎡⎢⎣(1 + cnJ0)An + cn
+∞∑

m=−∞
m/=n

AmJn−m

⎤⎥⎦ = −bμncnEin,

(3.9)

for all n ∈ Z. Equations (3.9) for the special case of n = 0 can be simplified as

A0 = −

⎡⎢⎣ aε0(
1 + aε0J0

)
⎤⎥⎦
⎡⎢⎣Ei0 + +∞∑

m=−∞
m/=n

AmJ−m

⎤⎥⎦,

AH
0 = −

⎡⎢⎣ a
μ

0(
1 + aμ0J0

)
⎤⎥⎦
⎡⎢⎣ +∞∑
m=−∞
m/= 0

AH
mJ−m

⎤⎥⎦.
(3.10)
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Or equivalently, (3.10) can be written as

A0 = −

⎡⎢⎣ aε0(
1 + aε0J0

)
⎤⎥⎦
⎡⎢⎣Ei0 +

⎛⎜⎝AnJ−n +
+∞∑

m=−∞
m/= 0,n

AmJ−m

⎞⎟⎠
⎤⎥⎦,

AH
0 = −

⎡⎢⎣ a
μ

0(
1 + aμ0J0

)
⎤⎥⎦
⎡⎢⎣AH

n J−n +
+∞∑

m=−∞
m/= 0,n

AH
mJ−m

⎤⎥⎦,
(3.11)

for the Fourier-Bessel multiple scattering associated with the scattered electric and magnetic
fields, respectively. Indicating those scattering coefficients corresponding to A0 and AH

0
explicitly in (3.9), we have

(1 + aεnJ0)An + aεn

⎡⎣A0Jn +
+∞∑

m=−∞
m/= 0,n

AmJn−m

⎤⎦

−bεn

⎡⎢⎣(1 + cnJ0)AH
n + cn

⎛⎜⎝AH
0 Jn +

+∞∑
m=−∞
m/= 0,n

AH
mJn−m

⎞⎟⎠
⎤⎥⎦ = −aεnEin,

(
1 + aμnJ0

)
AH
n + aμn

⎡⎢⎣AH
0 Jn +

+∞∑
m=−∞
m/= 0,n

AH
mJn−m

⎤⎥⎦

+bμn

⎡⎢⎣(1 + cnJ0)An + cn

⎛⎜⎝A0Jn +
+∞∑

m=−∞
m/= 0,n

AmJn−m

⎞⎟⎠
⎤⎥⎦ = −bμncnEin

(3.12)

{∀n ∈ Z | n/= 0}. We have noticed that the equations (3.11) represent the solutions for A0

and AH
0 which are expressed in terms of all the other Fourier-Bessel multiple scattering

coefficients {An, A
H
n }, {∀n ∈ Z | n/= 0}. Therefore, we can insert these solutions of A0 and

AH
0 into (3.11) to eliminateA0 andAH

0 terms from the equations of the scattering coefficients.
For this purpose, we have first used (3.11) in the evaluation of the following identities as

aεn

⎡⎢⎣A0Jn +
+∞∑

m=−∞
m/= 0,n

AmJn−m

⎤⎥⎦ ≡ −

⎡⎢⎣ aε0(
1 + aε0J0

)
⎤⎥⎦aεnJnE

i
0 −

⎡⎢⎣ aε0(
1 + aε0J0

)
⎤⎥⎦JnJ−naεnAn

+ aεn
+∞∑

m=−∞
m/= 0,n

Am

⎧⎪⎨⎪⎩Jn−m −

⎡⎢⎣ aε0(
1 + aε0J0

)
⎤⎥⎦JnJ−m

⎫⎪⎬⎪⎭,
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a
μ
n

⎡⎢⎣AH
0 Jn +

+∞∑
m=−∞
m/= 0,n

AH
mJn−m

⎤⎥⎦ ≡ −

⎡⎢⎣ a
μ

0(
1 + aμ0J0

)
⎤⎥⎦JnJ−na

μ
nA

H
n

+ aμn
+∞∑

m=−∞
m/= 0,n

AH
m

⎧⎪⎨⎪⎩Jn−m −

⎡⎢⎣ a
μ

0(
1 + aμ0J0

)
⎤⎥⎦JnJ−m

⎫⎪⎬⎪⎭
(3.13)

{∀n ∈ Z | n/= 0}. Using (3.13) in (3.12), we have acquired the equations for the scattering
coefficients of the infinite grating of circular dielectric cylinders as

{
1 + aεn

{
J0 −

[
aε0(

1 + aε0J0
)]JnJ−n

}}
An + aεn

+∞∑
m=−∞
m/= 0,n

Am

{
Jn−m −

[
aε0(

1 + aε0J0
)]JnJ−m

}

− bεn

⎧⎪⎨⎪⎩AH
n

⎡⎢⎣1 + cn
⎧⎪⎨⎪⎩J0 −

⎡⎢⎣ a
μ

0(
1 + aμ0J0

)
⎤⎥⎦JnJ−n

⎫⎪⎬⎪⎭
⎤⎥⎦

+cn
+∞∑

m=−∞
m/= 0

AH
m

⎧⎪⎨⎪⎩Jn−m −

⎡⎢⎣ a
μ

0(
1 + aμ0J0

)
⎤⎥⎦JnJ−m

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭ = −aεn

{
Ein −

[
aε0(

1 + aε0J0
)]JnE

i
0

}
,

⎧⎪⎨⎪⎩1 + aμn

⎧⎪⎨⎪⎩J0 −

⎡⎢⎣ a
μ

0(
1 + aμ0J0

)
⎤⎥⎦JnJ−n

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭AH

n + aμn
+∞∑

m=−∞
m/= 0,n

AH
m

⎧⎪⎨⎪⎩Jn−m −

⎡⎢⎣ a
μ

0(
1 + aμ0J0

)
⎤⎥⎦JnJ−m

⎫⎪⎬⎪⎭

+ bμn

⎧⎪⎨⎪⎩An

[
1 + cn

{
J0 −

[
aε0(

1 + aε0J0
)]JnJ−n

}]
+ cn

+∞∑
m=−∞
m/= 0

Am

{
−
[

aε0(
1 + aε0J0

)]JnJ−m

}⎫⎪⎬⎪⎭
= −bμncnEin

(3.14)

{∀ n ∈ Z | n/= 0}. The equations in (3.14) together represent the complete set of equations for
the Fourier-Bessel multiple scattering coefficients of the infinite grating of circular dielectric
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cylinders at oblique incidence. Incorporating the first terms inside the brackets into the
infinite summation, (3.14) can be written more compactly as

An + aεn
+∞∑

m=−∞
m/= 0

Am

{
Jn−m −

[
aε0(

1 + aε0J0
)]JnJ−m

}

− bεn

⎧⎪⎨⎪⎩AH
n +cn

+∞∑
m=−∞
m/= 0

AH
m

⎧⎪⎨⎪⎩Jn−m−

⎡⎢⎣ a
μ

0(
1 + aμ0J0

)
⎤⎥⎦JnJ−m

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭ = −aεn

⎧⎪⎨⎪⎩Ein −
[

aε0(
1 + aε0J0

)]JnE
i
0

⎫⎪⎬⎪⎭,

AH
n + aμn

+∞∑
m=−∞
m/= 0

AH
m

⎧⎪⎨⎪⎩Jn−m −

⎡⎢⎣ a
μ

0(
1 + aμ0J0

)
⎤⎥⎦JnJ−m

⎫⎪⎬⎪⎭

+ bμn

⎧⎪⎨⎪⎩An + cn
+∞∑

m=−∞
m/= 0

Am

{
Jn−m −

[
aε0(

1 + aε0J0
)]JnJ−m

}⎫⎪⎬⎪⎭ = −bμncnEin

(3.15)

{∀n ∈ Z | n/= 0}. The equations in (3.15) represent the complete set of equations for the
Fourier-Bessel multiple scattering coefficients An and AH

n ’s of the infinite grating at oblique
incidence. On the other hand, A0 and AH

0 are obtained from (3.10) in terms of all the other
scattering coefficients, i.e., An and AH

n ’s, {∀n ∈ Z | n/= 0}. Defining a new set of parameters
d
ζ
n,m, ∀ ζ ∈ {ε, μ}; e(v,ε)n and f (v,μ)

n , {∀n ∈ Z | n/= 0}, {∀m ∈ Z | m/= 0} and as

d
ζ
n,m =

⎧⎪⎨⎪⎩Jn−m −

⎡⎢⎣ a
ζ
0(

1 + aζ0J0

)
⎤⎥⎦JnJ−m

⎫⎪⎬⎪⎭; ∀ζ ∈ {ε, μ}, (3.16)

e
(v, ε)
n = −aεn

{
Ein −

[
aε0(

1 + aε0J0
)]JnE

i
0

}
, (3.17)

f
(v, μ)
n = −bμncnEin, (3.18)

and employing the expressions (3.16), (3.17), and (3.18) in the equations (3.15), we
can express the equations for the generalized Fourier-Bessel multiple scattering coefficients of
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the infinite grating associated with obliquely incident and vertically polarized wavesmore compactly
as

⎡⎢⎣An + aεn
+∞∑

m=−∞
m/= 0

dεn,mAm

⎤⎥⎦ − bεn

⎡⎢⎣AH
n + cn

+∞∑
m=−∞
m/= 0

d
μ
n,mA

H
m

⎤⎥⎦ = e(v,ε)n ,

⎡⎢⎣AH
n + aμn

+∞∑
m=−∞
m/= 0

d
μ
n,mA

H
m

⎤⎥⎦ + bμn

⎡⎢⎣An + cn
+∞∑

m=−∞
m/= 0

dεn,mAm

⎤⎥⎦ = f (v,μ)
n

(3.19)

{∀n ∈ Z | n/= 0}. We have obtained the following matrix equations from (3.19) as

{
I + [Diag aεn]·Dε

}
·A − [Diagbεn] ·

{
I + [Diag cn]·Dμ

}
·AH = e(v,ε),

{
I +
[
Diag aμn

]
·Dμ
}
·AH +

[
Diagbμn

]
·
{
I + [Diag cn]·Dε

}
·A = f(v,μ).

(3.20)

In (3.20), we have defined

[
Diag aζn

]
:=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

·
a
ζ
+2

a
ζ
+1

0

0

a
ζ
−1

a
ζ
−2

·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡ Λζ (3.21)

{∀n ∈ Z | n/= 0}, where Λζ is an (∞ × ∞) diagonal matrix, defined for ζ ∈ {ε, μ}, and its

elements aζn, are given in (3.3),

[
Diagbζn

]
:=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

·
b
ζ
+2

b
ζ
+1

0

0

b
ζ
−1

b
ζ
−2

·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡ Bζ, (3.22)
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where Bζ is an(∞ ×∞) diagonal matrix defined for ζ ∈ {ε, μ} and its elements, bζn, are given
in (3.4),

[Diag cn] :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

·
c+2

c+1

0

0

c−1

c−2

·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡ Γ, (3.23)

where Γ is an (∞×∞) diagonal matrix, and its elements, cn, are given in (3.2),

[
dξn,m
]
:=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · · ·
· · · · · · · ·
· · d

ξ
2,+2 d

ξ
2,+1 d

ξ
2,−1 d

ξ
2,−2 · ·

· · d
ξ
1,+2 d

ξ
1,+1 d

ξ
1,−1 d

ξ
1,−2 · ·

· · d
ξ
−1,2 d

ξ
−1,1 d

ξ
−1,−1 d

ξ
−1,−2 · ·

· · d
ξ
−2,2 d

ξ
−2,1 d

ξ
−2,−1 d

ξ
−2,−2 · ·

· · · · · · · ·

· · · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Dξ (3.24)

where Dξ is an (∞ × ∞) matrix, defined for ζ ∈ {ε, μ}, and its elements, dξn,m, are given in
(3.16), and I is an (∞×∞) identity matrix. Besides, we have

e(v, ε) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

·
·

e
(v,ε)
3

e
(v,ε)
2

e
(v,ε)
1

e
(v,ε)
−1

e
(v,ε)
−2

e
(v,ε)
−3
·
·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f(v, μ) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

·
·

f
(v,μ)
3

f
(v,μ)
2

f
(v,μ)
1

f
(v,μ)
−1

f
(v,μ)
−2

f
(v,μ)
−3
·
·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.25)
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where e(v,ε) and f(v,μ) are (∞×1) vectors, and their elements e(v,ε)n , and f (v,ε)
n are given in (3.17)

and (3.18), respectively. On the other hand, the unknown scattering coefficients associated
with the exterior electric and magnetic fields are defined as

A ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

·
·
A3

A2

A1

A−1

A−2

A−3

·
·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, AH ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

·
·
AH

3

AH
2

AH
1

AH
−1

AH
−2

AH
−3
·
·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.26)

A andAH are (∞×1) unknown vectors for the Fourier-Bessel multiple scattering coefficients
of the electric and magnetic fields of the infinite array of dielectric circular cylinders
corresponding to the vertically polarized obliquely incident plane electromagnetic waves.
We can use the definitions of (3.21)–(3.26) in combining (3.20) into a single matrix system of
equations for the scattering coefficients of the infinite grating at oblique incidence, and write
(3.20) as a unique matrix system of equation for all of the scattering coefficients as

⎡⎢⎣
(
I +Λε ·Dε

)
−Bε ·

(
I + Γ ·Dμ

)
Bμ ·
(
I + Γ ·Dε

) (
I +Λμ ·Dμ

)
⎤⎥⎦
⎛⎝ A

AH

⎞⎠ =

⎛⎝e(v,ε)

f(v,μ)

⎞⎠. (3.27)

4. Exact Solution to the “Twersky-Wait-Kavaklıoğlu Equations” for
an Infinite Grating of Circular Dielectric Cylinders at Oblique
Incidence: Transverse-Magnetic Mode

The purpose of this section is to acquire the solution to the exact matrix system of equations
for transverse magnetic Fourier-Bessel multiple scattering coefficients of the infinite grating
at oblique incidence. The matrix system of equations for the scattering coefficients of the exterior
electric and magnetic fields corresponding to the vertically polarized obliquely incident plane
electromagnetic waves expressed by (3.27) can be rewritten as two separate matrix equations as

(
I +Λε · Dε

)
· A − Bε ·

(
I + Γ ·Dμ

)
·AH = e(v,ε), (4.1)

Bμ ·
(
I + Γ ·Dε

)
· A +

(
I + Λμ · Dμ

)
·AH = f(v,μ). (4.2)
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From (4.1)we can solve for A as

A =
(
I + Λε · Dε

)−1 · [e(v,ε) + Bε ·
(
I + Γ · Dμ

)
· AH

]
. (4.3)

In a similar manner, we can solve from (4.2) for AH as

AH =
(
I + Λμ · Dμ

)−1 · [f(v,μ) − Bμ ·
(
I + Γ · Dε

)
· A
]
. (4.4)

Using the expression of (4.4) for AH in (4.3), we have obtained the solution for A as

A =
[
I +
(
I +Λε · Dε

)−1 · Bε · (I + Γ · Dμ
)
·
(
I + Λμ · Dμ

)−1 · Bμ · (I + Γ · Dε
)]−1

·
(
I + Λε · Dε

)−1 · [e(v, ε) + Bε ·
(
I + Γ · Dμ

)
·
(
I + Λμ · Dμ

)−1 · f(v,μ)],
(4.5)

or, equivalently

A =
[(

I + Λε · Dε
)
+ Bε ·

(
I + Γ · Dμ

)
·
(
I + Λμ · Dμ

)−1 · Bμ · (I + Γ · Dε
)]−1

·
[
e(v, ε) + Bε ·

(
I+Γ · Dμ

)
·
(
I+Λμ · Dμ

)−1 · f(v, μ)
]
.

(4.6)

Defining two (∞×∞) matrices in terms of the previously defined matrices, namely,

Ω
εμ

:=
(
I + Λε · Dε

)−1 · Bε · (I + Γ · Dμ
)
,

Ω
με

:=
(
I + Λμ · Dμ

)−1 · Bμ · (I + Γ · Dε
)
,

(4.7)

and inserting (4.7) into (4.5), (4.6), we can express A as

A =
[
I +Ω

εμ
·Ω

με

]−1[(
I + Λε · Dε

)−1 · e(v,ε) +Ω
εμ

·
(
I + Λμ · Dμ

)−1 · f(v,μ)]. (4.8)

Further evaluation of the expression (4.8) yields the multiple scattering coefficients for the
electric fields in the exterior region of the infinite grating associated with obliquely incident
vertically polarized electromagnetic waves, namely, A as

A =
(
I +Ω

εμ
·Ω

με

)−1
·
(
I + Λε · Dε

)−1 · e(v,ε) +(Ω−1
εμ

+Ω
με

)−1
·
(
I + Λμ · Dμ

)−1 · f(v,μ).
(4.9)
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Inserting the expression of A in (4.9) into AH in (4.4), we have finally obtained the multiple
scattering coefficients for the magnetic fields in the exterior region of the infinite grating
associated with obliquely incident vertically polarized electromagnetic waves as

AH = −
(
Ω

εμ
+Ω−1

με

)−1
·
(
I + Λε · Dε

)−1 · e(v,ε)

+

[
I −
(
I +Ω−1

εμ
·Ω−1

με

)−1]
·
(
I + Λμ · Dμ

)−1 · f(v,μ).

(4.10)

Combining (4.9) and (4.10) into a single matrix expression, we can write

⎛⎝ A

AH

⎞⎠ =

⎡⎢⎢⎢⎢⎣
(
I +Ω

εμ
·Ω

με

)−1 (
Ω−1

εμ
+Ω

με

)−1

−
(
Ω

εμ
+Ω−1

με

)−1
I −
(
I +Ω−1

εμ
·Ω−1

με

)−1

⎤⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎣
(
I + Λε · Dε

)−1
0

0
(
I +Λμ · Dμ

)−1
⎤⎥⎥⎥⎥⎦
⎛⎝e(v,ε)

f(v,μ)

⎞⎠.

(4.11)

This is the complete solution vector for the whole Fourier-Bessel multiple scattering
coefficients of the infinite grating at oblique incidence.

5. Conclusion

In the closely related previous studies, the exact representations of the external fields
corresponding to the obliquely incident plane electromagnetic waves and the exact equations
describing the behavior of the associated Fourier-Bessel multiple scattering coefficients of an
infinite array of penetrable circular cylinders, which are aligned along the y-axis and placed
parallel to the z-axis, were derived [16–19] for both TM and TE polarizations. Furthermore,
the generalized form of Twersky’s functional equation for the infinite grating at oblique incidence
in matrix form was acquired [20] in terms of the Fourier-Bessel scattering coefficients of an
isolated dielectric circular cylinder at oblique incidence, which was originally derived by Wait
[21]. In a more recent treatment, by the implementation of the Ansatz proposed in [22],
the asymptotic solution of the Fourier-Bessel multiple scattering coefficients associated with the
obliquely incident and vertically polarized waves has been acquired as a function of cylinder
radius to grating spacing up to and including the third order terms when the grating spacing, d,
is small compare to a wavelength. In addition, a proof [23] for the validity of the asymptotic
solution acquired in [22], have been provided.

In this investigation, we have presented a procedure for acquiring the conformation
of the exact equations describing the behavior of the generalized Fourier-Bessel multiple
scattering coefficients of an infinite array of penetrable circular cylinders associated with
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obliquely incident transverse magnetic plane waves in matrix form. This exact representation
is formulated in terms of themultiplication of the two (∞×∞) systemmatrices, and describes
the exact solutions associated with the transverse magnetic multiple scattering coefficients
at oblique incidence. Approximate expressions for the aforementioned multiple scattering
coefficients can then easily be acquired by truncating these (∞×∞) system matrices.
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[19] Ö. Kavaklıoğlu and B. Schneider, “On Floquet-Twersky representation for the diffraction of obliquely
incident plane H-polarized electromagnetic waves by an infinite grating of insulating dielectric
circular cylinders,” Applied Mathematics and Computation, vol. 201, no. 1-2, pp. 1–15, 2008.



Journal of Applied Mathematics 17
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