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Objective. We consider the need for a modeling framework for related individuals and various
sources of variations. The relationships could either be among relatives in families or among
unrelated individuals in a general population with cryptic relatedness; both could be refined or
derived with whole genome data. As with variations they can include oliogogenes, polygenes,
single nucleotide polymorphism (SNP), and covariates. Methods. We describe mixed models as
a coherent theoretical framework to accommodate correlations for various types of outcomes in
relation to many sources of variations. The framework also extends to consortium meta-analysis
involving both population-based and family-based studies. Results. Through examples we show
that the framework can be furnished with general statistical packages whose great advantage lies
in simplicity and exibility to study both genetic and environmental effects. Areas which require
further work are also indicated. Conclusion. Mixed models will play an important role in practical
analysis of data on both families and unrelated individuals when whole genome information is
available.

1. Introduction

Genomewide association studies (GWASs) have successfully identified many genetic
variants consistently associated with human diseases or other traits. Both unrelated
individuals in a population or related individuals in families have been involved in such
studies. There is a variety of issues which merit further consideration.

Our concern here is on correlations among individuals, which are “the central piece
of information” [1] in detection and characterization of gene-trait association. Consideration
of these correlations has traditionally limited to family data whose critical role in genetic
epidemiological study ranges from familial aggregation, segregation, linkage to association
[2], and special attention is required in the analysis compared to unrelated individuals
from a population. Correlations arise naturally among relatives but can be relevant to
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population-based study as well given that relatedness can also be established among
unrelated individuals based onwhole-genome data in GWASs [3]. The correlations are linked
to a long attempt to model influence of multiple genes on a specific phenotype. Specifically,
Fisher [4] assumed that a quantitative trait results from many genes with variable small to
moderate effects. Concrete evidence of multiple genetic influence has been revealed by recent
waves of GWASs on height [5], blood pressure [6], lipids [7], obesity [8], and so forth, leading
to the note in [9]. Gene-environment interaction and common environment can be considered
similarly.

There is a relativelysmall literature in human genetics to iterate mixed models to
account for heterogeneity among groups of individuals compared to the general statistics
literature where genetic applications have been acknowledged [10, pages 190–192] and
[11, pages 4864–4871]. This is likely due to the complexity with a generic implementation.
We therefore conduct a survey of the framework with exploration of general software
environments. As will be seen below, it readily applies to human genetics when correlations
within these groups are explicitly modeled. The familiar form accommodate effects of
major or oligogenes, polygenes, common environment, and unique environment, which
collectively contribute to variance of the trait and known as “variance component models”
[12, 13]. For instance, individuals’ body weight (kg) divided by height2 (m2), referred as
body mass index (BMI, kg/m2) and commonly used as surrogate of obesity, varies with
the broad heritable background of individuals (polygenes), sex, age, family membership,
susceptible genes such as FTO [14] (which has a major effect serving an example of
oliogene), where sex and age can be considered as fixed effects while variability attributable
to (expected) correlation between members of family as with FTO are random effects [15–
18]. The flexibility of such a framework may be missing in various computer programs
(see http://linkage.rockefeller.edu). As for outcome of interest, it is usually quantitative
or binary traits, with [19] as an exception. The implementation we consider will be
SAS (see http://www.sas.com) [20] and R (see http://www.r-project.org) [21] with a
Cox model counterpart [22]. A note on Bayesian counterpart is also ready [23–25],
especially for linkage [1], association [26] and implementation in Morgan. To save space,
we consequently omit reference to programs when they are available from the lists given
here.

We attempt to connect various models in our survey paying special atten-
tion to their use in data analysis. We show that with generic facilities as available
from R, we can accommodate additional outcomes such as count, survival, as well
as account for information such as identity-by-descent (IBD) or common environ-
ment. We will illustrate with the family data available to genetic analysis work-
shops (GAWs) (see http://www.gaworkshop.org) 16 and 17. We will also discuss
the implications of whole genome data availability via connection to earlier litera-
ture.

2. Models

As will soon become clear, the framework is essentially motivated from the usual general
linear model (GLM) or generalized linear mixed model (GLMM) allowing for correlated
random effects, including the Cox regression model. Wewill briefly describe the models as an
analogy between GLM and GLMM but will not go into details of their estimation procedures,
as both are widely available.
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2.1. GLM

We start from the usual GLM disregarding familial correlations. Let the phenotypes of n
individuals in a family be (y1, . . . , yn), its distribution is exponential

f
(
yi, θi, ϕ

)
= exp

[
yiθi − bi(θi)

ϕ
+ c

(
yi, ϕ

)
]
, (2.1)

where b(·) and c(·) are known functions, ϕ a scale or dispersion parameter. Furthermore,
let E[yi] = μi and let this be connected to a linear predictor using link function g(·) by
ηi = g(μi) = Xiβ, where Xi is a vector of covariates and β the regression coefficient(s). For
simplicity, only canonical link is used so that θi = μi. It can be shown [27] that the expectation
E(yi) = μi = b′(θi) and variance V (yi) = ϕb′′(θi). Some special cases as with their properties
are well-recognized [28], for which models involving continuous and binary outcomes are
most common.

Normal: yi ∼ N(μi, σ
2
i ), we have θi = μi, b(θi) = θ2

i /2, ϕ = σ2
i , b

′(θi) = θi, ϕb′′(θi) = σ2
i

and an identity link.
Binomial: yi ∼ Binom(n, μi), θ(μi) = ln(μi/(1 − μi)), b(θi) = ln(1 + exp(θi)), ϕ = 1/n,

b′(θi) = exp(θi)/(1 + exp(θi)), ϕb′′(θi) = μi(1 − μi)/n, and a logit link g(μi) = ln(μi/(1 − μi)).
Analysis of censored survival data can be molded into the framework [29]. Let ti

denote the event time, ci the censoring time and δi = I(ti ≤ ci) the event indicator for unit
i, i = 1, . . . , n; the basic Cox model with vector of explanatory variables Xi is specified via a
hazard function λi(t) = λ0(t) exp(Xiβ), where λ0(t) is the baseline hazard function. The partial
likelihood (PL) for the standard Cox model can be expressed as follows:

PL
(
β
)
=

n∏

i=1

[
exp(Xiβ)

∑
j∈R(ti) exp

(
Xjβ

)

]δi

, (2.2)

where n failure times have been ordered such that t1 < · · · < tn and R(ti) is the “risk set,” the
number of cases that are at risk of experiencing an event at time ti.

Although GLM lays the foundation in many applications of general statistics, it largely
serves a motivating role for models that are capable to account for familial correlations. As
shown below, this is achieved with introduction of (correlated) random effects as in GLMM,
but it is also linked with other models.

2.2. GLMM

We now consider model involving individual i, i = 1, . . . ,N, where N is the total number of
individuals in our sample.

Polygene

Let P denote the polygene representing independent genes of small effect, which follows a
multivariate normal distribution with covariance matrix

g
(
μi

)
= Xiβ + Pi. (2.3)



4 Journal of Probability and Statistics

The likelihood for all relatives is furnished with specification of the distribution of P =
(P1, . . . , PN) with covariance

ΣP = 2Φσ2
P , (2.4)

whereΦ ≡ {φij}n×n and φij is the kinship coefficient, defined such that, given two individuals,
one with genes (gi, gj) and the other with genes (gk, gl), the quantity is (1/4)(P(gi ≡ gk) +
P(gi ≡ gl)+P(gj ≡ gk)+P(gj ≡ gl)), where ≡ represents probability that two genes sampled at
random from each individual are IBD. The kinship coefficients for MZ twins, DZ twins/full-
sibs, parent-offspring, half-sibs, and unrelated individuals are 0.5, 0.25, 0.25, 0.125, and 0,
respectively.

The likelihood function for model (2.3) has the following form:

L
(
y1, . . . , yN

)
=
∫
L
(
y | P)L(P)dP, (2.5)

where L(y | P) =
∏N

i=1f(yi | P) and L(P) = (
√
2π |ΣP |)−1 exp[−P ′Σ−1

P P/2] only involve
with random effects, noting that it is assumed that, given random effects in the model, the
phenotypic values among n relatives are independent and that the parameters of interest in
(2.4) are the variances involving polygene (σ2

P ). Regarding the statistical inference of random
effects, since the parameter under the null hypothesis is on the boundary of the parameter
space, the test for a specific σ2

k = 0, likelihood ratio statistic testing for the hypothesis that
H0 : σ2

P = 0 versus HA : σ2
P > 0, is referred to a 0.5χ2

0 + 0.5χ2
1 distribution or a score statistic as

outlined in [11, 19, page 2961].

Oligogene

Suppose that a major geneM is also involved, independently and normally distributed with
mean 0 and variances σ2

M, then the covariance matrix has the form

ΣM = σ2
MΠ, (2.6)

where Π ≡ {πij}N×N in which πij is the proportion of alleles shared (IBD) at the major gene
between relatives i and j which can be estimated from a multipoint data, so that when it acts
additively with polygene P , the likelihood is furnished with an extended covariance

ΣM,P = ΣM + ΣP . (2.7)

For a test of a strictly positive variance associated with a polygene versus polygene and an
oligogene, the log likelihood ratio test statistic is referred to 0.5χ2

1 + 0.5χ2
2 [30].
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Multiple Random Effects

The framework in (2.3) includes the common distributions such as normal, gamma,
binomial and Poisson as special cases. For simplicity, we consider a quantitative trait, whose
probability density function is normal and a statistical model is as follows:

y = Xβ +U + ε, (2.8)

and U ∼ N(0,Σ), ε ∼ N(0, σ2), Cov(U, ε) = 0. The expression of Σ−1 relative to the precision
1/σ2 of ε as a Cholesky factorization Δ′Δ, that is, Σ−1/(1/σ2) = Δ′Δ led to the term relative
precision factor for Δ [31]. Note that the partition of effects as being fixed and random (HA:
genetic effect) can be compared to a sporadic model (H0: no genetic effect) y = X1β1+X2β2+e,
where both β1 and β2 are fixed effects, the involvement of Σ or more specifically Σ−1 as a
“ridge factor” creates shrinkage in the random effects solutions to the normal equations, that
is, “regression towards the mean.”

We will see an example from the GAW17 data below that a quantitative trait Q1 is
influenced by polygenic background and specific gene VEGFC as captured by kinship or
relationship matrix and IBD matrix, respectively. This prompts the need to consider multiple
random effects. We therefore pursue (2.8) further. As in [32], write y = Xβ+Z1a1+· · ·+Zkak+ε
with the usual assumption that y is N × 1 vector of observations, X an N × p known matrix,
not necessarily of full column rank, β a vector of fixed effects, Zi a known N × ri matrix of
rank ri, ai random effects with E(ai) = 0, cov(ai) = σ2

i Iri , cov(ai, aj) = 0, i /= j, cov(ai, ε) =
0, i, j = 1, . . . , k, ε an N × 1 vector of errors with E(ε) = 0, cov(ε) = σ2IN . Then E(y) = Xβ
and cov(y) = Σ = σ2IN +

∑k
j=1 σ

2
j ZjZ

′
j . This turns out to be critical to explore the covariance

structure involving more (k) parameters (σ2
1 , . . . , σ

2
k
) in the form

∑(
σ2
1 , . . . , σ

2
k

)
=
∑

1

(
σ2
1

)
+ · · · +

∑

k

(
σ2
k

)
, (2.9)

where Σi(σ2
i ) has the form of σ2

i Hi, i = 1, . . . , k with σ2
i being the unknown parameter andHi

a (known) coefficient matrix. It will also hold when different variance components such as
multiple major genes of interest, gene-gene, gene-environment interactions, common shared
environment are to be modeled. For significance test, Case 4 in [30] serves as a general
guideline.

A closely related model is the so-called marginal or population-average model whereby
familial relationship can be specified for e, namely, generalized estimating equations (GEEs)
[12, 33]. Given μi = E(y), Vi = Var(y), it has the form

∑

i

(
∂μi

∂β

)′
V −1
i

(
yi − μi

)
= 0, (2.10)

for which only link function and variance need to be specified. Parameter estimates are
consistent even when variance structure is misspecified, but the ability to use (2.9) is an
apparent advantage.

We now turn to the Cox model. First, the consideration of an unobserved family
specific random effect is often termed as frailty model, such that families with a larger value
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of the frailty will experience the event at earlier times and most “frail” individuals will fail
early [34]. Now we allow for correlated frailty and, in analogy to model (2.3) and [22], the
appropriate model with random effectUi becomes λi(t) = λ0(t) exp(Xiβ +Ui). Assuming the
parameters of interest are β and σ2 we have

PL
(
β,U

)
=

N∏

i=1

[
exp

(
Xiβ +Ui

)

∑
j∈R(ti) exp

(
Xjβ +Ui

)

]δi

. (2.11)

The so-called integrated log likelihood is derived as

L =
∫
PL

(
β,U

)
L(U)dU. (2.12)

A more tractable solution is via a Laplace approximation for an approximate marginal log
likelihood that can be maximized by a penalized partial likelihood (PPL) for parameters
(β, σ2), PPL(β,U) = log(PL(β,U)) − UTΣ−1U/2, followed by a profile likelihood function
involving only σ2.

Furthermore, we can take advantage of the generic form of covariance in other types
of models as well. A straightforward yet remarkably useful extension is the multivariate
model. For instance, consider (2.8) with m phenotypes. Let y = (y11, . . . , y1N, . . . , ymN)T be
a vector of m multivariate phenotypes for N individuals. Let β be a vector of dimension mp
of the regression coefficients for the p covariates including a vector of 1’s corresponding to
the overall mean,X = Im

⊗
XN,p, anmN×mp knownmatrix of covariate values. An analogy

to (2.7) and (2.8) lead to the variance-covariance matrix of them phenotypes with dimension
mN ×mN is

Σ = A
⊗

Π + B
⊗

R + C
⊗

I, (2.13)

where R is the N × N matrix of the coefficients of relationship, Π is an N × N matrix of
estimated proportion of alleles IBD, and A, B, C are oligogenic, polygenic, and residual
variance-covariance matrices each with dimensionm ×m.

2.3. Meta-Analysis

One indispensable element in current GWASs is meta-analysis, typically involving findings
from both unrelated individuals in a population and those from family data. While we have
seen that mixed models are appropriate for a variety of traits in family-based association
studies, broadly models for meta-analysis also fall into the same framework as described
above. One can imagine a meta-analysis involving individual participant data (IPD). A good
summary of approaches for IPD meta-analysis is available [35].

In the two-step approach, the individual participant data are first analysed in each
separate study independently by using a statistical method appropriate for the type of
data being analysed; for example, a linear regression model might be fitted for continuous
responses such as blood pressure, or Cox regression might be applied for time to event
data. (This step produces aggregate data for each study including effect estimate and its
standard error). These data are then synthesised in the second step using a suitable model
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for meta-analysis of aggregate data, such as one that weights studies by the inverse of the
variance while assuming fixed or random effects across studies. In the one-step approach, the
individual participant data from all studies are modelled simultaneously while accounting
for the clustering of participants within studies. This approach again requires amodel specific
to the type of data being synthesised, alongside appropriate specification of the assumptions
of the meta-analysis (e.g., of fixed or random effects across studies).

The two-step approach is the usual one used in various GWAS consortia while
a one-step approach for all studies in our context could involve unrelated population-
based samples and family data in the meta-model as long as the correlation structure
is appropriately specified. The practicality of both approaches has been illustrated in the
literature [36, 37] but, in view of the complexity involving in such a framework, and the
practical difficulty that a researcher may not have access to individual data from all studies,
we refrain ourselves from such a consideration for now but remain focusing on family data
as illustrated with both simulated and real data.

2.4. Related Results and Implementations

There have been concerns in the literature regarding large number of units eachwith bounded
size [38] and a large number of random effects [39]. In our context large number of families,
each with bounded members, consistent estimate of the random effect is difficult to obtain
though fixed effects and variance components will be consistent. However, Type I error rate
and power have been explored before [19, 22, 26, 40], so there will be more on specific
examples.

Instead of using purposely written programs, we chose to use R, for its wide
availability andmany other features [41], and in particular procedures to fitmodels described
earlier are to a great extent available, including generic procedures from nlme, lme4, and gee,
among others, but package designed for family data is pedigreemm with lmekin for linear
mixed models available from coxme. We will also compare them to SAS, due to its ability
to deal with large data, and great flexibility in model specification.

3. Examples

We consider two examples from GAWs 17 and 16, which involve simulated and real data
widely available and allow for a lot of experiments to be done.

3.1. GAW17 Data

Data distributed by GAW17 were based on a collection of unrelated individ-
uals and their genotypes were generated from the 1000 Genomes Project (see
http://www.1000genomes.org/), from which a sample of 697 individuals in 8 extended
families and their genotypes and phenotypes was available. A total of 202 founders in the
family data set were chosen at random from the set of unrelated individuals. Replicates of the
trait were generated 200 times, but the simulated genotypes remain constant over replicates.
The traits made available were Q1, Q2, Q4, and AFFECTED (coded 0 = no 1 = yes) with
covariates AGE and SMOKE. The variables describing family structures were ID, FA, MO,
SEX (1 = men, 2 =women). Fully informative IBD information was available for 3205 genes.
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We chose to examine traits Q1, Q2, and AFFECTED as representatives of quan-
titative and qualitative traits. According to [42], vascular endothelial growth factor
(VEGF) pathway was enriched and here vascular endothelial growth factor C (VEGFC
(see http://en.wikipedia.org/wiki/Vascular endothelial growth factor C)) was chosen as a
causal variant associated with Q1 but not Q2. Q1 also increased with age, and the fact that
AFFECTED is a function of Q1 offers the possibility to furnish a logistic regression model
and explore age at onset via a Cox model. For illustration, we used age as surrogate for age
onset. Being aware of the fact that this was only an approximation, whenevermultipe affected
individuals within a sibship are available, their average age was used. Causal variants and
associate genes provide information on power of association testing statistics while the
noncausal counterparts provide analogous results on Type I error rate.

The statistical significance was assessed according to log likelihood ratio tests between
models using relationship only versus using both relationship and IBD information. The
computation for this is relatively fast; results for all 200 replicates took 1 hour and 48 minutes
on our 20-node Linux clusters each with 16GB RAM and 4 CPUs using Sun grid engines. The
nominal significance levels are shown in Table 1, which reveal that the tests are both close to
the expected levels under H0 and HA.

Gene-based analysis was also conducted for Q1 involving all 3205 genes and the
results are shown with selected candidates highlighted in Figure 1, which agree with the
simulated model in which the significant regions were in VEGFC/VEGFA.

As one would be keen to see various parameter estimates in a real analysis, we also
provide results associated with replicate one. Q1 as based on restricted maximum likelihood
(REML) is shown in Table 2. The models with relationship only and with both relationship
and IBD information have −2 Res(tricted) log likelihood being 1789.5 and 1775.2, respectively
while Akaike Information Criteria (AIC) being 1793.5 and 1781.2, respectively so that using
IBD information improved fit for Q1 (smaller AIC). For AFFECTED the results based on
maximum pseudolikelihood are shown in Table 3 and those from Cox model in Table 4.
Note that the improvement in terms of −2 log pseudolikelihood from 3434.4 to 3445.7 was
also substantial. To explore the multivariate model (2.13) involving the polygenic effects for
Q1, Q2, and Q4, the six parameters (σ11, σ21, σ22, σ31, σ32, σ33) in the variance-covariance
matrix have been expressed according to (2.9). The appropriate matrices associated with
all parameters are constructed a priori. These are then subject to procedures such as PROC
MIXED and lmekin. The joint model of Q1, Q2, Q4 is shown in Table 5.

The implementations are provided in Supplementary information available online at
doi: 10.1155/2012/485174. While code blocks shown there are appropriate for one instance,
it is preferable to use SAS’s output delivery system (ODS) to save various results into
databases.

3.2. The Framingham Heart Study

The Framingham Heart Study is under the direction of National Heart, Lung, and Blood
Institute (NHLBI) which began in 1948 with the recruitment of adults from the town of
Framingham, Massachusetts. Data available for GAW16 were 7130 individuals from the
original cohort (373), the first generation cohort (2760), and the third generation cohort (3997)
with sex, age, height, weight, blood pressure, lipids, smoking, and drinking. Data as outlined
in [43] was used here, where 6848 had genotype data for at least one of the four specified
SNPs (rs1121980, rs9939609, rs17782313, and rs17700633). Data for 96 individuals without
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any phenotype data but with genotype data and an additional 227 individuals without being
assigned a family IDwere excluded from analyses. Additionally, four individuals had no data
on weight; 86 observations were measured at <18 years of age, and therefore were excluded.
The 6,520 remaining individuals were part of 962 families, among which 2073 individuals
had completed four visits. Meanwhile, there were also 365 cases of diabetes with their ages
of onset.

Kinship information was obtained from family structure and used for genotype-trait
association. Computer program PLINK [44] with the −genome option was also used to infer
correlations (π̂) using whole genome data. A total of 8485 SNPs on Affymetrix 500K chips
were derived from a panel of 45620 informative autosomal SNPs used in our consortium
analysis. This led to estimates for 6520(6520 − 1)/2 = 21251940 pairs of relationship. The
genetic distance according to |π − π̂ | [45], that is, sum(abs(EZ-PI HAT), na.rm=TRUE), is
3421.724. Approximately half (10478474) had π̂ of 0.01 or more. Although there was a good
agreement between kinship according to the specified family structures and π̂ , 11207 pairs
of individuals deemed to be unrelated had π̂ between 0.1–0.3 and 12 of which were greater
than 0.3.

Both types of relationship matrices were used for the Cox model via kinship and
bdsmatrix.ibd functions in R. The frailty and polygenic models had log likelihoods of −1788.53,
−1791.93 with variance estimates 0.102 and 0.022, respectively. However, with inferred
relationship the log likelihood turned out to be −1762.69 and variance estimate 0.242. Similar
model for BMI at wave 1 was also fitted; a family specific random intercept model yielded log
likelihood of −19273.26 and variance 3.44, while a correlated random intercept model gave
log likelihood −19379.3 and variance 0.012 with comparable results from inferred relationship
though with a smaller residual error. The results on diabetes might have suggested a
substantial genetic effect while for BMI the use of inferred relationship performed equally
well with a model using explicit family structures.

4. Discussion

The models we have considered extend counterparts for unrelated sample by taking into
account correlation within and heterogeneity between families. To a large extent, we have
presented an appreciation of models and implementations for related individuals using
mixed models. At the meantime, we have envisaged a whole range of analyses that can be
put in the framework. However, compared to [13] and especially [19], our development
is more incremental and helps to gain insight into more complicated models. As a key
feature of the model specification, oligogenes, polygenes, common environment, gene-
environment interaction, and multivariate data are accommodated in a coherent framework
via appropriate covariance structure. The generic nature has enabled a range of genetic
association studies. Our interpretation of the model also naturally extends the model for
quantitative traits outlined by [19, 46]. It has been recognized that for longitudinal data some
commonly used covariance structures, such as compound symmetry, can be expressed as
“linear covariance of dimension k” [47, page 258]. Although it could be more involved, it
may be possible in our context. Data as in consortiummeta-analysis analysis is also perceived
in broader framework consisting of both unrelated and related individuals.

We should be aware that mixed models are quite general and may well be linked
to other models. For instance, we noticed that model (2.10) is reminiscent of an approach
proposed for generalized method of moments [48]. An example as with its link with
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individual empirical Bayes estimates has been provided by [49, 50]. A reviewer has brought
to our attention recent work on nonparametric methods for longitudinal data [51] and the
utility of mixed models in controlling for bias of population stratification (e.g., [52]). This
paper has limited coverage of literature on longitudinal analysis of family data, mainly owing
to the fact that there is greater difficulty in implementation via general software package.
However, this is expected to change. To our knowledge, little work has been done on joint
analysis of individual data in the GWAS meta-analysis context. In view of the popularity of
consortium data analysis, it will be appealing to have the appropriate mechanism to make it
possible.

The models and their implementations are connected with whole genome data in
several ways. First, the transition from the variance components models in earlier literature
becomes more explicit. More specifically, the models described here are appropriate for
GWAS where genetic variants coupled with a high resolution map are available. In general,
the variance component associated with a major gene as in (2.7) is a function of the
recombination rate (r) [12], that is, σ2

Mf(r, πij), where πij represents identity-by-descent
sharing between a pair of individuals i, j for the marker locus; with dense marker, we
can assume that r = 0 which is also true with (2.9). Second, as in the Framingham
data there is a further benefit with dense genetic markers such that they can be used to
infer family structure [53] or (global) IBD information [54]. The availability of the deep
sequencing data and a long list of established genes are likely to give greater weight on
use of family data [55]. It is also desirable that cryptic relatedness in population-based
sample can be appropriately taken into account in association analysis. In our own EPIC-
Norolk GWAS, samples with cryptic relatedness have been excluded at the quality control
stage [56]. It is interesting to note that coxme was developed for handling large pedigrees
involving sparse matrices; the availability of whole genome data will alter the scenario
slightly but nevertheless remain in the same framework. Third, more work is required to
shorten computing time. In the literature, it has been proposed to absorb the relationship
in the model for quantitative trait by multiplying inverse of the kinship matrix followed
by a linear regression, or using residuals from a phenotype-covariate only regression as
outcome in a model including SNPs as in GenABEL. In principle one can extend the
idea to multivariate or longitudinal models where the residuals are obtained only once
for GWAS or incorporating regional information before turning to SNP-specific analysis.
There are also alternative approaches such as retrospective methods found in Merlin. With
its greater requirement in computation the “measured genotype” approach here remains
intuitive especially for gene-environment characterization. To this point, associate projects
such as BORDICEA (see http://www.srl.cam.ac.uk/genepi/boadicea/boadicea home.html)
and BayesMendel (see http://bcb.dfci.harvard.edu/BayesMendel/) have contributed to the
success of work on R described here.

A reviewer has expressed interest regarding the Type I error linking to results shown
in Table 1. We believe that data as distributed by GAW17 as they were (200 replicates) are
not ideal for assessing Type I error and possibly require a bootstrap procedure. In general,
from our experience (and personal communications with Profs. Douglas Bates and Terry
Therneau), this is a difficult issue and possibly problem specific. In fact, in the recent
implementation of GLMM in lme4, the associate p values for fixed effects are not shown
which nevertheless may leave users with temptation to employ normal approximation.
Although we have not conducted extensive numerical experiments, results from GAW17
and the Framingham Study have indicated good performance of these models, and that
of the inferred relationship based on whole genome data is impressive. Since only directly
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Table 1: Nominal significance according to VEGFC.

Q1 Q2 AFFECTED
Significance level Power Type I error Power

.05 .989 .060 .880

.01 .907 .016 .730

.001 .665 0 .555

.0001 .412 0 .420

.00001 .225 0 .305

.000001 .104 0 .200
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Figure 1: Manhattan plot of Q1 and IBD information where the true loci are highlighted.

genotyped Affy500K SNPs were used, the addition of imputed genotypes, say based on the
HapMap, should help to improve the inference. Its use in the usual genomewide association
analysis should be considered.

Our attention lies on the implementation by taking advantages of the available
implementation in general statistical computing environment. The clarification of the
implementation in these should facilitate practical analysis of family data. Although these
models are conceptually simple, availability of their implementation vary, notably the ability
to allow for both oligogenes and polygenes in a GLMM framework. For R, these are at least
possible with nlme, lme4, and additionally coxme. At the moment, applications of packages
in R are often restricted with lmekin in coxme offering outcomes only on continuous outcome
but for pedigreemm it is unable to handle complex covariance structure. It is desirable that
a function called nlmekin can be developed as with pedigreemm expanded to incorporate
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Table 2: Q1 and VEGFC under a linear model.

Model/parameter Estimate SE z/t† −2 Res log likelihood AIC
Kinship 1789.5 1793.5

σ2
P 0.5488 0.08262 6.64

SEX −0.2379 0.04614 −5.16
AGE 0.01014 0.001345 7.54
SMOKE 0.36894 0.07280 5.07

Kinship + IBD 1775.2 1781.2
σ2
P 0.4157 0.08713 4.77

σ2
M 0.1076 0.03846 2.80

SEX −0.2488 0.04542 −5.48
AGE 0.01044 0.001334 7.82
SMOKE 0.3821 0.07181 5.32

†z is for variance components while t for fixed effects.

Table 3: AFFECTED and VEGFC under a logistic model.

Model/parameter Estimate SE t −2 log pseudolikelihood

Kinship 3434.4
σ2
P 1.3170 0.4376

SEX −0.00822 0.2042 −0.04
AGE 0.07181 0.006047 11.87
SMOKE 0.9098 0.2285 3.98

Kinship + IBD 3445.7
σ2
P 0.6918 0.5989

σ2
M 0.4868 0.3698

SEX 0.006923 0.2048 0.03
AGE 0.07211 0.006114 11.79
SMOKE 0.9429 0.2290 4.12

Table 4: AFFECTED and VEGFC under a Cox model.

Model/parameter Estimate SE z Integrated/penalized likelihoods†

Kinship −998.8/−980.6
σ2
P 0.2073

SEX 0.05267 0.1541 0.34
SMOKE 0.5000 0.1622 3.08

Kinship + IBD −996.1/−967.3
σ2
P 0.002690

σ2
M 0.3615

SEX 0.07146 0.1603 0.43
SMOKE 0.5560 0.1696 3.28

†
The log likelihood under the null is −1003.9.
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Table 5: Q1, Q2, and Q4 under a multivariate polygenic model.

Estimate SE Log likelihood
Linear coefficients −1393.867

c1 0.565 0.108
c2 0.531 0.109
c3 0.526 0.109
Sex −0.005 0.043
Age −0.013 0.001
Smoke −0.019 0.051

Variance coefficients
σ11 4.219 0.227
σ12 −0.103 0.166
σ22 4.542 0.244
σ31 0.601 0.178
σ32 −0.108 0.183
σ33 5.115 0.275

additive covariance structures. SAS, MIXED, GLIMMIX, and NLMIXED together provide
a rich source of practical modeling functionality though the Cox model counterpart is not
available. The tackling of various issues has led to efficient algorithm [25]. When the interest
is on correlation between multiple traits, the use of nlme for multivariate longitudinal data
in unrelated individuals has been described [57]. In general, this could be complicated with
longitudinal familial data without [58] or with [59] consideration of relationship. In study of
obesity-related traits, FTO has been shown to be strongly associated with BMI and supported
by cross-sectional data as in [14], longitudinal data as in [43] and data across life span as in
[60]. Our previous attempt [43], was based on a three-level model and it would be of interest
to use kinship information as well.

While the framework we have outlined is comprehensive, we feel that our “proof
of concepts” here awaits for extensive testing. It is also desirable that the current
implementation can be optimized in computing time. A lot of work has been done for
quantitative genetics in plants and animals. Our experience indicated that the running time
with SASwas longer time than R. However, in an analysis of longitudinal lung function data
in the EPIC-Norfolk study, we have shown that although an individual analysis could be
slow, it is possible to perform an analysis for GWAS using SAS and Linux clusters so that
∼2.5M SNPs would finish within 14 hours when running each chromosome on a separate
node. It is likely that it benefited from SAS caching frequently-used instructions. Greater
proportion of coding in C/C++ should also be helpful. Given the utility of the popular
environments can be shown, their take-up in genomewide association studies will be quick
and it is very much in line with efforts in other disciplines where large volume of data is
involved.
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