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This paper focuses on the problem of an adaptive neural network dynamic surface control (DSC) based on disturbance observer
for the wheeled mobile robot with uncertain parameters and unknown disturbances.The nonlinear observer is used to compensate
for the external disturbance, and the neural network is employed to approximate the uncertain and nonlinear items of system.
Then, the Lyapunov theory is introduced to demonstrate the stabilization of the proposed control algorithm. Finally, the simulation
results illustrate that the proposed algorithm not only is superior to conventional DSC in trajectory tracking and external friction
disturbance compensation but also has better response, adaptive ability, and robustness.

1. Introduction

Wheeled mobile robot is an intelligent object. It can col-
lect the surrounding environmental information from the
constant feedback of sensors and allodial makes decisions.
Then, it outputsmotion instructions and guides itself tomove
to the destination quickly with high precision of trajectory
tracking [1, 2].However, there still exists a challenging issue to
control robot to obtain perfect dynamic performance because
its mathematical model is usually multivariable, coupled, and
nonlinear. Dong andKuhnert [3] presented a tracking control
approach for mobile robots with both parameter and non-
parameter uncertainties. In [4], an wavelet-network-based
controller is developed for mobile robots with unstructured
dynamics and disturbances. Chwa [5] designed a position
and heading direction controller using the SMC method for
nonholonomic mobile robots. Gu and Hu [6] studied the
receding horizon tracking control on the wheeled mobile
robots, which used the optimized method to accelerate the
convergence speed of errors.

Nowadays various intelligence control algorithms for
mobile robot have been represented in the literature, such
as genetic algorithm [7], iterative learning control [8], neu-
ral networks [9], fuzzy logic [10], and backstepping. In

the above-mentioned methods, the backstepping method is
preferred. In [11], an adaptive tracking controller using a
backstepping method is presented for the dynamic model
of mobile robots with unknown parameters. Unfortunately,
the backstepping suffers from the “explosion of complexity”
caused by the repeated differentiation of virtual control
functions [12]. Dynamic surface control (DSC) [13, 14] is a
new control technique by introducing a first-order filter at
each recursive step of the backstepping design procedure,
such that the differentiation item on the virtual function can
be avoided. Zhang and Ge further studied the control design
for some special nonlinear systems with time delay or dead
zone using the DSC technique [15]. However, the adaptive
parameters involved in the aforementioned DSC still impose
that a large number of parameters need to be tuned online in
the NN approximation. In addition, a robust adaptive DSC
for a class of uncertain perturbed strict-feedback nonlinear
systems preceded by unknown backlash-like hysteresis is
proposed [16].

On the other hand, the output of the disturbance observer
can be extensively used in feed-forward compensation of
external disturbances. The disturbance observers can give
fast, excellent tracking performance and smooth control
actions without the use of large feedback gains [17]. Zhongyi
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et al. [18] presented a disturbance observer-based control
scheme for free-floating space manipulator with nonlinear
dynamics derived using the virtual manipulator approach.
Yan presented a nonlinear dynamic output feedback decen-
tralized controller and further studied state and parameter
estimation for nonlinear delay systems using sliding mode
observer [19, 20]. The friction compensation schemes based
on disturbance observer is in that they are not based on any
particular friction models [21].

To the best of our knowledge, the DSC method and
disturbance observer have been seldom used in the control
of wheeled mobile robot so far. The first main contribu-
tion of this paper is the compensation of external friction
by using the nonlinear disturbance observer. The second
contribution is the design of the dynamic surface control
method combined with neural network. During the design
process, neural networks are employed to approximate the
nonlinearities, and adaptive method and DSC are used to
construct neural network controller. It means that uncertain
parameters are taken into account and explosion of com-
plexity is solved. Finally, to testify to the superiority of the
proposed control algorithm, a comparison between DSC,
neural network dynamic surface controller (NNDSC) and
NNDSC with nonlinear observer is studied. The simulation
results are provided to demonstrate the effectiveness and
robustness objectively against the parameter uncertainties
and external disturbances.

2. Kinetic Models

2.1. Mathematical Model of Wheeled Mobile Robot. The sche-
matic diagram of wheeled mobile robot is shown in Figure 1.
It has two independent actuated rear-wheels with servo
motor driven. To change the relative input voltage to realize
speed difference of two rear-wheels, it is achieved to adjust
the position of both car body and tracking trajectory. Front
wheels only support the car body as supporting roller.

The dynamics of wheeled mobile robot with uncertain
parameters and nonlinearity in Figure 1 is generally described
by [22]:
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where 𝐼V stands for the moment of inertia around the center
of gravity of robot, 𝐼

𝑤
denotes themoment of inertia of wheel,

𝑀 represents the mass of robot, 𝑘 stands for the driving gain
factor, 𝑟 denotes the radius of wheel, 𝑐 represents the viscous
friction factor of both wheel and ground, 𝑢

𝑟
and 𝑢

𝑙
stand for

the right and left driving input of rear axle, respectively, 𝑅
𝑎

denotes the armature resistance of motor, 𝑘
𝑚
represents the

electromagnetism torque constant of motor, 𝑖 stands for the
transmission ratio of reducer, V denotes the velocity of robot,
and 𝜑 represents the azimuth of robot.
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Figure 1: The wheeled mobile robot.

For simplicity, the following notations are introduced:
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Outdoor wheeled mobile robot suffers more unknown
and uncertain disturbance than indoor one. In the real con-
trol system it is unavoidable for some implicit, prior unknown
modeling and external disturbance to exist. Suppose the sum
of all external uncertainty items to describe with function 𝑑.
Uncertainties consisted of gear clearance existence of reducer
in the transmission system, friction coefficient variation of
roadbed and motor parameter change because of ambient
temperature surrounded, material wear, and so on, influence
static, and dynamic performances of robot to some extent.
Therefore, the drive gain 𝑘 and friction coefficient 𝑐 are
uncertain.

By using these notations, the dynamic model of wheeled
mobile robot can be described by the following differential
equations:
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Remark 1. 𝑑 is unknown, but its upper bound is |𝑑( ̇

𝜙, 𝜙, 𝑡)| ≤

𝛿 and 𝛿 ≥ 0.

2.2. System Decoupling. System dynamic equations of
wheeled mobile robot are a coupled system. Firstly it is
to decouple the system mentioned and then to convert to
parametric strict-feedback forms. It is defined as follows:
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3. RBFNN Dynamic Surface Controller
Based on Nonlinear Disturbance Observer

3.1. RBF Neural Network. Figure 2 shows the RBF neural
network expression which is given as follows:
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where 𝑧 ∈ Ω ⊂ 𝑅
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3.2. Nonlinear Disturbance Observer. Define state variable
𝑋 = [𝑥

2
, 𝑥

3
]

𝑇. Using (6), it is constructed as
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By equation transformation, (10) can be rewritten as
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On the basis of the difference between real output and
evaluated output of system, the evaluator can be adjusted to
design disturbance observer.
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Figure 2: A general architecture of RBF neural network.

Suppose that nonlinear disturbance observer owns the
following form:
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The gain 𝐿 of nonlinear disturbance observer can be de-
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Substituting (12) into (16) gives
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At this present stage, nonlinear disturbance observer is de-
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3.3. Neural Network Dynamic Surface Controller with Distur-
bance Compensation. By obtaining the output of neural net-
work dynamic surface controller, the disturbance of wheeled
mobile robot existing is compensated well. The control law is
designed as
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𝐷
, (20)

where 𝑢ND is output of neural network dynamic surface
controller and𝑢
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To aim at the wheeledmobile robot represented in (5) and
(22), the designing steps of neural network dynamic surface
controller are described as follows.

Step 1. For the reference signal𝑦
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According to (23) and (24), the corresponding control law
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Combining (30) and (31), design control law as
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From the analysis mentioned above, the control
schematic of wheeled mobile robot neural network dynamic
surface control based on nonlinear disturbance observer is
shown clearly in Figure 3.

3.4. A Comparison with Traditional Dynamic Surface Control.
To verify the proposed controller, we make a comparison
between neural network dynamic surface control and tradi-
tional dynamic surface control.

Step 1. From (23), the control law is chosen as
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Step 2. According to the definition, the virtual control func-
tion is equal to (28).
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Figure 3: Control schematic of wheeled mobile robot.

Step 3. From (30), the corresponding control law is gotten as

𝑢ND =

1

2𝑏

2
𝑘

(𝑘

3
𝑆

3
+ 𝑎

2
𝑐𝑥

3
+ 𝑏

2
𝑘𝑢

1
+

̃

𝑑 − �̇�

𝑓
) . (35)

So far, in contrast to (25) and (32) which belonged to neural
network dynamics surface controller, it is easy to see that
(34) and (35) which belonged to traditional dynamics surface
controller not only need more precise mathematical model
but also require more items of expression and coupling items.

4. Stability Analysis

Define the filter error 𝑦 = 𝛼

𝑓
− 𝛼. Differentiating it results in

the following differential equation:

�̇�

𝑓
= −

𝑦

𝜏

. (36)

Introduce boundary layer differential equation as

̇𝑦 = −

𝑦

𝜏

+ 𝐵 (𝑆

2
, 𝑆

3
, 𝑦,

_
𝑘
,

_
𝜃 2

, 𝑦

𝑟
, ̇𝑦

𝑟
, ̈𝑦

𝑟
) (37)

with 𝐵 = 𝑘

2
̇

𝑆

2
− ̈𝑦

𝑟
and

𝑦 ̇𝑦 ≤ −

𝑦

2

𝜏

+ 𝑦

2
+

1

4

𝐵

2
.

(38)

With (24) and (25), (23) can be expressed as

̇

𝑆

1
= 𝜃

𝑇

1
𝜉

1
+ 𝛿

1
− 𝑏

1
̃

𝑘𝑢

1
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1
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_
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1
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1
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1
𝑆

1
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= −𝑘

1
𝑆

1
−

̃

𝜃

𝑇

1
𝜉

1
+ 𝛿

1
− 𝑏

1
̃

𝑘𝑢

1
+

𝜀

_
𝑘

2

+ 𝜀

(

_
𝜃

𝑇

1
𝜉

1
+ 𝑘

1
𝑆

1
)
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1
𝑆

1
−

̃

𝜃

𝑇

1
𝜉

1
− 𝑏

1
̃

𝑘𝑢

1
+ 𝛾

1
,

(39)

where 𝛾
1
(𝑆

1
,

_
𝑘
,

_
𝜃 1

, 𝑦

𝑑
, ̇𝑦

𝑑
) is continuous function and satis-

fies 𝛾
1
≥ |𝛿

1
+ (𝜀/(

_
𝑘

2

+ 𝜀))(

_
𝜃

𝑇

1
𝜉

1
+ 𝑘

1
𝑆

1
)|.

In the same way, the following can be deduced:

̇

𝑆

2
= 𝑆

3
+ 𝑦 − 𝑘

2
𝑆

2
,

̇

𝑆

3
= 𝜃

𝑇

2
𝜉

2
+ 𝛿

2
+ 𝑏

2
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1
+ 2𝑏

2
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𝑓
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2

_
𝑘
𝑢ND
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𝑇

2
𝜉

2
+ 𝛿

2
+ 𝑏

2
𝑘𝑢

1
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2
̃
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𝜃
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2
+ 𝑘
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𝑓
)

≤ −

̃

𝜃
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2
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2
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2
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1
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(40)

where 𝛾

2
(𝑆

2
, 𝑆

3
,

_
𝑘
,

_
𝜃 2

, 𝑦

𝑟
, ̇𝑦

𝑟
) is continuous function and
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2
≥ |𝛿

2
+ (𝜀/(

_
𝑘
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𝑢
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− �̇�

𝑓
)|.

According to Young’s inequality, the calculation produces
the following equality:

𝑆

1
̇

𝑆

1
≤ (−𝑘

1
+ 1) 𝑆

2

1
−

̃

𝜃

𝑇

1
𝜉

1
𝑆

1
− 𝑏

1
̃
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1
𝑆

1
+

1

4

𝛾

2

1
. (41)

In the same way, it can be deduced that

𝑆

2
̇

𝑆

2
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2
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For any given 𝑝 > 0, the sets can be defined:

Ω

1
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(43)

Theorem 4. To aim at the wheeled mobile robot expressed in
(3), satisfying Assumption 2 and giving a positive number 𝑝,
for all satisfying initial condition 𝑉(0) ≤ 𝑝, the controllers

(25) and (32) and the adaptive laws (26) and (33) guarantee
semiglobal uniform ultimate boundedness of closed loop system
with tracking error converging to zero.

Proof. Choose the Lyapunov function candidate as

𝑉 =

1

2

(

3

∑

𝑖=1

𝑆

2

𝑖
+ 𝑦

2
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𝑘

2
) . (44)

Combining (26) and (33) and differentiating (44) give

̇

𝑉 ≤ (−𝑘
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Remark 5. Consider that −𝑚
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Then it can be verified easily that
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If 𝑉(𝑡) = (1/2)(∑
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2.
Taking those into account, there exists

̇

𝑉 (𝑡) ≤ −2𝑎

0
𝑉 (𝑡) + 𝜇. (47)

In the condition of 𝑉(𝑡) = 𝑝, just choosing the appro-
priate design constant can guarantee 𝑎

0
≥ 𝜇/2𝑝, and then

̇

𝑉(𝑡) ≤ 0. 𝑉(𝑡) ≤ 𝑝 belongs to invariant set. From (47), we
have

0 ≤ 𝑉 (𝑡) ≤

𝜇

2𝑎

0

+ (𝑉 (0) −

𝜇

2𝑎

0

) 𝑒

−2𝑎
0
𝑡
. (48)

5. Simulation Analysis

In this section, in order to illustrate the effectiveness of
wheeled mobile robot neural network dynamic surface con-
trol method which was based on nonlinear disturbance
observer, the simulation will be conducted under the initial
condition of 𝑥

1
= 𝑥

2
= 𝑥

3
= 0.2. At the same time, in order to
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give the further comparison, the traditional dynamic surface
control will be also used to control the real robot system.

The reference signals are taken as 𝜑(𝑡) = sin 𝑡 and V
𝑑
(𝑡) =

1m/s with initial condition 𝜑(0) = 0 rad and V
𝑑
(0) = 0.5m/s.

The proposed neural network dynamic surface con-
trollers are used to control the wheeled mobile robot. The
center of neural network 𝑆

𝑖
(𝑧) is uniformly distributed in the

field of [−5, 5], and its width 𝜎

𝑖
is 1.5. The control parameters

are chosen as follows:

𝑘

1
= 20, 𝑘

2
= 20, 𝑘

3
= 20, 𝑚

1
= 0.06,

𝑚

2
= 0.06, 𝑚

3
= 0.05, 𝜂

1
= 1.8,

𝜂

2
= 1.8, 𝜂

3
= 1.2, 𝜀 = 0.01, 𝜏 = 0.01.

(49)

The control parameters of traditional dynamic surface
controllers are chosen as follows:

𝑘

1
= 4, 𝑘

2
= 4, 𝑘

3
= 12, 𝜏 = 0.01. (50)
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In comparison with traditional dynamic surface control,
the neural network dynamic surface control is run under the
assumption that the system parameters and the nonlinear
functions are unknown.

5.1. Trajectory Tracking Analysis. Figures 4–7 display the
result of trajectory tracking and tracking error of traditional
dynamic surface controller and neural network dynamic sur-
face controller. Figure 4 and Figure 6 show that the response
time of NNDSC and DSC are 1.2 s and 2.2 s, respectively; it
is obvious that NNDSC is superior to DSC in the way of
convergence velocity. Figures 5 and 7 display that the steady
state error of NNDSC and DSC are ±0.0003 and ±0.003,
respectively; it is clear to see that NNDSC is better than DSC
in terms of orientation angle sine tracking.

5.2. Robustness Analysis. As explained in the previous sec-
tions, to obtain a precise mathematical model of robot is very
difficult and sometimes impossible because of the existence
of gear clearance, friction coefficient variation of roadbed,
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and motor parameter change coming from outside. In such
cases, to verify the robustness of system, the drive gain 𝑘

and friction coefficient 𝑐 increase by 2 and 3 times, and
reduce by half, respectively. Figure 8 presents the tracking
error that it is 0.007m/s as 200%, 0.011m/s as 300%, and
0.008m/s as 50%. In conclusion, NNDSC can remain always
well tuned online and maintain the desired performance
according to the variation of environment and still exhibits
better robustness and adaptive ability.

5.3. External Friction Disturbance. To take into account
Coulomb friction and viscous friction, the external friction
of system is given below:

𝐹 (V) = 𝐹

𝑐
sgn (V) + 𝐵V, (51)

where 𝐹

𝑐
stands for the coulomb friction, 𝐵 denotes the

viscous friction coefficient, and 𝑉 is the velocity. The corre-
sponding parameters are chosen as 𝐹

𝑐
= 1.5N and 𝐵 = 0.8.

The nonlinear disturbance observer parameters are taken
as 𝑐
1
= 20 and 𝑐

2
= 20.

External friction is applied to determine the antidistur-
bance performance of robot. Figure 9 shows the comparison
between real friction and observed friction with nonlinear
disturbance observer; it is clearly known that nonlinear
disturbance observer observes the change of real friction
as well. Figure 10 depicts tracking error of three control
algorithms above. The errors of DSC, NNDSC, and NNDSC
with nonlinear observer are mean ±0.0695 rad, ±0.0175 rad
and ±0.0023 rad, respectively. It can be seen that NNDSC
with nonlinear observer compensates for the external friction
disturbance in finite time duration and makes the system
performance better compared to the conventional DSC and
NNDSC.
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Figure 9: Comparison between real friction and observed friction
with nonlinear observer.
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6. Conclusion

This paper presents an adaptive neural network DSC algo-
rithm based on disturbance observer for uncertain nonlinear
wheeledmobile robot system.Thepresented controller which
surmounts the shortages of the conventional DSC guarantees
the convergence of tracking error and the boundedness of all
the closed-loop signals. In addition, the simulation results are
obtained to prove the effectiveness and robustness against the
parameter uncertainties and external friction disturbances.
Therefore, these characteristics of NNDSC with nonlinear
observer show great advantages over the other two methods
and make it a competitive control choice for the wheeled
mobile robot application.
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