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Temporal Boolean network is a generalization of the Boolean network model that takes into account the time series nature of the
data and tries to incorporate into the model the possible existence of delayed regulatory interactions among genes. This paper
investigates the observability problem of temporal Boolean control networks. Using the semi tensor product of matrices, the
temporal Boolean networks can be converted into discrete time linear dynamic systems with time delays. Then, necessary and
sufficient conditions on the observability via two kinds of inputs are obtained. An example is given to illustrate the effectiveness of
the obtained results.

1. Introduction

Booleannetwork (BN) is the simplest logical dynamic system.
It was proposed by Kauffman for modeling complex and
nonlinear biological systems; see [1–3]. Since then, it has been
a powerful tool in describing, analyzing, and simulating the
cell networks. In this model, gene state is quantized to only
two levels: true and false.Then, the state of each gene is deter-
mined by the states of its neighborhood genes, using logical
rules.

The control of BN is a challenging problem. So far, there
are only few results on it because of the shortage of systematic
tools to deal with logical dynamic systems; see [4, 5]. Recently,
a newmatrix product, which was called the semitensor prod-
uct (STP) [4], was provided to convert a logical function into
an algebraic function, and the logical dynamics of BNs could
be converted into standard discrete-time dynamics. Based on
this, a new technique has been developed for analyzing and
synthesizing Boolean (control) networks (BCNs); see [4, 6–
9]. Furthermore, [10] have presented some simple criteria to
judge the controllability with respect to input-state incidence
matrices of BCNs. AMayer-type optimal control problem for
BCNs with multi-input and single input has been studied in
[11, 12].

Systematic analysis of biological systems is an important
topic in systems biology, and the observability is a structural
property of systems.There have beenmany results on the con-
trollability and observability of dynamic systems; see [13–18].
When it comes to the observability problem of BNs, Cheng
and Qi have obtained necessary and sufficient conditions for
the observability of BCNs in [8]. However, simple Boolean
method cannot be used to study the kinetic properties of
networks because it does not have time components, and time
delay behaviors happen frequently in biological and physio-
logical systems. In [19], the observability problem for a class
of Boolean control systems with time delay is investigated.

It is well known that time delay phenomenon is very
common in the real world [20, 21] and very important in ana-
lysis and control for dynamic systems. Since many experi-
ments involve obtaining gene expression data by monitoring
the expression of genes involved in some biological process
(e.g., neural development) over a period of time, the resulting
data is in the form of a time series [22]. It is interesting to
understand how the expression of a gene at some stage in
the process is influenced by the expression levels of other
genes during the stages of the process preceding it. Temporal
Boolean networks (TBNs) are developed to help model the
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temporal dependencies that span several time steps and
model regulatory delays, which may come about due to miss-
ing intermediary genes and spatial or biochemical delays
between transcription and regulation; see [23–25].

It should be noticed that TBCN is similar with higher-
order BCN from Chapter 5 of [26] in which the higher-order
BCN can be rewritten by a BCN by using the first algeb-
raic form of the network. Hence, the observability analysis
for higher-order BCNs can be obtained from [26]. However,
if the first algebraic form is used, the dimension of network
transition matrix depending on the number of logical vari-
ables will be much larger which would make computation
cost much higher [27]. Motivated by the above analysis, the
purpose of this paper is to use STPdeveloped in [4, 6–9, 28] to
analyze the observability problemof TBCNwithout changing
it into BCN, which generalizes the BN model to cope with
dependencies that span over more than one unit of time.

The rest of this paper is organized as follows. Section 2
provides a brief review for the STP ofmatrices and thematrix
expression of logical function. In Section 3, we convert TBCN
into discrete time delay systems. In Section 4, necessary and
sufficient conditions for the observability of the temporal
BCNs are obtained. An example is given to illustrate the effi-
ciency of the proposed results in Section 5. Finally, a brief
conclusion is presented.

2. Preliminaries

For simplicity, we first give some notations as in [4]. Denote
𝑀
𝑚×𝑛

as the set of all 𝑚 × 𝑛 matrices. The delta set Δ
𝑘

:=

{𝛿
𝑖

𝑘
| 𝑖 = 1, 2, . . . , 𝑘}, where 𝛿

𝑖

𝑘
is the 𝑖th column of identity

matrix 𝐼
𝑘
with degree 𝑘. Amatrix𝐴 ∈ 𝑀

𝑚×𝑛
is called a logical

matrix if the columns set of 𝐴, denoted by Col(𝐴), satisfies
Col(𝐴) ⊂ Δ

𝑚
. The set of all𝑚 × 𝑛 logical matrices is denoted

byL
𝑚×𝑛

. Assuming𝐴 = [𝛿
𝑖
1

𝑚
, 𝛿
𝑖
2

𝑚
, . . . , 𝛿

𝑖
𝑛

𝑚
] ∈ L

𝑚×𝑛
, we denote

it as 𝐴 = 𝛿
𝑚
[𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑛
].

We recall the concept of STP. Let 𝑋 be a row vector of
dimension 𝑛𝑝 and 𝑌 a column vector of dimension 𝑝. Then,
we split 𝑋 into equal-sized blocks as 𝑋

1

, . . . , 𝑋
𝑝, which are

1 × 𝑝 rows. Define the STP, denoted by ⋉, as

𝑋 ⋉ 𝑌 =

𝑝

∑

𝑖=1

𝑋
𝑖

𝑦
𝑖
∈ 𝑅
𝑛

,

𝑌
𝑇

⋉ 𝑋
𝑇

=

𝑝

∑

𝑖=1

𝑦
𝑖
(𝑋
𝑖

)
𝑇

∈ 𝑅
𝑛

.

(1)

In this paper, “⋉” is omitted, and throughout this paper the
matrix product is assumed to be the semi-tensor product as
in [9].

The swap matrix 𝑊
[𝑚,𝑛]

is an 𝑚𝑛 × 𝑚𝑛 matrix. Label its
columns by (11, 12, . . . , 1𝑛, . . . , 𝑚1,𝑚2, . . . , 𝑚𝑛) and its rows
by (11, 21, . . . , 𝑚1, . . . , 1𝑛, 2𝑛, . . . , 𝑚𝑛). Then, its element in
the position ((𝐼, 𝐽), (𝑖, 𝑗)) is assigned as

𝑤
(𝐼,𝐽),(𝑖,𝑗)

= 𝛿
𝐼,𝐽

𝑖,𝑗
= {

1, 𝐼 = 𝑖, 𝐽 = 𝑗,

0, otherwise.
(2)

When 𝑚 = 𝑛, we briefly denote 𝑊
[𝑛]

= 𝑊
[𝑚,𝑛]

. Furthermore,
for𝑋 ∈ R𝑚 and𝑌 ∈ R𝑛, 𝑊

[𝑚,𝑛]
⋉𝑋⋉𝑌 = 𝑌⋉𝑋 and 𝑊

[𝑛,𝑚]
⋉

𝑌 ⋉ 𝑋 = 𝑋 ⋉ 𝑌.
A logical domain, denoted byD, is defined asD := {𝑇 =

1, 𝐹 = 0}. To use matrix expression, we identify each element
in D with a vector as 𝑇 ∼ 𝛿

1

2
and 𝐹 ∼ 𝛿

2

2
and denote Δ :=

Δ
2
= {𝛿
1

2
, 𝛿
2

2
}. Using STP of matrices, a logical function with

𝑛 arguments 𝐿 : D𝑛 → D can be expressed in the algebraic
form as follows.

Lemma 1 (see [9]). Any logical function 𝐿(𝐴
1
, . . . , 𝐴

𝑛
) with

logical arguments 𝐴
1
, . . . , 𝐴

𝑛
∈ Δ can be expressed in a multi-

linear form as

𝐿 (𝐴
1
, . . . , 𝐴

𝑛
) = 𝑀

𝐿
𝐴
1
⋅ ⋅ ⋅ 𝐴
𝑛
, (3)

where𝑀
𝐿
∈ L
2×2
𝑛 is unique which is called the structure mat-

rix of L.

Lemma 2 (see [9]). Assume that 𝑃
𝑘

= 𝐴
1
⋅ ⋅ ⋅ 𝐴
𝑘
with logical

arguments 𝐴
1
, . . . , 𝐴

𝑘
∈ Δ, then

𝑃
2

𝑘
= Φ
𝑘
𝑃
𝑘
, (4)

where Φ
𝑘
= ∏
𝑘

𝑖=1
𝐼
2
𝑖−1 ⊗ [(𝐼

2
⊗ 𝑊
[2,2
𝑘−𝑖
]
)𝑀
𝑟
], 𝑀
𝑟
= 𝛿
4
[1, 4].

3. Algebraic Form of
Temporal Boolean Networks

We consider the temporal Boolean network [25] of a set of
nodes 𝐴

1
, . . . , 𝐴

𝑛
∈ Δ as follows:

𝐴
𝑖
(𝑡 + 1)

= 𝑓
𝑖
(𝐴
1
(𝑡) , . . . , 𝐴

𝑛
(𝑡) , 𝐴

1
(𝑡 − 1) , . . . , 𝐴

𝑛
(𝑡 − 1) , . . . ,

𝐴
1
(𝑡 − 𝜏) , . . . , 𝐴

𝑛
(𝑡 − 𝜏)) , 𝑖 = 1, 2, . . . , 𝑛,

(5)

where 𝑓
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 are logical functions, 𝑡 = 0, 1, 2, . . .,

and 𝜏 is a positive integer delay.
Using Lemma 1, for each logical function 𝑓

𝑖
, 𝑖 =

1, 2, . . . , 𝑛, we can find its structure matrix 𝑀
𝑖
. Let 𝑥(𝑡) =

⋉
𝑛

𝑖=1
𝐴
𝑖
(𝑡). Then, the system (5) can be converted into an

algebraic form as

𝐴
𝑖
(𝑡 + 1) = 𝑀

𝑖
⋉
𝑛

𝑗=1
𝐴
𝑗
(𝑡) ⋅ ⋅ ⋅ ⋉

𝑛

𝑗=1
𝐴
𝑗
(𝑡 − 𝜏)

= 𝑀
𝑖
𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏) , 𝑖 = 1, . . . , 𝑛.

(6)
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From Lemma 2, multiplying all systems in (6) together yields

𝑥 (𝑡 + 1) = ⋉
𝑛

𝑖=1
𝐴
𝑖
(𝑡 + 1)

= ⋉
𝑛

𝑖=1
[𝑀
𝑖
𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏)]

= 𝑀
1
[(𝐼
2
𝑛(𝜏+1) ⊗ 𝑀

2
)Φ
𝑛(𝜏+1)

] 𝑥 (𝑡) ⋅ ⋅ ⋅

× 𝑥 (𝑡 − 𝜏)𝑀
3
⋅ ⋅ ⋅𝑀
𝑛
𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏)

= 𝑀
1
[⋉
3

𝑖=2
𝐼
2
𝑛(𝜏+1) ⊗ 𝑀

𝑖
Φ
𝑛(𝜏+1)

] 𝑥 (𝑡) ⋅ ⋅ ⋅

× 𝑥 (𝑡 − 𝜏)𝑀
4
⋅ ⋅ ⋅𝑀
𝑛
𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏)

= ⋅ ⋅ ⋅

= 𝑀
1
[⋉
𝑛

𝑖=2
𝐼
2
𝑛(𝜏+1) ⊗ 𝑀

𝑖
Φ
𝑛(𝜏+1)

] 𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏) .

(7)

Denote 𝐿
0

:= 𝑀
1
[⋉
𝑛

𝑖=2
𝐼
𝑛(𝜏+1)

⊗ 𝑀
𝑖
Φ
𝑛(𝜏+1)

]. Then (7) can be
expressed as

𝑥 (𝑡 + 1) = 𝐿
0
𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏) , (8)

and 𝐿
0
is called the network transition matrix of (5).

Next, we consider temporal Boolean control network
with outputs as follows:

𝐴
𝑖
(𝑡 + 1)

= 𝑓
𝑖
(𝑢
1
(𝑡) , . . . 𝑢

𝑚
(𝑡) , 𝐴

1
(𝑡) , . . . , 𝐴

𝑛
(𝑡) , . . . ,

𝐴
1
(𝑡 − 𝜏) , . . . , 𝐴

𝑛
(𝑡 − 𝜏)) , 𝑖 = 1, . . . , 𝑛,

𝑦
𝑗
(𝑡) = ℎ

𝑗
(𝐴
1
(𝑡) , . . . , 𝐴

𝑛
(𝑡)) , 𝑗 = 1, . . . , 𝑝,

(9)

where 𝑢
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 are inputs (or controls); 𝑦

𝑗
(𝑡), 𝑗 =

1, . . . , 𝑝 are outputs; 𝑓
𝑖
, 𝑖 = 1, . . . , 𝑛; ℎ

𝑗
, 𝑗 = 1, . . . , 𝑝 are

logical functions.
In this paper, two kinds of inputs (or controls) are con-

sidered for (9).
(A)The controls satisfying certain logical rules are called

input networks such as

𝑢
𝑗
(𝑡 + 1) = 𝑔

𝑗
(𝑢
1
(𝑡) , 𝑢
2
(𝑡) ⋅ ⋅ ⋅ 𝑢

𝑚
(𝑡)) , 𝑗 = 1, . . . , 𝑚,

(10)

where 𝑔
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 are logical functions, and the initial

states 𝑢
𝑗
(0), 𝑗 = 1, 2, . . . , 𝑚, can be arbitrarily given.

(B)The controls are free Boolean sequences, whichmeans
that the controls do not satisfy any logical rule.

Let 𝑢(𝑡) = ⋉
𝑚

𝑗=1
𝑢
𝑗
(𝑡), 𝑦(𝑡) = ⋉

𝑝

𝑗=1
𝑦
𝑗
(𝑡). From Lemma 1,

for every logical function 𝑓
𝑖
, 𝑔
𝑗
, ℎ
𝑙
, we can find its structure

matrix 𝑀
1𝑖
, 𝑀
2𝑗
, 𝑀
3𝑙
, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚, 𝑙 =

1, . . . , 𝑝, respectively. Then from (9) and (10), we can obtain

𝐴
𝑖
(𝑡 + 1) = 𝑀

1𝑖
𝑢 (𝑡) 𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏) , 𝑖 = 1, . . . , 𝑛, (11)

𝑢
𝑗
(𝑡 + 1) = 𝑀

2𝑗
𝑢 (𝑡) , 𝑗 = 1, . . . , 𝑚, (12)

𝑦
𝑙
(𝑡) = 𝑀

3𝑙
𝑥 (𝑡) , 𝑙 = 1, . . . , 𝑝. (13)

Similar with (7), multiplying (11) yields

𝑥 (𝑡 + 1) = ⋉
𝑛

𝑖=1
[𝑀
1𝑖
𝑢 (𝑡) 𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏)]

= 𝑀
11

[(𝐼
2
𝑚+𝑛(𝜏+1) ⊗ 𝑀

12
)Φ
𝑚+𝑛(𝜏+1)

] 𝑢 (𝑡) 𝑥 (𝑡) ⋅ ⋅ ⋅

× 𝑥 (𝑡 − 𝜏)𝑀
13

⋅ ⋅ ⋅

× 𝑀
1𝑛
𝑢 (𝑡) 𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏)

= ⋅ ⋅ ⋅

= 𝑀
11

[⋉
𝑛

𝑖=2
(𝐼
2
𝑚+𝑛(𝜏+1) ⊗ 𝑀

1𝑖
Φ
𝑚+𝑛(𝜏+1)

)] 𝑢 (𝑡) 𝑥 (𝑡) ⋅ ⋅ ⋅

× 𝑥 (𝑡 − 𝜏)

≜ 𝐿𝑢 (𝑡) 𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏) .

(14)

And, multiplying (12), it leads to

𝑢 (𝑡 + 1) = 𝑢
1
(𝑡 + 1) 𝑢

2
(𝑡 + 1) ⋅ ⋅ ⋅ 𝑢

𝑚
(𝑡 + 1)

= 𝑀
21
𝑢 (𝑡)𝑀

22
𝑢 (𝑡) ⋅ ⋅ ⋅𝑀

2𝑛
𝑢 (𝑡)

= 𝑀
21

(𝐼
2
𝑚 ⊗ 𝑀

22
)Φ
𝑚

(𝐼
2
𝑚 ⊗ 𝑀

23
)Φ
𝑚

⋅ ⋅ ⋅

× (𝐼
2
𝑚 ⊗ 𝑀

2𝑚
)Φ
𝑚
𝑢 (𝑡)

≜ 𝐺𝑢 (𝑡) .

(15)

Multiplying (13) yields 𝑦(𝑡) = 𝐻𝑥(𝑡), where 𝐻 =

𝑀
31
[⋉
𝑝

𝑙=2
(𝐼
2
𝑛 ⊗ 𝑀

3𝑙
Φ
𝑛
)]. From the above conclusion, in an

algebraic form, a BCN (9) and (10) can be expressed as

𝑥 (𝑡 + 1) = 𝐿𝑢 (𝑡) 𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏) ,

𝑦 (𝑡) = 𝐻𝑥 (𝑡) ,

(16)

𝑢 (𝑡 + 1) = 𝐺𝑢 (𝑡) , (17)

where 𝐿,𝐻 are the network transition matrices of two kinds
of equations in (9), respectively, and 𝐺 is the network tran-
sition matrix of (10).

Remark 3. It should be noticed that by using the first algebraic
form of the network from Chapter 5 of [26], TBCN can
be rewritten by a BCN with no delay. Hence, it can be a
good idea to study the observability of TBCNs by using the
corresponding BCNs from the results in [10]. However, if
the first algebraic form is used, the dimension of network
transitionmatrix of corresponding BCNswill bemuch bigger
whichwouldmake computation costmuch higher. From (16),
it is easy to calculate that the dimension of 𝐿 is 2𝑛 × 2

𝑛(𝜏+1)+𝑚.
However, if the TBCNs are rewritten by BCNs using the
first algebraic form, then the dimension of the corresponding
network transition matrix of the BCNs would be 2

𝑛(𝜏+1)

×

2
𝑛(𝜏+1)+𝑚, which is much bigger if 𝑛 or 𝜏 is a large number.
Furthermore, considering theTBCNsdirectly, we canfind the
relationship between the network transition matrix (or the
Boolean functions) of the TBCN and the state clearly. How-
ever, if the BCN is used, the relationshipwould not be so clear.
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4. Observability of Temporal Boolean
Control Networks

In this section, we consider the observability problem of
temporal Boolean control network (9), equivalently (16), and
the analysis is given via two kinds of controls (A) and (B),
respectively.

Definition 4 (see [19]). The temporal Boolean network (16)
is observable if for the initial state sequence 𝑥(−𝑖), 𝑖 ∈ {0, 1,

. . . , 𝜏}, there exists a finite time 𝑠 ∈ N, such that the initial state
sequence can be uniquely determined by the input controls
𝑢(0), 𝑢(1), . . . , 𝑢(𝑠) and the outputs 𝑦(0), 𝑦(1), . . . , 𝑦(𝑠).

For simplicity, we denote the vector X(𝑖) = ⋉
𝑖

𝑗=0
𝑥(−𝑗) ∈

Δ
2
𝑛(𝜏+1) , 𝑖 ∈ {0, 1, . . . , 𝜏}.

Definition 5 (see [19]). For temporal Boolean network (16)
and control (17) with fixed 𝐺, the input-state transfer matrix
L𝐺
𝑖

∈ L
2
𝑛
×2
𝑚+𝑛(𝜏+1) , 𝑖 ∈ N+, is defined as follows: for any

𝑢(0) ∈ Δ
2
𝑚 and any 𝑥(−𝑖) ∈ Δ

2
𝑛 , 𝑖 ∈ {0, 1, . . . , 𝜏}, we have

𝑥 (𝑖) = L
𝐺

𝑖
𝑢 (0)X (𝜏) , 𝑖 ∈ N

+

. (18)

Now we need a dummy operator to add some fabricated
variables when these variables do not appear. Define

𝐸
𝑛,𝑚

:= [𝐼
2
𝑛𝐼
2
𝑛 ⋅ ⋅ ⋅ 𝐼
2
𝑛]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2
𝑚𝑛

= 𝛿
2
𝑛[1, 2, . . . , 2

𝑛

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟, . . . , 1, 2, . . . , 2
𝑛

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2
𝑚𝑛

.
(19)

A straightforward computation shows the following.

Lemma 6. Consider the temporal Boolean network (16),

𝑥 (0) = 𝐸
𝑛,𝜏

𝑊
[2
𝑛
,2
𝑛𝜏
]
X (𝜏) . (20)

Proof. Since ⋉
𝜏

𝑖=1
𝑥(−𝑖) ∈ Δ

2
𝑛𝜏 , from the definition of 𝐸

𝑛,𝑚
, we

have

𝐸
𝑛,𝜏

⋉
𝜏

𝑖=1
𝑥 (−𝑖) = 𝐼

2
𝑛 . (21)

Hence,

𝑥 (0) = 𝐼
2
𝑛𝑥 (0) = 𝐸

𝑛,𝜏
⋉
𝜏

𝑖=1
𝑥 (−𝑖) 𝑥 (0)

= 𝐸
𝑛,𝜏

𝑊
[2
𝑛
,2
𝑛𝜏
]
X (𝜏) .

(22)

4.1. Observability of Input Boolean Networks. We first con-
sider the case that controls satisfy certain logical rules as

(17). Define a sequence of matrices L𝐺
𝑠

∈ L
2
𝑛
×2
𝑚+𝑛(𝜏+1) as

(23):

L
𝐺

𝑠

:=

{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{

{

𝐿, 𝑠 = 1,

𝐿𝐺 [(𝐼
2
𝑚 ⊗ L𝐺

1
)Φ
𝑚
] [𝐼
2
𝑚 ⊗ 𝑊

2
𝑛𝜏
,2
𝑛(𝜏+1)Φ

𝑛(𝜏)
] ,

𝑠 = 2,

𝐿𝐺
𝑠−1

[(𝐼
2
𝑚 ⊗ L𝐺

𝑠−1
)Φ
𝑚
] [⋉
1

𝑖=𝑠−2
M𝐺
𝑖
]

⋉ [𝐼
2
𝑚 ⊗ 𝑊

[2
𝑛(𝜏−𝑠+2)
,2
𝑛(𝜏+1)
]
Φ
𝑛(𝜏−𝑠+2)

] ,

𝑠 = 3, . . . , 𝜏 + 1,

𝐿𝐺
𝑠−1

[(𝐼
2
𝑚 ⊗ L𝐺

𝑠−1
)Φ
𝑚
] [⋉
𝑠−𝜏−1

𝑖=𝑠−2
M𝐺
𝑖
] ,

𝑠 > 𝜏 + 1,

(23)

where M𝐺
𝑖

= 𝐼
2
𝑚+𝑛(𝜏+1) ⊗ L𝐺

𝑖
Φ
𝑚+𝑛(𝜏+1)

and H𝐺
0

=

𝐻𝐸
𝑛,𝜏

𝑊
[2
𝑛
,2
𝑛𝜏
]
, H𝐺
𝑠

= 𝐻L𝐺
𝑠
, 𝑠 ∈ N+, and the transitionmatri-

ces 𝐿, 𝐺, and 𝐻 are defined in (16) and (17). Furthermore,
we split H𝐺

𝑗
∈ L
2
𝑝
×2
𝑚+𝑛(𝜏+1) , 𝑗 ∈ N+, into 2

𝑚 equal blocks as
H𝐺
𝑗

= [H𝐺
𝑗,1

,H𝐺
𝑗,2

, . . . ,H𝐺
𝑗,2
𝑚] with each H𝐺

𝑗,𝑖
∈ L
2
𝑝
×2
𝑛(𝜏+1) ,

𝑖 = 1, 2, . . . , 2
𝑚, 𝑗 ∈ N+.

Theorem 7. Consider the temporal Boolean network (16)with
control (17). Assume that 𝑢(0) = 𝛿

𝑖

2
𝑚 , 𝑖 ∈ {1, 2, . . . , 2

𝑚

}. Then,
(16) and (17) are observable if and only if there exists a finite
time 𝑠 such that rank(O

1,𝑖,𝑠
) = 2
𝑛(𝜏+1), where

O
1,𝑖,𝑠

=

[
[
[
[
[
[
[
[
[
[

[

H𝐺
0

H𝐺
1,𝑖

...

H𝐺
𝑠,𝑖

]
]
]
]
]
]
]
]
]
]

]

. (24)

Proof. Firstly, from Lemma 6 and (16),

𝑦 (0) = 𝐻𝑥 (0) = 𝐻𝐸
𝑛,𝜏

𝑊
[2
𝑛
,2
𝑛𝜏
]
X (𝜏) ≜ H

𝐺

0
X (𝜏) . (25)

Since 𝑢(0) = 𝛿
𝑖

2
𝑚 , we have from (18) that

𝑦 (1)

= 𝐻𝑥 (1) = 𝐻𝐿𝑢 (0)X (𝜏)

≜ 𝐻L
𝐺

1
𝑢 (0)X (𝜏) = H

𝐺

1,𝑖
X (𝜏) ,

𝑦 (2)

= 𝐻𝐿𝑢 (1) 𝑥 (1)X (𝜏 − 1)

= 𝐻𝐿𝐺𝑢 (0)L
𝐺

1
𝑢 (0)X (𝜏)X (𝜏 − 1)

= 𝐻𝐿𝐺 [(𝐼
2
𝑚 ⊗ L

𝐺

1
)Φ
𝑚
] 𝑢 (0)X (𝜏)X (𝜏 − 1)

= 𝐻𝐿𝐺 [(𝐼
2
𝑚 ⊗ L

𝐺

1
)Φ
𝑚
] 𝑢 (0)𝑊

[2
𝑛𝜏
,2
𝑛(𝜏+1)
]
Φ
𝑛𝜏
X (𝜏)
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= 𝐻𝐿𝐺 [(𝐼
2
𝑚 ⊗ L

𝐺

1
)Φ
𝑚
]

× [𝐼
2
𝑚 ⊗ 𝑊

[2
𝑛𝜏
, 2
𝑛(𝜏+1)
]
Φ
𝑛𝜏
] 𝑢 (0)X (𝜏)

≜ 𝐻L
𝐺

2
𝑢 (0)X (𝜏) = H

𝐺

2,𝑖
X (𝜏) ,

𝑦 (3)

= 𝐻𝐿𝑢 (2) 𝑥 (2) 𝑥 (1)X (𝜏 − 2)

= 𝐻𝐿𝐺
2

𝑢 (0)L
𝐺

2
𝑢 (0)X (𝜏)L

𝐺

1
𝑢 (0)X (𝜏)X (𝜏 − 2)

= 𝐻𝐿𝐺
2

[(𝐼
2
𝑚 ⊗ L

𝐺

2
)Φ
𝑚
]

× 𝑢 (0)X (𝜏)L
𝐺

1
𝑢 (0)X (𝜏)X (𝜏 − 2)

= 𝐻𝐿𝐺
2

[(𝐼
2
𝑚 ⊗ L

𝐺

2
)Φ
𝑚
]

× [(𝐼
2
𝑚+𝑛(𝜏+1) ⊗ L

𝐺

1
)Φ
𝑚+𝑛(𝜏+1)

]

× 𝑢 (0)X (𝜏)X (𝜏 − 2)

= 𝐻𝐿𝐺
2

[(𝐼
2
𝑚 ⊗ L

𝐺

2
)Φ
𝑚
]

× [(𝐼
2
𝑚+𝑛(𝜏+1) ⊗ L

𝐺

1
)Φ
𝑚+𝑛(𝜏+1)

]

× [𝐼
2
𝑚 ⊗ 𝑊

[2
𝑛(𝜏−1)
, 2
𝑛(𝜏+1)
]
Φ
𝑛(𝜏−1)

] 𝑢 (0)X (𝜏)

≜ 𝐻L
𝐺

3
𝑢 (0)X (𝜏) = H

𝐺

3,𝑖
X (𝜏) ,

...

𝑦 (𝜏 + 1)

= 𝐻𝐿𝑢 (𝜏) 𝑥 (𝜏) ⋅ ⋅ ⋅ 𝑥 (1)X (0)

= 𝐻𝐿𝐺
𝜏

𝑢 (0) [⋉
1

𝑖=𝜏
L
𝐺

𝑖
𝑢 (0)X (𝜏)]X (0)

= 𝐻𝐿𝐺
𝜏

[(𝐼
2
𝑚 ⊗ L

𝐺

𝜏
)Φ
𝑚
] [⋉
1

𝑖=𝜏−1
M
𝐺

𝑖
]

× [𝐼
2
𝑚 ⊗ 𝑊

[2
𝑛
, 2
𝑛(𝜏+1)
]
Φ
𝑛
] 𝑢 (0)X (𝜏)

≜ 𝐻L
𝐺

𝜏+1
𝑢 (0)X (𝜏) = H

𝐺

𝜏+1,𝑖
X (𝜏) .

(26)

For 𝑠 > 𝜏 + 1, we can obtain that

𝑦 (𝜏 + 2)

= 𝐻𝐿𝑢 (𝜏 + 1) 𝑥 (𝜏 + 1) ⋅ ⋅ ⋅ 𝑥 (1)

= 𝐻𝐿𝐺
𝜏+1

𝑢 (0) [⋉
1

𝑖=𝜏+1
L
𝐺

𝑖
𝑢 (0)X (𝜏)]

= 𝐻𝐿𝐺
𝜏+1

[(𝐼
2
𝑚 ⊗ L

𝐺

𝜏+1
)Φ
𝑚
]

× [⋉
1

𝑖=𝜏
M
𝐺

𝑖
] 𝑢 (0)X (𝜏)

≜ 𝐻L
𝐺

𝜏+2
𝑢 (0)X (𝜏) = H

𝐺

𝜏+2,𝑖
X (𝜏) ,

𝑦 (𝜏 + 3)

= 𝐻𝐿𝑢 (𝜏 + 2) 𝑥 (𝜏 + 2) ⋅ ⋅ ⋅ 𝑥 (2)

= 𝐻𝐿𝐺
𝜏+2

𝑢 (0) [⋉
2

𝑖=𝜏+2
L
𝐺

𝑖
𝑢 (0)X (𝜏)]

= 𝐻𝐿𝐺
𝜏+2

[(𝐼
2
𝑚 ⊗ L

𝐺

𝜏+2
)Φ
𝑚
]

× [⋉
2

𝑖=𝜏+1
M
𝐺

𝑖
] 𝑢 (0)X (𝜏)

≜ 𝐻L
𝐺

𝜏+3
𝑢 (0)X (𝜏) = H

𝐺

𝜏+3,𝑖
X (𝜏) ,

...

𝑦 (𝑠)

= 𝐻𝐿𝑢 (𝑠 − 1) 𝑥 (𝑠 − 1) ⋅ ⋅ ⋅ 𝑥 (𝑠 − 𝜏 − 1)

= 𝐻𝐿𝐺
𝑠−1

𝑢 (0) [⋉
𝑠−𝜏−1

𝑖=𝑠−2
L
𝐺

𝑖
𝑢 (0)X (𝜏)]

= 𝐻𝐿𝐺
𝑠−1

[(𝐼
2
𝑚 ⊗ L

𝐺

𝑠−1
)Φ
𝑚
]

× [⋉
𝑠−𝜏−1

𝑖=𝑠−2
M
𝐺

𝑖
] 𝑢 (0)X (𝜏)

≜ 𝐻L
𝐺

𝑠
𝑢 (0)X (𝜏) = H

𝐺

𝑠,𝑖
X (𝜏) .

(27)

From the above analysis, and definition of O
1,𝑖,𝑠

in (24), we
can see that

O
1,𝑖,𝑠

X (𝜏) =

[
[
[
[

[

𝑦 (0)

𝑦 (1)

...
𝑦 (𝑠)

]
]
]
]

]

. (28)

Since X(𝜏) ∈ Δ
2
𝑛(𝜏+1) , O

1,𝑖,𝑠
X(𝜏) ∈ Col(O

1,𝑖,𝑠
). It implies that

X(𝜏) is determined uniquely by the outputs 𝑦(0), . . . , 𝑦(𝑠)

if and only if there exist no similar elements in Col(O
1,𝑖,𝑠

),
or equivalently, there are no equal columns in O

1,𝑖,𝑠
, that is,

rank(O
1,𝑖,𝑠

) = 2
𝑛(𝜏+1). The proof is completed.

Corollary 8. Consider the temporal Boolean network (16)
with control (17). Equations (16) and (17) are observable if and
only if there exist a finite time 𝑠 and 𝑖 ∈ {1, 2, . . . , 2

𝑚

} such that
rank(O

1,𝑖,𝑠
) = 2
𝑛(𝜏+1).

Remark 9. When the time delay 𝜏 = 0, then the temporal
Boolean control network (16) and (17) become aBoolean con-
trol network. In this case, it can be induced from (23) that

L
𝐺

𝑠
=

{

{

{

𝐿, 𝑠 = 1,

𝐿𝐺
𝑠−1

[(𝐼
2
𝑚 ⊗ L𝐺

𝑠−1
)Φ
𝑚
] , 𝑠 > 1.

(29)

Then, the observability of the BCN with input Boolean net-
work controls can be deduced fromTheorem 7 and Corollary
8.

4.2. Control via Free Boolean Sequence. In the following,
the case where the controls are free Boolean sequences is
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considered. We split 𝐿 given in (16) into 2
𝑚 equal blocks

as

𝐿 = [𝐿
1
, 𝐿
2
, . . . , 𝐿

2
𝑚] , (30)

with each 𝐿
𝑖

∈ L
2
𝑛
×2
𝑛(𝜏+1) , 𝑖 = 1, 2, . . . , 2

𝑚. Define a seq-
uence of matrices L̃

𝑠,𝑖
𝑠−1
,...,𝑖
0

∈ L
2
𝑛
×2
𝑛(𝜏+1) , 𝑠 ∈ N+, 𝑖

𝑠−1
∈ {1, 2,

. . . , 2
𝑚

} as (31):

L̃
𝑠,𝑖
𝑠−1
,...,𝑖
0

=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝐿
𝑖
0

, 𝑠 = 1,

𝐿
𝑖
1

𝐿
𝑖
0

𝑊
[2
𝑛𝜏
, 2
𝑛(𝜏+1)
]
Φ
𝑛𝜏
, 𝑠 = 2,

𝐿
𝑖
𝑠−1

L̃
𝑠−1, 𝑖
𝑠−2
,...,𝑖
0

[⋉
1

𝑗=𝑠−2
M̃
𝑗
]

⋉𝑊
[2
𝑛(𝜏−𝑠+2)
, 2
𝑛(𝜏+1)
]
Φ
𝑛(𝜏−𝑠+2)

,

𝑠 = 3, . . . , 𝜏 + 1,

𝐿
𝑖
𝑠−1

L̃
𝑠−1, 𝑖
𝑠−2
,...,𝑖
0

[⋉
𝑠−𝜏−1

𝑗=𝑠−2
M̃
𝑗
] ,

𝑠 > 𝜏 + 1,

(31)

where M̃
𝑗
= 𝐼
2
𝑛(𝜏+1) ⊗L̃

𝑗,𝑖
𝑗−1
,...,𝑖
0

Φ
𝑛(𝜏+1)

, the transitionmatrices
𝐿, 𝐺, and 𝐻 are defined in (16) and (17).

Theorem 10. Consider the temporal Boolean network (16).
Assume that the controls are free Boolean sequences with 𝑢(𝑙) =

𝛿
𝑖
𝑙

2
𝑚 , 𝑙 ∈ N, 𝑖

𝑙
∈ {1, 2, . . . , 2

𝑚

}. Then, (16) is observable if and
only if there exists a finite time 𝑠 such that rank(O

2,𝑠
) = 2
𝑛(𝜏+1),

where

O
2,𝑠

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

H𝐺
0

𝐻L̃
1,𝑖
0

𝐻L̃
2,𝑖
1
,𝑖
0

...

𝐻L̃
𝑠,𝑖
𝑠−1
,...,𝑖
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (32)

Proof. Since the controls are free Boolean sequences with
𝑢(𝑙) = 𝛿

𝑖
𝑙

2
𝑚 , 𝑙 ∈ N, 𝑖

𝑙
∈ {1, 2, . . . , 2

𝑚

}, from (16) we have

𝑦 (1)

= 𝐻𝑥 (1) = 𝐻𝐿𝑢 (0)X (𝜏)

= 𝐻𝐿
𝑖
0

X (𝜏) ≜ 𝐻L̃
1,𝑖
0

X (𝜏) ,

𝑦 (2)

= 𝐻𝑥 (2) = 𝐻𝐿𝑢 (1) 𝑥 (1)X (𝜏 − 1)

= 𝐻𝐿𝑢 (1) 𝐿𝑢 (0)X (𝜏)X (𝜏 − 1)

= 𝐻𝐿𝑢 (1) 𝐿𝑢 (0)𝑊
[2
𝑛𝜏
, 2
𝑛(𝜏+1)
]
Φ
𝑛𝜏
X (𝜏)

= 𝐻𝐿
𝑖
1

𝐿
𝑖
0

𝑊
[2
𝑛𝜏
, 2
𝑛(𝜏+1)
]
Φ
𝑛𝜏
X (𝜏)

≜ 𝐻L̃
2, 𝑖
1
, 𝑖
0

X (𝜏) ,

𝑦 (3)

= 𝐻𝑥 (3) = 𝐻𝐿𝑢 (2) 𝑥 (2) 𝑥 (1)X (𝜏 − 2)

= 𝐻𝐿𝑢 (2) L̃
2, 𝑖
1
, 𝑖
0

X (𝜏) L̃
1,𝑖
0

X (𝜏)X (𝜏 − 2)

= 𝐻𝐿
𝑖
2

L̃
2, 𝑖
1
, 𝑖
0

[(𝐼
2
𝑛(𝜏+1) ⊗ L̃

1,𝑖
0

)Φ
𝑛(𝜏+1)

]

× X (𝜏)X (𝜏 − 2)

= 𝐻𝐿
𝑖
2

L̃
2, 𝑖
1
, 𝑖
0

[(𝐼
2
𝑛(𝜏+1) ⊗ L̃

1, 𝑖
0

)Φ
𝑛(𝜏+1)

]

× [𝑊
[2
𝑛(𝜏−1)
, 2
𝑛(𝜏+1)
]
Φ
𝑛(𝜏−1)

]X (𝜏)

≜ 𝐻L̃
3 ,𝑖
2
, 𝑖
1
, 𝑖
0

X (𝜏) ,

...

𝑦 (𝜏 + 1)

= 𝐻𝐿𝑢 (𝜏) 𝑥 (𝜏) ⋅ ⋅ ⋅ 𝑥 (1)X (0)

= 𝐻𝐿𝑢 (𝜏) [⋉
1

𝑗=𝜏
L̃
𝑗,𝑖
𝑗−1
,...,𝑖
0

X (𝜏)]X (0)

= 𝐻𝐿
𝑖
𝜏

L̃
𝜏,𝑖
𝜏−1
,...,𝑖
0

[⋉
1

𝑗=𝜏−1
M̃
𝑗
]

× 𝑊
[2
𝑛
, 2
𝑛(𝜏+1)
]
Φ
𝑛
X (𝜏)

≜ 𝐻L̃
𝜏+1,𝑖
𝜏
,...,𝑖
0

X (𝜏) .

(33)

For 𝑠 > 𝜏 + 1, we can obtain that

𝑦 (𝜏 + 2)

= 𝐻𝐿𝑢 (𝜏 + 1) 𝑥 (𝜏 + 1) ⋅ ⋅ ⋅ 𝑥 (1)

= 𝐻𝐿𝑢 (𝜏 + 1) [⋉
1

𝑗=𝜏+1
L̃
𝑗,𝑖
𝑗−1
,...,𝑖
0

X (𝜏)]

= 𝐻𝐿
𝑖
𝜏+1

L̃
𝜏+1,𝑖
𝜏
,...,𝑖
0

[⋉
1

𝑖=𝜏
M̃
𝑗
]X (𝜏)

≜ 𝐻L̃
𝜏+2,𝑖
𝜏+1
,...,𝑖
0

X (𝜏) ,

(34)

𝑦 (𝜏 + 3)

= 𝐻𝐿𝑢 (𝜏 + 2) 𝑥 (𝜏 + 2) ⋅ ⋅ ⋅ 𝑥 (2)

= 𝐻𝐿𝑢 (𝜏 + 2) [⋉
2

𝑗=𝜏+2
L̃
𝑗,𝑖
𝑗−1
,...,𝑖
0

X (𝜏)]

= 𝐻𝐿
𝑖
𝜏+2

L̃
𝜏+2,𝑖
𝜏+1
,...,𝑖
0

[⋉
2

𝑖=𝜏+1
M̃
𝑗
]X (𝜏)

≜ 𝐻L̃
𝜏+3,𝑖
𝜏+2
,...,𝑖
0

X (𝜏) ,

...

(35)
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𝑦 (𝑠)

= 𝐻𝐿𝑢 (𝑠 − 1) 𝑥 (𝑠 − 1) ⋅ ⋅ ⋅ 𝑥 (𝑠 − 𝜏 − 1)

= 𝐻𝐿𝑢 (𝑠 − 1) [⋉
𝑠−𝜏−1

𝑖=𝑠−2
L̃
𝑗,𝑖
𝑗−1
,...,𝑖
0

X (𝜏)]

= 𝐻𝐿
𝑖
𝑠−1

L̃
𝑠−1,𝑖
𝑠−2
,...,𝑖
0

[⋉
𝑠−𝜏−1

𝑖=𝑠−2
M̃
𝑗
]X (𝜏)

≜ 𝐻L̃
𝑠,𝑖
𝑠−1
,...,𝑖
0

X (𝜏) .

(36)

Thus, from (25) and the definition of O
2,𝑠

in (32), we can see
that

O
2,𝑠
X (𝜏) =

[
[
[
[

[

𝑦 (0)

𝑦 (1)

...
𝑦 (𝑠)

]
]
]
]

]

. (37)

Similar with the proof of Theorem 7, we conclude that X(𝜏)

can be determined uniquely by the outputs 𝑦(0), . . . , 𝑦(𝑠) if
and only if rank(O

2,𝑠
) = 2
𝑛(𝜏+1). The proof is completed.

Corollary 11. Consider the temporal Boolean network (16).
The system (16) is observable if and only if there exists a finite
time 𝑠 and a sequence 𝑖

0
, 𝑖
1
, . . . , 𝑖

𝑠−1
∈ {1, 2, . . . , 2

𝑚

} such that
rank(O

2,𝑠
) = 2
𝑛(𝜏+1).

Remark 12. As a special case, when 𝜏 = 0, then from the proof
of Theorem 10, we haveH𝐺

0
= 𝐻, and

L̃
1,𝑖
0

= 𝐿
𝑖
0

,

L̃
𝑠+1,𝑖
𝑠
,...,𝑖
0

= 𝐿
𝑖
𝑠+1

L̃
𝑠,𝑖
𝑠−1
,...,𝑖
0

, 𝑠 > 0.

(38)

Then, Corollary 11 is equivalent with Theorem 26 in [8] for
the observability of BCNs.

Remark 13. For Theorems 7 and 10, when 𝜏 = 1, the third
explicit expressions of L𝐺

𝑠
in (23) and L̃

𝑠,𝑖
𝑠−1
,...,𝑖
0

in (31) for
𝑠 = 3, . . . , 𝜏 + 1 should be omitted.

5. An Example

Given logical arguments 𝑃,𝑄 ∈ Δ, we have the following
structure matrices for the fundamental logical functions:
¬𝑃 = 𝑀

𝑛
𝑃,𝑃∨𝑄 = 𝑀

𝑑
𝑃𝑄,𝑃∧𝑄 = 𝑀

𝑐
𝑃𝑄,𝑃 → 𝑄 = 𝑀

𝑖
𝑃𝑄,

𝑃 ↔ 𝑄 = 𝑀
𝑒
𝑃𝑄, where 𝑀

𝑛
= 𝛿
2
[2, 1], 𝑀

𝑑
= 𝛿
2
[1, 1, 1, 2],

𝑀
𝑐
= 𝛿
2
[1, 2, 2, 2], 𝑀

𝑖
= 𝛿
2
[1, 2, 1, 1], 𝑀

𝑒
= 𝛿
2
[1, 2, 2, 1].

Example 14. Consider the following temporal Boolean net-
work:

𝐴 (𝑡 + 1) = 𝑢 (𝑡) ∨ 𝐴 (𝑡) 󳨀→ 𝐴 (𝑡 − 1) ←→ 𝐴 (𝑡 − 2) ,

𝑦 (𝑡) = ¬𝐴 (𝑡) .

(39)

Let 𝑥(𝑡) = 𝐴(𝑡), it is easy to get 𝐻 = 𝑀
𝑛
, 𝐿 = 𝑀

𝑒
𝑀
𝑖
𝑀
𝑑
, and

𝜏 = 2.
(A) When the controls satisfy the logical rule

𝑢 (𝑡 + 1) = ¬𝑢 (𝑡) , (40)

then the transition matrix 𝐺 = 𝑀
𝑛
. Now, assume that 𝑢(0) =

𝛿
1

2
, by calculation, we have

H
𝐺

0
= 𝛿
2
[2, 2, 2, 2, 1, 1, 1, 1] ,

H
𝐺

1,1
= 𝛿
2
[2, 1, 1, 2, 2, 1, 1, 2] ,

H
𝐺

2,1
= 𝛿
2
[2, 2, 2, 2, 1, 2, 2, 1] ,

H
𝐺

3,1
= 𝛿
2
[2, 1, 1, 2, 2, 1, 1, 2] ,

H
𝐺

4,1
= 𝛿
2
[2, 1, 1, 2, 1, 1, 1, 1] ,

H
𝐺

5,1
= 𝛿
2
[2, 1, 1, 2, 1, 1, 1, 1] ,

...

O
1,1,𝑠

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

H𝐺
0

H𝐺
1,1

H𝐺
2,1

H𝐺
3,1

H𝐺
4,1

H𝐺
5,1

...

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[

[

2 2 2 2 1 1 1 1

2 1 1 2 2 1 1 2

2 2 2 2 1 2 2 1

2 1 1 2 2 1 1 2

2 1 1 2 1 1 1 1

2 1 1 2 1 1 1 1

...

]
]
]
]
]
]
]
]
]
]

]

.

(41)

Hence, for any 𝑠 > 0, there are only 4 linearly independent
columns, which means that rank(O

1,1,𝑠
) < 2

𝑛(𝜏+1)

= 8 for
any 𝑠 > 0, and the system is not observable fromTheorem 7.
Similarly, if 𝑢(0) = 𝛿

2

2
, we have the same conclusion.

(B) When controls are free sequences with 𝑢(0) = 𝛿
1

2
,

𝑢(𝑖) = 𝛿
2

2
, 𝑖 = 1, 2, . . .. By calculation, it leads to

H
𝐺

0
= 𝛿
2
[2, 2, 2, 2, 1, 1, 1, 1] ,

𝐻L̃
1,1

= 𝛿
2
[2, 1, 1, 2, 2, 1, 1, 2] ,

𝐻L̃
2,2,1

= 𝛿
2
[2, 2, 1, 1, 1, 2, 1, 2] ,

𝐻L̃
3,2,2,1

= 𝛿
2
[2, 1, 2, 2, 1, 2, 1, 1] ,

𝐻L̃
4,2,2,2,1

= 𝛿
2
[2, 1, 2, 1, 2, 1, 1, 2] ,

...

(42)
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and hence,

O
2,𝑠

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

H𝐺
0

𝐻L̃
1,1

𝐻L̃
2,2,1

𝐻L̃
3,2,2,1

𝐻L̃
4,2,2,2,1

...

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[

[

2 2 2 2 1 1 1 1

2 1 1 2 2 1 1 2

2 2 1 1 1 2 1 2

2 1 2 2 1 2 1 1

2 1 2 1 2 1 1 2

...

]
]
]
]
]
]
]
]

]

. (43)

When 𝑠 = 2, it is enough to see that there are no equal
columns in O

2,2
. So, the system is observable byTheorem 10.

From cases (A) and (B), it is easy to notice that the
selection of controls is very important for the observability
of the temporal Boolean control network.

6. Conclusion

In this brief paper, necessary and sufficient conditions for
the observability of temporal Boolean control networks have
been derived. By using semi-tensor product of matrices and
the matrix expression of logic, we have converted the tempo-
ral Boolean control networks into discrete systems with time
delays. Moreover, the observability has been investigated via
two different kinds of controls. Finally, an example has been
given to show the efficiency of the proposed results.
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