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In this workwe introduce a new family of splines termed as gamma splines for continuous signal approximation andmultiresolution
analysis.The gamma splines 𝑔

𝑚,𝑏
(𝑡) = 𝑡

𝑚

𝑒
−𝑏𝑡

, 𝑡 ≥ 0 are born by (𝑚+1)-times convolution of the exponential 𝑒−𝑏𝑡 by itself. We study
the properties of the discrete gamma splines in signal interpolation and approximation. We prove that the gamma splines obey the
two-scale equation based on the polyphase decomposition. to introduce the shift invariant gamma spline wavelet transform for
tree structured subscale analysis of asymmetric signal waveforms and for systems with asymmetric impulse response. Especially
we consider the applications in biomedical signal analysis (EEG, ECG, and EMG). Finally, we discuss the suitability of the gamma
spline signal processing in embedded VLSI environment.

1. Introduction

Processing discrete-time signals and images requires the
interpolation, decimation, and approximation procedures.
Signal approximation via the B-spline transform is an estab-
lished tool in a variety of signal management procedures
based on discrete-time filtering, which are summarized
in two excellent review articles [1, 2]. Compared to the
conventional sinc interpolation the B-spline algorithms are
extremely fast and suitable formicroprocessor andVLSI envi-
ronment [3–8]. The key feature in B-spline signal processing
is a link between the continuous and discrete time domains.
The approximation of signals by B-splines is based on the
assumption of the underlying continuous signal, though we
process discrete-time signal sequences.

In many applications of the B-spline signal processing
the disadvantage comes from the symmetrical shape of the
B-spline. The impulse response of the system is not usually
symmetric but owns an exponential tail or resembles a
damping sine wave. In this case the B-spline fit is not perfect.

In this work we introduce a new family of splines termed
as gamma splines for signal approximation. The shape of the
gamma spline is nonsymmetric having an exponential tail.
We apply gamma splines to the numerical signal processing,

shift invariantwavelet analysis, andmultiresolution represen-
tation of the continuous-time signals and images.

2. Theoretical Considerations

2.1. B-Splines. TheB-spline approximation (transform) of the
signal 𝑥(𝑡) is based on the convolution [3]

𝑥 (𝑡) = ∑

𝑘

𝑐 [𝑘] 𝛽
𝐾
(𝑡 − 𝑘) , (1)

where 𝑐[𝑘] is the scale sequence. We use brackets [ ] to
emphasize the discrete-time signal. The integer 𝑘 denotes
the discrete-time 𝑡 = 𝑘𝑇, where the sampling interval is
normalized to 𝑇 = 1.

The B-spline 𝛽
𝐾
(𝑡) of the order 𝐾 is constructed by

convolving an indicator function 𝛽(𝑡) by itself

𝛽
𝐾
(𝑡) = 𝛽 (𝑡) ∗ 𝛽 (𝑡) ∗ ⋅ ⋅ ⋅ 𝛽 (𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐾 times
, (2)

where

𝛽 (𝑡) = {
1 0 ≤ 𝑡 ≤ 1,

0 elsewhere.
(3)
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The analytic form of the B-spline is

𝛽
𝐾
(𝑡) =

1

(𝐾 − 1)!

𝐾

∑

𝑘=0

(−1)
𝑘

(
𝐾

𝑘
) (𝑡 − 𝑘)

𝐾−1

𝑢 (𝑡 − 𝑘) , (4)

where the unit step function is defined as

𝑢 (𝑡) = {
1 for 𝑡 ≥ 0,

0 for 𝑡 < 0.
(5)

An interesting property of the B-splines is that they obey the
two-scale equation [3] as follows:

𝛽
𝐾
(
𝑡

2
) = 2∑

𝑘

𝐵
𝐾
[𝑘] 𝛽
𝐾
(𝑡 − 𝑘) ,

𝐵
𝐾
[𝑘] =

1

2𝐾
(
𝐾

𝑘
) =

𝐾!

2𝐾𝑘! (𝐾 − 𝑘)!
,

(6)

where 𝐵
𝐾
[𝑘] is the binomial kernel.

2.2. Discrete B-Splines. TheLaplace transform of the B-spline
comes from

𝐿 {𝛽 (𝑡)} =
1

𝑠
(1 − 𝑒

−𝑠

) ⇒ 𝛽
𝐾
(𝑠) =

1

𝑠𝐾
(1 − 𝑒

−𝑠

)
𝐾

. (7)

The discrete B-spline 𝛽
𝑝
[𝑘] equals to the continuous B-spline

at integer values of time. Hence, the Laplace transform (7)
and the 𝑧-transform of the discrete B-spline should have
inverse transforms which coincide at integer values in the
time domain. Using the relation

𝐿
−1

(
1

𝑠𝐾
) =

𝑡
𝐾−1

(𝐾 − 1)!
𝑢 (𝑡) (8)

we obtain the 𝑧-transform of the discrete B-spline as follows:

𝛽
𝐾
(𝑧) = 𝑍 {𝛽

𝐾
[𝑘]} = 𝑍{𝐿

−1

(
1

𝑠𝐾
(1 − 𝑒

−𝑠

)
𝐾

)}

= 𝑁
𝐾
(𝑧) (1 − 𝑧

−1

)
𝐾

,

(9)

where

𝑁
𝐾
(𝑧) = 𝑍{𝐿

−1

(
1

𝑠𝐾
)} =

∞

∑

𝑘=0

𝑘
𝐾−1

(𝐾 − 1)!
𝑧
−𝑘

. (10)

We have 𝑁
1
(𝑧) = 1/(1 − 𝑧

−1

). By differentiating with respect
to 𝑧, we obtain a recursion

𝑁
𝐾+1

(𝑧) =
−𝑧

𝐾

𝑑𝑁
𝐾
(𝑧)

𝑑𝑧
. (11)

Table 1 gives the 𝑁
𝐾
(𝑧) and the discrete B-splines 𝛽

𝐾
(𝑧) for

𝐾 = 1 to 6.

Table 1: 𝑁
𝐾
(𝑧) and the discrete B-spline 𝛽

𝐾
(𝑧) for 𝐾 = 1 to 6.

1 1

1 − 𝑧
−1

1

2
𝑧
−1

(1 − 𝑧
−1

)
2

𝑧
−1

3 𝑧
−1

+ 𝑧
−2

2(1 − 𝑧
−1

)
3

𝑧
−1

+ 𝑧
−2

2

4
𝑧
−1

+ 4𝑧
−2

+ 𝑧
−3

6(1 − 𝑧
−1

)
4

𝑧
−1

+ 4𝑧
−2

+ 𝑧
−3

6

5 𝑧
−1

+ 11𝑧
−2

+ 11𝑧
−3

+ 𝑧
−4

24(1 − 𝑧
−1

)
4

𝑧
−1

+ 11𝑧
−2

+ 11𝑧
−3

+ 𝑧
−4

24

6
𝑧
−1

+ 26𝑧
−2

+ 66𝑧
−3

+ 26𝑧
−4

+ 𝑧
−5

120(1 − 𝑧
−1

)
4

𝑧
−1

+ 26𝑧
−2

+ 66𝑧
−3

+ 26𝑧
−4

+ 𝑧
−5

120

2.3. Wavelet Transform. Wavelet transform has gained a
general acceptance in the multiscale analysis and synthesis of
signals and images in various areas of science and technology.
The family of wavelets for 𝑚, 𝑛 ∈ 𝑍 is generated from
one-single function by dilation and translation operations as
follows [9]

𝜓
𝑚,𝑛

(𝑡) = 2
−𝑚/2

𝜓 (2
−𝑚

𝑡 − 𝑛) (12)

which constitute an orthonormal basis. The wavelet trans-
form of a signal 𝑥(𝑡) is defined by the analysis/synthesis
equations

𝑥
𝑚

𝑛
= ∫

+∞

−∞

𝑥 (𝑡) 𝜓
𝑚,𝑛

(𝑡) 𝑑𝑡,

𝑥 (𝑡) = ∑

𝑚

∑

𝑛

𝑥
𝑚

𝑛
𝜓
𝑚,𝑛

(𝑡) ,

(13)

where 𝑥
𝑚

𝑛
are the wavelet coefficients in the subscale 𝑚. The

connection of the B-spline approximation (1) and the wavelet
analysis/synthesis equations (13) is obvious. The B-spline
approximation transfers the information to the next subscale
via the two-scale equation (6). The wavelet 𝜓

𝑚,𝑛
(𝑡) behaves

like the B-spline via the dilation and translation equation (12).
If we keep the B-spline as awavelet, the binomial kernel𝐵

𝐾
[𝑛]

works as a scaling filter in the wavelet analysis.

3. Gamma Splines

3.1. Gamma Splines. In this work we introduce that the
gamma spline representation

𝑔
𝑚,𝑏

(𝑡) = 𝑡
𝑚

𝑒
−𝑏𝑡

𝑢 (𝑡) (14)

is born by (𝑚 + 1)-times convolution of the exponential
𝑒
−𝑏𝑡

𝑢(𝑡) by itself. The term gamma spline originates from
the gamma variate defined in the literature as 𝑡

𝛼

𝑒
− 𝑡/𝛽. For

clarity, with the change of the variables to 𝑚 = 𝛼 and 𝑏 =

1/𝛽 we obtain the gamma spline representation (14). Two
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Figure 1: Two typical gamma spline waveforms.

typical gamma spline waveforms are described in Figure 1.
The delayed version of the gamma spline is

𝑔
𝑚,𝑏

(𝑡 − 𝑑) = (𝑡 − 𝑑)
𝑚

𝑒
−𝑏(𝑡−𝑑)

𝑢 (𝑡 − 𝑑)

=

𝑚

∑

𝑘=0

𝑎
𝑘,𝑑

𝑔
𝑘,𝑏

(𝑡) 𝑢 (𝑡 − 𝑑) ,

(15)

where

𝑎
𝑘,𝑑

= (
𝑚

𝑘
) (−𝑑)

𝑚−𝑘

𝑒
𝑏𝑑

. (16)

Themaximum value of the delayed gamma spline is obtained
at time 𝑡max = 𝑑 + 𝑚/𝑏 and the area (1/𝑏)

𝑚+1

Γ(𝑚 + 1).
The continuous-time signal 𝑥(𝑡) can be approximated by a
weighted sum of delayed gamma splines as

𝑥 (𝑡) = ∑

𝑘

𝑐 [𝑘] 𝑔
𝑚,𝑏

(𝑡 − 𝑘) , (17)

where 𝑐[𝑘], 𝑘 = 0, 1, 2, . . . is the scale sequence. We may
compute the scale sequence directly in time domain from the
recursion

𝑥 [1] = 𝑐 [0] 𝑔
𝑚,𝑏

[1] ⇒ 𝑐 [0] =
𝑥 [1]

𝑔
𝑚,𝑏

[1]
,

𝑥 [2] = 𝑐 [0] 𝑔
𝑚,𝑏

[2] + 𝑐 [1] 𝑔
𝑚,𝑏

[1] ⇒

𝑐 [1] =
(𝑥 [2] − 𝑐 [0] 𝑔

𝑚,𝑏
[2])

𝑔
𝑚,𝑏

[1]
,

...

𝑥 [𝑛] =

𝑛−2

∑

𝑘=0

𝑐 [𝑘] 𝑔
𝑚,𝑏

[𝑛 − 𝑘] + 𝑐 [𝑛 − 1] 𝑔
𝑚,𝑏

[1] ⇒

𝑐 [𝑛 − 1] =
(𝑥 [𝑛] − ∑

𝑛−2

𝑘=0
𝑐 [𝑘] 𝑔

𝑚,𝑏
[𝑛 − 𝑘])

𝑔
𝑚,𝑏

[1]
.

(18)

In the following we introduce shortly the most essential
gamma spline signal processing tools.

Interpolation:

𝑥(
𝑡

2
) = 2
−𝑚

∑

𝑘

𝑐 [𝑘] 𝑔
𝑚,𝑏/2

(𝑡 − 2𝑘) . (19)

Decimation:

𝑥 (2𝑡) = 2
𝑚

∑

𝑘

𝑐 [𝑘] 𝑔
𝑚,2𝑏

(𝑡 −
𝑘

2
) . (20)

Derivative:

𝑑

𝑑𝑡
𝑥 (𝑡) = ∑

𝑘

𝑐 [𝑘] (𝑚𝑔
𝑚−1,𝑏

(𝑡 − 𝑘) − 𝑏𝑔
𝑚,𝑏

(𝑡 − 𝑘))

= 𝑚∑

𝑘

𝑐 [𝑘] 𝑔
𝑚−1,𝑏

(𝑡 − 𝑘) − 𝑏𝑥 (𝑡) .

(21)

Integral:

∫

𝑡

0

𝑥 (𝑡) 𝑑𝑡 = ∑

𝑘

𝑐 [𝑘] ∫

𝑡

0

𝑔
𝑚,𝑏

(𝑡 − 𝑘) 𝑑𝑡

= 𝑏
−1

𝑚∑

𝑘

𝑐 [𝑘] ∫

𝑡

0

𝑔
𝑚−1,𝑏

(𝑡 − 𝑘) 𝑑𝑡 − 𝑏
−1

𝑥 (𝑡)

(22)

which follows from the integration by parts

∫

𝑡

0

𝑔
𝑚,𝑏

(𝑡 − 𝑘) 𝑑𝑡 = 𝑏
−1

𝑚∫

𝑡

0

𝑔
𝑚−1

(𝑡 − 𝑘) 𝑑𝑡 − 𝑏
−1

𝑔
𝑚,𝑏

(𝑡 − 𝑘) .

(23)

The previous computational aids are based on the convolu-
tion in the time domain. The drawback comes from the time
consuming computations for long data sequences, since the
number of multiplications increases linearly as a function
of the signal length. The replacement of the convolution by
discrete-time filtering yields fast algorithms. In the following
we construct the discrete gamma spline filter and apply it to
the signal interpolation and approximation.

3.2. Discrete Gamma Splines. The 𝑧-transform of the gamma
spline (14) may be conducted by differentiating

𝐺
𝑚

(𝑧) =

∞

∑

𝑘=0

𝑘
𝑚

𝑒
−𝑏𝑘

𝑧
−𝑘

⇒
𝑑𝐺
𝑚

(𝑧)

𝑑𝑧

= −𝑧
−1

∞

∑

𝑘=0

𝑘
𝑚+1

𝑒
−𝑏𝑘

𝑧
−𝑘

(24)

which yields the recursion

𝐺
0
(𝑧) =

1

1 − 𝑒−𝑏𝑧−1
⇒ 𝐺

𝑚+1
(𝑧) = −𝑧

𝑑𝐺
𝑚

(𝑧)

𝑑𝑧
. (25)
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Table 2: 𝑃
𝑚
(𝑧) polynomial for 𝑚 = 0 to 5.

𝑚 𝑃
𝑚
(𝑧)

0 1
1 𝑒

−𝑏

𝑧
−1

2 𝑒
−𝑏

𝑧
−1

+ 𝑒
−2𝑏

𝑧
−2

3 𝑒
−𝑏

𝑧
−1

+ 4𝑒
−2𝑏

𝑧
−2

+ 𝑒
−3𝑏

𝑧
−3

4 𝑒
−𝑏

𝑧
−1

+ 11𝑒
−2𝑏

𝑧
−2

+ 11𝑒
−3𝑏

𝑧
−3

+ 𝑒
−4𝑏

𝑧
−4

5 𝑒
−𝑏

𝑧
−1

+ 26𝑒
−2𝑏

𝑧
−2

+ 66𝑒
−3𝑏

𝑧
−3

+ 26𝑒
−4𝑏

𝑧
−4

+ 𝑒
−5𝑏

𝑧
−5

This yields a general form

𝐺
𝑚

(𝑧) =
𝑃
𝑚

(𝑧)

(1 − 𝑒−𝑏𝑧−1)
𝑚+1

, (26)

where 𝑃
𝑚
(𝑧) is a polynomial in 𝑧

−1, which is given in Table 2
for𝑚 = 0 to 5.𝐺

𝑚
(𝑧) can be written in cascade realization as

follows:

𝐺
𝑚

(𝑧) = 𝑃
𝑚

(𝑧)

𝑚+1

∏

𝑖=1

1

1 − 𝑒−𝑏𝑧−1
. (27)

The implementation of the gamma spline is possible as a
discrete-time IIR filter in the case the pole 𝑒

−𝑏

< 1. If the
pole lies outside the unit circle, the inverse filtering procedure
(Appendix) has to be used.

3.3. Scale Sequence. When we apply (17), for example, in
interpolation or decimation we have to determine the scale
sequence 𝑐[𝑘]. In the following we present a feasible discrete-
time filter for the computation of the scale coefficient
sequence. The 𝑧-transform of (17) gives

𝑋(𝑧) = 𝐶 (𝑧) 𝐺
𝑚

(𝑧) ⇒ 𝐶 (𝑧) = 𝐺
−1

𝑚
(𝑧)𝑋 (𝑧) (28)

which yields

𝐶 (𝑧) = 𝑃
−1

𝑚
(𝑧)

𝑚+1

∏

𝑖=1

(1 − 𝑒
−𝑏

𝑧
−1

)𝑋 (𝑧) . (29)

The denominator polynomial 𝑃
𝑚
(𝑧) requires special treat-

ment, since it is possible that all the roots are not inside the
unit circle. However, we show in the Appendix that both the
FIR and IIR filteringmethods can be used for implementation
of the 𝑃

−1

𝑚
(𝑧) polynomial.

3.4. Gamma Spline Interpolation Filter. The basic idea in
gamma spline signal processing is the assumption of the
underlying continuous signal, though we process discrete
signal sequences. If the 𝑧-transform of the discrete signal
𝑥[𝑛] is 𝑋(𝑧), the interpolation of the discrete-time signal
yields 𝑋(𝑧

2

), which lacks the odd sequence. When we
consider interpolation of the continuous signal 𝑥(𝑡), the
procedure yields also the odd (approximated intermediate)
signal values. Based on (28) we have the 𝑧-transform of the
interpolated signal as follows:

𝑍{𝑥 [
𝑛

2
]} = 𝐶 (𝑧

2

)𝑍{𝑔
𝑚,𝑏

[
𝑛

2
]} , (30)

where

𝑍{𝑔
𝑚,𝑏

[
𝑛

2
]} =

∞

∑

𝑘=0

(
𝑘

2
)

𝑚

𝑒
−𝑏𝑘/2

𝑧
−𝑘

=

∞

∑

𝑘=0

𝑘
𝑚

𝑒
−𝑏𝑘

𝑧
−2𝑘

+ 𝑧
−1

×

∞

∑

𝑘=0

(𝑘 +
1

2
)

𝑚

𝑒
−𝑏(𝑘+1/2)

𝑧
−2𝑘

.

(31)

Due to (24) we have

𝑍{𝑔
𝑚,𝑏

[
𝑛

2
]} = 𝐺

𝑚
(𝑧
2

) + 𝑧
−1

𝐹
𝑚

(𝑧
2

) , (32)

where

𝐹
𝑚

(𝑧
2

) =

∞

∑

𝑘=0

(𝑘 +
1

2
)

𝑚

𝑒
−𝑏(𝑘+1/2)

𝑧
−2𝑘 (33)

which can be computed from the recursion

𝐹
0
(𝑧) =

𝑒
−𝑏/2

1 − 𝑒−𝑏𝑧−1
⇒ 𝐹
𝑚+1

(𝑧) =
1

2
𝐹
𝑚

(𝑧) − 𝑧
𝑑𝐹
𝑚

(𝑧)

𝑑𝑧
.

(34)

From (30) we obtain

𝑍{𝑥 [
𝑛

2
]} = 𝐶 (𝑧

2

) [𝐺
𝑚

(𝑧
2

) + 𝑧
−1

𝐹
𝑚

(𝑧
2

)]

= 𝐶 (𝑧
2

) 𝐼
𝑚

(𝑧) ,

(35)

where

𝐼
𝑚

(𝑧) = 𝐺
𝑚

(𝑧
2

) + 𝑧
−1

𝐹
𝑚

(𝑧
2

) . (36)

Finally we have

𝑍{𝑥 [
𝑛

2
]} = 𝑋 (𝑧

2

) + 𝑧
−1

𝐶 (𝑧
2

) 𝐹
𝑚

(𝑧
2

) . (37)

Wemay interpret the 𝐼
𝑚
(𝑧) as the gamma spline interpolation

filter, which has the polyphase components 𝐺
𝑚
(𝑧
2

) and
𝐹
𝑚
(𝑧
2

). The application of 𝐼
𝑚
(𝑧) requires the computation

of the scaling sequence 𝐶(𝑧) via (29). We may observe
that the polyphase component 𝐹

𝑚
(𝑧
2

) is responsible for the
approximation of the intermediate points between integer
values of time.

3.5. Fractional Time-Shift Gamma Spline Filter. Next we
introduce the gamma spline filter, which produces the frac-
tional time-shift Δ ∈ [0, 1] for the analyzed signal. The 𝑧

transform of the shifted gamma spline comes from

𝑍 {𝑔
𝑚,𝑏

[𝑘 + Δ]} = 𝐺
𝑚,𝑏

(Δ, 𝑧) =

∞

∑

𝑘=0

(𝑘 + Δ)
𝑚

𝑒
−𝑏(𝑘+Δ)

𝑧
−𝑘

.

(38)
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Using the binomial expansion

(𝑘 + Δ)
𝑚

=

𝑚

∑

𝑛=0

(
𝑚

𝑛
)𝑘
𝑚−𝑛

Δ
𝑛 (39)

we have

𝐺
𝑚,𝑏

(Δ, 𝑧) = 𝑒
−𝑏Δ

𝑚

∑

𝑛=0

(
𝑚

𝑛
)Δ
𝑛

𝐺
𝑚−𝑛,𝑏

(𝑧) . (40)

The previous result indicates that the time-shifted gamma
spline can be represented by a linear combination of the
gamma spines. The time-shifted signal is now obtained as

𝑍 {𝑥 [𝑘 + Δ]} = 𝐶 (𝑧) 𝐺
𝑚,𝑏

(Δ, 𝑧) . (41)

For example, the derivative of the signal can be calculated by
differentiating with respect to Δ as follows:

𝑍{
𝑑

𝑑𝑡
𝑥 [𝑘 + Δ]}

= 𝐶 (𝑧) 𝑒
−𝑏Δ

𝑚

∑

𝑛=0

(
𝑚

𝑛
) (𝑛Δ

𝑛−1

− 𝑏)𝐺
𝑚−𝑛,𝑏

(𝑧) .

(42)

Many systems utilize the fractional delay filters, where the
time-shift Δ is negative. However, we may modify the time-
shift algorithm (41) in the following way:

𝑍 {𝑥 [𝑛 − 𝑑]} = 𝑍 {𝑥 [𝑛 − 1 + 1 − 𝑑]} = 𝑧
−1

𝑍 {𝑥 [𝑛 + 1 − 𝑑]} ,

(43)

where the delay 𝑑 ∈ [0, 1]. Let us now define Δ = 1−𝑑, which
yields

𝑍 {𝑥 [𝑛 − 𝑑]} = 𝑧
−1

𝑍 {𝑥 [𝑛 + Δ]} (44)

which can be computed by applying the original time-shift
algorithm (41).

4. Gamma Spline Wavelet Transform

The general tree structured dual-channel discrete wavelet
transform is illustrated in Figure 2. The analysis part consists
of the low-pass scaling𝐻

0
(𝑧) and the high-pass wavelet filter

𝐻
1
(𝑧). In the synthesis part the reconstruction filters 𝐺

0
(𝑧)

and 𝐺
1
(𝑧) are related to the analysis filters by the perfect

reconstruction (PR) condition as follows:

[
𝐻
0
(𝑧) 𝐻

1
(𝑧)

𝐻
0
(−𝑧) 𝐻

1
(−𝑧)

] [
𝐺
0
(𝑧)

𝐺
1
(𝑧)

] = [
2𝑧
−𝑘

0
] . (45)

The 𝐺
0
(𝑧) and 𝐺

1
(𝑧) are defined as

𝐺
0
(𝑧) = 𝐻

1
(−𝑧) ,

𝐺
1
(𝑧) = −𝐻

0
(−𝑧) .

(46)

In this work we apply the following essential result obtained
in our previouswork [4], which concerns on the PR condition
(45).

Lemma 1. If the scaling filter 𝐻
0
(𝑧), the wavelet filter 𝐻

1
(𝑧),

and the reconstruction filters 𝐺
0
(𝑧)𝐺
1
(𝑧) are related according

to the PR condition (45), the following modified analysis and
synthesis filters obey the PR condition as follows:

H
0
(𝑧) = 𝐹 (𝑧)𝐻

0
(𝑧) ,

H
1
(𝑧) = 𝐹

−1

(−𝑧)𝐻
1
(𝑧) ,

G
0
(𝑧) = 𝐹

−1

(𝑧) 𝐺
0
(𝑧) ,

G
1
(𝑧) = 𝐹 (−𝑧) 𝐺

1
(𝑧) ,

(47)

where 𝐹(𝑧) is any polynomial in 𝑧
−1 and 𝐹

−1

(𝑧) is its inverse.
The result can be proved by direct insertion of (47) into (45).

Definition 2. Thegamma spline wavelet transform consists of
the filter bank

𝐻
0
(𝑧) = 𝐺

−1

𝑚
(𝑧) ,

𝐻
1
(𝑧) = 𝑧

−1

𝐺
𝑚

(−𝑧) ,

𝐺
0
(𝑧) = 𝑧

−1

𝐺
𝑚

(𝑧) ,

𝐺
1
(𝑧) = 𝐺

−1

𝑚
(−𝑧) .

(48)

We may verify that by fixing 𝐻
0
(𝑧) = 1 and 𝐻

1
(𝑧) =

𝑧
−1 and following the result of the Lemma 1 the filter bank
(48) obeys the PR condition (45). The gamma spline 𝐺

𝑚
(𝑧)

can be implemented by cascade of 𝑚 + 1 IIR filters having
exponential impulse response (27). The inverse filter

𝐺
−1

𝑚
(𝑧) = 𝑃

−1

𝑚
(𝑧)

𝑚+1

∏

𝑖=1

(1 − 𝑒
−𝑏

𝑧
−1

) = 𝑃
−1

𝑚
(𝑧)

𝑚+1

∏

𝑖=1

𝑅 (𝑧) ,

(49)

where𝐺
−1

𝑚
(𝑧) is realizable by a cascade of𝑚 FIR filters having

the impulse response 𝑅(𝑧) = 1 − 𝑒
−𝑏

𝑧
−1.

The implementation of the inverse filter 𝑃
−1

𝑚
(𝑧) is

described in the Appendix. The gamma spline scaling filter
𝐻
0
(𝑧) = 𝐺

−1

𝑚
(𝑧) in (48) produces the scale sequence 𝐶(𝑧)

via (28). In multiscale analysis the scaling coefficients 𝑆(𝑧) =

𝐶(𝑧) ↓ 2 (Figure 1) are fed to the following stage. The gamma
spline wavelet𝐻

1
(𝑧) = 𝑧

−1

𝐺
𝑚
(−𝑧)works as a high-pass filter.

5. Shift Invariant Gamma Spline
Wavelet Transform

Main drawback in wavelet analysis is the dependence of
the total energy of the wavelet coefficients on the fractional
time shift of the analysed signal. Let us suppose that we
have a discrete-time signal 𝑥[𝑛] and the corresponding time
shifted signal 𝑥[𝑛 − 𝜏]; where 𝜏 ∈ [0, 1], there occurs a
significant difference in energy of the wavelet coefficients
as a function of the time shift. In a nearly shift invari-
ant method the real and imaginary parts of the complex
wavelet coefficients are approximately a Hilbert transform
pair [10]. The energy of the wavelet coefficients equals to
the envelope, which provides smoothness and approximate
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𝑤𝑛[𝑛]

𝑤𝑛[𝑛]

𝐻0(𝑧)

𝐻1(𝑧)

𝐻0(𝑧)

𝐻1(𝑧)

𝐻0(𝑧)

𝐻1(𝑧)

↑2

↑2
↑2

↑2

↓2

↓2

↓2

↓2

↓2

↓2

𝑤1[𝑛]
𝑤2[𝑛]

𝑠𝑛[𝑛]

𝑠𝑛[𝑛] 𝐺0(𝑧)

𝐺1(𝑧)
𝐺0(𝑧)

𝐺1(𝑧)𝑤𝑛−1[𝑛]

· · ·

· · ·

Figure 2: The analysis and synthesis parts of the tree structured discrete wavelet transform. The decomposition consists of the wavelet
sequences 𝑤

𝑖
[𝑛], 𝑖 = 1, 2, . . . , 𝑛 and one scaling sequence 𝑠

𝑛
[𝑛].

shift invariance. In two parallel conjugate quadrature filter
banks, where the impulse responses of the scaling filters
are half-sample delayed versions of each other: ℎ

0
[𝑛] and

ℎ
0
[𝑛 − 0.5], the wavelet bases are a Hilbert transform pair

[11]. The corresponding relation in biorthogonal filter banks
is obtained using B-spline half-delay filters [4, 8]. In this work
we introduce theHilbert transformfilter based on the gamma
spline representation and construct the shift invariant gamma
spline wavelet transform.

5.1. Hilbert Transform Filter. Wedefine theHilbert transform
filterH(𝑧), which has the frequency response

H (𝜔) = 𝑒
−𝑗𝜋/2 sgn (𝜔) , (50)

where sgn(𝜔) = 1 for 𝜔 ≥ 0 and sgn(𝜔) = −1 for 𝜔 < 0. The
construction ofH(𝑧) is based on the half-sample delay filter

𝐷 (𝑧) = 𝑧
−0.5

=
𝐴 (𝑧)

𝐵 (𝑧)
(51)

whose frequency response is 𝐷(𝜔) = 𝑒
−𝑗𝜔/2. The quadrature

mirror filter 𝐷(−𝑧) has the frequency response 𝐷(𝜔 − 𝜋) =

𝑒
−𝑗(𝜔−𝜋)/2, correspondingly. Now the frequency response of
the filter 𝐷(𝑧)/𝐷(−𝑧) is

𝐷 (𝜔)

𝐷 (𝜔 − 𝜋)
= 𝑒
−𝑗𝜔/2

𝑒
𝑗(𝜔−𝜋)/2

= 𝑒
−𝑗𝜋/2

. (52)

Comparing (50) and using the IIR filter notation (51) we
obtain the Hilbert transform filter as

H (𝑧) =
𝐴 (𝑧) 𝐵 (−𝑧)

𝐵 (𝑧) 𝐴 (−𝑧)
. (53)

The half-delay filter 𝐷(𝑧) in (51) can be realized by the
polyphase components of the gamma spline interpolation
filter 𝐼

𝑚
(𝑧), which yields

𝐷 (𝑧) =
𝑧
−1

𝐹
𝑚

(𝑧)

𝐺
𝑚

(𝑧)
⇒ H (𝑧) = −

𝐹
𝑚

(𝑧) 𝐺
𝑚

(−𝑧)

𝐺
𝑚

(𝑧) 𝐹
𝑚

(−𝑧)
. (54)

5.2. Shift Invariant Wavelet Transform. The Hilbert trans-
form filter is inserted in the BF bank using the result of

Lemma 1 (47).Themodified gamma spline wavelet transform
filter bank is

𝐻
0
(𝑧) = H (𝑧) 𝐺

−1

𝑚
(𝑧) ,

𝐻
1
(𝑧) = H

−1

(−𝑧) 𝑧
−1

𝐺
𝑚

(−𝑧) ,

𝐺
0
(𝑧) = H

−1

(𝑧) 𝑧
−1

𝐺
𝑚

(𝑧) ,

𝐺
1
(𝑧) = H (−𝑧) 𝐺

−1

𝑚
(−𝑧) .

(55)

The filter bank (33) can be highly simplified by noting the
following equivalents:

H
−1

(−𝑧) = H (𝑧) ,

H
−1

(𝑧) = H (−𝑧) .

(56)

By inserting (35) in (33) we obtain a highly simplified filter
bank

𝐻
0
(𝑧) = H (𝑧) 𝐺

−1

𝑚
(𝑧) ,

𝐻
1
(𝑧) = H (𝑧) 𝑧

−1

𝐺
𝑚

(−𝑧) ,

𝐺
0
(𝑧) = H (−𝑧) 𝑧

−1

𝐺
𝑚

(𝑧) ,

𝐺
1
(𝑧) = H (−𝑧) 𝐺

−1

𝑚
(−𝑧) .

(57)

The modified filter bank (57) can be realized by the Hilbert
transform filter H(𝑧), which works as a prefilter for the
analysed signal. On the other hand, the Hilbert transform
filterH(−𝑧) works as a postfilter in the reconstruction stage.

Twoparallel wavelet transforms can be realized by a single
tree by defining the complex Hilbert transform operator

H
𝑎
(𝑧) = 1 + 𝑗H (𝑧) . (58)

By filtering the real-valued signal 𝑥[𝑛] by the Hilbert trans-
form operator results in an analytic signal

𝑥
𝑎
[𝑛] = 𝑥 [𝑛] + 𝑗H {𝑥 [𝑛]} (59)

whose magnitude response is zero at negative side of the
frequency spectrum

𝑋
𝑎
(𝜔) = {

2𝑋 (𝜔) 0 ≤ 𝜔 < 𝜋,

0 −𝜋 ≤ 𝜔 < 0.
(60)
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The wavelet sequence is obtained by decimation of the high-
pass filtered analytic signal

𝑊(𝜔) = [𝑋
𝑎
(𝜔)𝐻

1
(𝜔)]
↓2

= 𝑊
𝑎
(𝜔)
↓2

=
1

2
𝑋
𝑎
(
𝜔

2
)𝐻
1
(
𝜔

2
) .

(61)

The result (61) means that the decimation does not produce
aliasing, but the frequency spectrum is dilated by two. The
frequency spectrum of the undecimated wavelet sequence
𝑊
𝑎
(𝜔) contains frequency components in the range 0 ≤

𝜔 < 𝜋, but the frequency spectrum of the decimated analytic
signal has the frequency band 0 ≤ 𝜔 < 2𝜋. Hence, the
decimation does not produce overlapping and leakage to
the negative frequency range. The Fourier transform of the
decimated wavelet sequence 𝑤[𝑛 − 𝜏/2] of the fractionally
delayed signal 𝑥[𝑛 − 𝜏] is 𝑒

−𝑗𝜔𝜏/2

𝑊
𝑎
(𝜔/2)/2. The energy of

the decimated wavelet coefficients is |𝑊(𝜔/2)|/2, which does
not depend on the fractional delay 𝜏. Hence, the wavelet
coefficients are shift invariant in respect to their energy
content.

6. Discussion

The symmetric property of the compactly supported that
B-splines is advantageous in many real-time applications,
such as video and image compression and enhancement, as
it reduces the complexity and machine run time. The B-
spline signal processing is used vastly in CAD and other
computer graphics for reproducing functions from only a
few control points and/or boundary conditions. B-splines
involve the parametric and geometric continuities, which, for
example, improve the reconstruction performance of the 3D
tomography.

In this frameworkwe introduce the gamma splines, which
are born by 𝑚-times convolution of the exponential 𝑒−𝑏𝑡 by
itself. The main reason for the selection of the exponential
kernel function is that it can be described uniquely both
in continuous and discrete-time domains by the single-
pole functions 1/(𝑠 + 𝑏) and 1/(1 + 𝑒

−𝑏

𝑧
−1

). Depending
on an implementation the application of the gamma spline
parameters 𝑚 and 𝑏 can be optimally adjusted. In many
applications we have selected 𝑚 = 𝑏, which means that the
maximum is attained at 𝑡 = 1. However, only the discrete-
time domain solution of the scale sequence (18) requires this
condition. The cascade realization (27) permits an extremely
fast implementation in embedded VLSI environment, even
in the case the single-pole 𝑒

−𝑏 lies outside the unit circle. The
Appendix describes two variants of the time inversed filtering
procedure.

It should be pointed out that the gamma splines are
not compactly supported. By increasing the value of the
parameter 𝑚 the shape of the gamma spline becomes more
symmetrical, and the time support decreases. The 𝑚 param-
eter affects the initial slope of the gamma spline and 𝑏 the
exponential damping rate. At very high values of 𝑚 the
gamma spline approaches the delta function, and (17) is
close to the conventional Shannon’s sampling theorem. The
PR property of the shift invariant gamma spline wavelet

bank (57) is not dependent on the selection of the 𝑚 and 𝑏

parameters. Hence, we may easily construct adaptive gamma
spline wavelets, where 𝑚 and 𝑏 parameters are self-adjusting
according to some cost criteria or error function. Recently
our research group introduced an adaptive matrix-vector
gradient algorithm [12], which can be used for optimization
of the 𝑚 and 𝑏 parameters to match for special signal
features. Our preliminary results in wireless transmission of
the ambulatory ECG indicate that the adaptive gamma spline
wavelets improved compression performance compared with
the static B-spline wavelets. The clinical results will be
published elsewhere [13].

In wavelet analysis the smoothness of the scaling filter is
an important feature, whichwould allow shift invariance [10].
In this work we introduced the shift invariant gamma spline
wavelet transform, which is based on a Hilbert transform
filter (54). It appeared that the modified filter bank (36) can
be realized by the Hilbert transform filter, which works as a
prefilter for the analysed signal and as a postfilter in the recon-
struction stage, respectively. By defining the complex Hilbert
transform operator (58), two parallel wavelet transforms can
be realized by a single-tree structured transform (Figure 2).

The present gamma spline formulation offers a plenty of
new tools for signal and image processing. For example, in
biomedical signal analysis EEG, ECG, and EMG signals are
not symmetric but owe an exponential tail or resemble damp-
ing sinusoidal waveforms.We have previously shown that the
shift invariant B-spline wavelets are useful in the subscale
analysis of EEG signals [8]. According to our experience the
shift invariant gamma spline wavelets fit somewhat better to
the neuroelectric spikes compared with the biorthogonal B-
spline wavelets. However, a larger medical study is required
to warrant this preliminary observation.

In our previous work we introduced a novel wavelet
excitation method for measurement of the system trans-
fer function [14]. The method employs system excitation
by wavelet shaped waveforms instead of commonly used
impulse or sinusoidal excitation.The system transfer function
can be reconstructed from the output measurements. Data
acquisition can be designed, so that if 𝑁 different excitation
sequences are used and the excitation rate is 𝑓, the sampling
rate can be reduced to 𝑓/𝑁. Gamma splines can be realized
by a cascade of identical RC filters [15]. Hence, the system
can be excited by analog waveforms instead of the zero-order
hold signal produced by the digital-to-analog converter.
The gamma spline excitation method permits high speed
applications, where the sampling rate may be considerably
lower compared with system bandwidth. The method is
especially advantageous in testing systems, where impulse or
sinusoidal excitation cannot be applied.

Appendix

Implementation of the Inverse Filter 𝑃
𝑛

−1

(𝑧)

The inverse filter 𝑃
𝑛

−1

(𝑧) can be generally factored into the
product of the filter 𝐻

𝑖
(𝑧) as follows:

𝑃
𝑛

−1

(𝑧) = 𝑐

𝑟

∏

𝑖=1

1

1 − 𝑧
𝑖
𝑧−1

= 𝑐

𝑟

∏

𝑖=1

𝐻
𝑖
(𝑧) , (A.1)
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where 𝑐 is a constant and 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑟
are the roots of the

𝑃
𝑛
(𝑧) polynomial. Let us consider a filter 𝐻

𝑖
(𝑧), whose root

𝑧
𝑖
lies outside the unit circle. By replacing 𝑧 by 𝑧

−1 we have

𝐻
𝑖
(𝑧
−1

) =
−𝑧
−1

𝑖
𝑧
−1

1 − 𝑧
−1

𝑖
𝑧−1

(A.2)

which has the impulse response

ℎ
𝑖
[−𝑛] = [0 −𝑧

−1

𝑖
−𝑧
−2

𝑖
⋅ ⋅ ⋅ −𝑧

−𝑚

𝑖
] . (A.3)

The length of filter has been selected, so that the coefficient
−𝑧
−𝑚−1

𝑖
is negligible. Now 𝐻

𝑖
(𝑧) can be implemented by the

FIR filter having the impulse response

ℎ
𝑖
[𝑛] = [−𝑧

−𝑚

𝑖
−𝑧
−𝑚+1

𝑖
−𝑧
−𝑚+2

𝑖
⋅ ⋅ ⋅ −𝑧

−1

𝑖
] . (A.4)

The disadvantage of the FIR implementation is that if the
root 𝑧

𝑖
is close to the unit circle, the sequence (A.3) vanishes

relatively slowly. A competitive method is the inverse IIR
filtering procedure. If the input signal is 𝑢[𝑘] and the output
signal is 𝑦[𝑘] we have

𝑌 (𝑧
−1

) = 𝐻
𝑖
(𝑧
−1

)𝑈 (𝑧
−1

) =
−𝑧
−1

𝑖
𝑧
−1

1 − 𝑧
−1

𝑖
𝑧−1

𝑈(𝑧
−1

) . (A.5)

The final output is obtained by reversing the resulting
sequence.The followingMATLAB program rfilter.m demon-
strates the method

𝑦 = rfilter (𝑢, 𝑧
𝑖
)

𝑢 = 𝑢 (end : −1 : 1) ;

𝑎 = [0 −𝑧
−1

𝑖
] ; 𝑏 = [1 −𝑧

−1

𝑖
] ;

𝑦 = filter (𝑎, 𝑏, 𝑢) ;

𝑦 = 𝑦 (end : −1 : 1) ;

(A.6)
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