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We study delayed cellular neural networks on time scales. Without assuming the boundedness of
the activation functions, we establish the exponential stability and existence of periodic solutions.
The results in this paper are completely new even in case of the time scale T = R or Z and improve
some of the previously known results.

1. Introduction

Consider the following cellular neural networks with state-dependent delays on time scales:

xΔ
i (t) = −ci(t)xσ

i (t) +
n∑

j=1

aij(t)fj(x(t)) +
n∑

j=1

bij(t)fj
(
xj

(
ξij(t, x(t))

))
+ Ii(t), t ∈ T, (1.1)

where i = 1, 2, . . . , n, T is an ω-periodic time scale which has the subspace topology inherited
from the standard topology on R, xσ

i (t) = xi(σ(t)), σ(t) will be defined in the next section,
x(t) = (x1(t), x2(t), . . . , xn(t)), n corresponds to the number of units in the neural network,
xi(t) corresponds to the state of the ith unit at time t, fj(xj(t)) denotes the output of the
jth unit on ith unit at time t, bij denotes the strength of the jth unit on the ith unit at time
ξij(t, x(t)), Ii denotes the external bias on the ith unit at time t, t − ξij(t, x(t)) corresponds to
the transmission delay along the axon of the jth unit, ci represents the rate with which the
ith unit will reset its potential to the resting state in isolation when disconnected from the
network and external inputs.
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It is well known that the cellular neural networks have been successfully applied to
signal processing, pattern recognition, optimization, and associative memories, especially
in image processing and solving nonlinear algebraic equations. They have been widely
studied both in theory and applications [1–3]. Many results for the existence of their periodic
solutions and the exponential convergence properties for cellular neural networks have been
reported in the literatures. See, for instance, [4–17] and references cited therein.

In fact, continuous and discrete systems are very important in implementation and
applications. It is well known that the theory of time scales has received a lot of attention
which was introduced by Stefan Hilger in order to unify continuous and discrete analysis.
Therefore, it is meaningful to study dynamic systems on time scales which can unify
differential and difference systems see [18–28].

When T = R, ξij(t, ·) ≡ t − τij(t), (1.1) reduces to

x′
i(t) = −ci(t)xi(t) +

n∑

j=1

aij(t)fj
(
xj(t)
)
+

n∑

j=1

bij(t)fj
(
xj

(
t − τij(t)

))
+ Ii(t), (1.2)

where i = 1, 2, . . . , n. By using Mawhin’s continuation theorem and Liapunov functions, the
authors [6, 14] obtained the existence and stability of periodic solutions of (1.2), respectively.

Furthermore, (1.1) also covers discrete system (for when T = Z, ξij(n, ·) ≡ n − τij(n);
see [15])

xi(n + 1) = xi(n)e−ci(n)h + θi(h)
m∑

j=1

aij(n)fj
(
xj(n)

)

+ θi(h)
m∑

j=1

bij(n)fj
(
xj

(
n − τij(n)

))
+ θi(h)Ii(n),

(1.3)

where θi(h) = (1−e−ci(n)h)/ci(n), i = 1, 2, . . . , m. In [15], the author firstly obtained the discrete-
time analogue of (1.3) by the semidiscretization technique [29, 30], and then some sufficient
conditions for the existence and global asymptotical stability of periodic solutions of (1.3)
were established by using Mawhin’s continuation theorem and Liapunov functions.

However, in [5, 13–15], the activation functions fj , j = 1, 2, . . . , n are assumed to be
bounded. Our main purpose of this paper is to establish the stability and existence of periodic
solutions of (1.1)without assuming the boundedness of the activation functions.

For the sake of convenience, we denote

ci = max
t∈[0,ω]

T

|ci(t)|, ci = min
t∈[0,ω]

T

|ci(t)|, aij = max
t∈[0,ω]

T

∣∣aij(t)
∣∣,

bij = max
t∈[0,ω]

T

∣∣bij(t)
∣∣, Ii = max

t∈[0,ω]
T

|Ii(t)|, i, j = 1, 2, . . . , n.
(1.4)

Throughout this paper, we assume that

(H1) ξij(·, ·) ∈ C(T × R
n, [0,∞)

T
) is ω-periodic with respect to its first argument and

satisfies ξij(t, x) ≤ τ for all (t, x) ∈ T × R
n, ci ∈ C(T, (0,+∞)), aij , bij , Ii ∈ C(T,R), i,

j = 1, 2, . . . , n are ω-periodic functions;
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(H2) fj ∈ C(R,R), and there exists a positive number Mj such that |fj(x) − fj(y)| �
Mj |x − y| for all x, y ∈ R, j = 1, 2, . . . , n.

The initial conditions of system (1.1) are of the following form:

xi(s) = φi(s), i = 1, 2, . . . , n, s ∈ [−τ, 0]
T
, τ = max

1�i�n,1�j�n
max

t∈[0,ω]
T

∣∣τij(t)
∣∣, (1.5)

where φi ∈ C([−τ, 0]
T
,R), i = 1, 2, . . . , n.

The organization of this paper is as follows. In Section 2, we introduce some lemmas
and definitions and state some preliminary results needed in later sections, which will be
used in latter sections. In Section 3, we will study the existence of periodic solutions of
system (1.1) by using the method of coincidence degree. In Section 4, we will derive sufficient
conditions to ensure that the periodic solutions of (1.1) are globally exponentially stable. In
Section 5, an example is also provided to illustrate the effectiveness of the main results in
Sections 3 and 4. The conclusions are drawn in Section 6.

2. Preliminaries

In this section, we will introduce some notations and definitions and state some preliminary
results.

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators σ, ρ : T → T and the graininess μ : T → R

+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ(t) − t. (2.1)

A point t ∈ T is called left dense if t > infT and ρ(t) = t, left scattered if ρ(t) < t,
right dense if t < supT and σ(t) = t, and right scattered if σ(t) > t. If T has a left-scattered
maximum m, then T

k = T \ {m}; otherwise T
k = T. If T has a right-scattered minimum m,

then Tk = T \ {m}; otherwise Tk = T.
A function f : T → R is right dense continuous provided that it is continuous at right-

dense point in T, and its left-side limits exist at left-dense points in T. If f is continuous at
each right-dense point and each left-dense point, then f is said to be continuous function on
T. The set of continuous functions f : T → R will be denoted by C(T).

For y : T → R and t ∈ T
k, we define the delta derivative of y(t), yΔ(t), to be the

number (if it exists) with the property that for a given ε > 0, there exists a neighborhood U
of t such that

∣∣∣
[
y(σ(t)) − y(s)

] − yΔ(t)[σ(t) − s]
∣∣∣ < ε|σ(t) − s| ∀s ∈ U. (2.2)

If y is continuous, then y is right-dense continuous, and if y is delta differentiable at t,
then y is continuous at t.

Let y be right dense continuous. If YΔ(t) = y(t), then we define the delta integral by∫ t
a y(s)Δs = Y (t) − Y (a).

Definition 2.1 (see [31]). We say that a time scale T is periodic if there exists p > 0 such that if
t ∈ T, then t ± p ∈ T. For T/=R, the smallest positive p is called the period of the time scale.
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Definition 2.2 (see [31]). Let T/=R be a periodic time scale with period p. We say that the
function f : T → R is periodic with period ω if there exists a natural number n such that
ω = np, f(t+ω) = f(t) for all t ∈ T, and ω is the smallest number such that f(t+ω) = f(t). If
T = R, we say that f is periodic with period ω > 0 if ω is the smallest positive number such
that f(t +ω) = f(t) for all t ∈ T.

If T is ω periodic, then σ(t +ω) = σ(t) +ω and μ(t) is an ω-periodic function.

Definition 2.3 (see [32]). A function p : T → R is said to be regressive provided that 1 +
μ(t)p(t)/= 0 for all t ∈ T

k, where μ(t) = σ(t) − t is the graininess function. The set of all
regressive rd-continuous functions f : T → R is denoted by R while the set R+ is given by
{f ∈ R : 1 + μ(t)f(t) > 0} for all t ∈ T. Let p ∈ R. The exponential function is defined by

ep(t, s) = exp

(∫ t

s

ξμ(τ)
(
p(τ)
)
Δτ

)
, (2.3)

where ξh(z) is the so-called cylinder transformation.

Let p, q : T → R be two regressive functions, and we define

p ⊕ q := p + q + μpq, 
p := − p

1 + μp
, p 
 q := p ⊕ (
q). (2.4)

Then the generalized exponential function has the following properties.

Lemma 2.4 (see [32]). Assume that p, q : T → R are two regressive functions, and then

(1) ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s);

(2) ep(t, s) = 1/ep(s, t) = e
p(s, t);

(3) ep(t, s)ep(s, r) = ep(t, r).

Lemma 2.5 (see [32]). Assume that f , g : T → R are delta differentiable at t ∈ T
k. Then

(
fg
)Δ(t) = fΔ(t)g(t) + f(σ(t))gΔ(t) = f(t)gΔ(t) + fΔ(t)g(σ(t)). (2.5)

Lemma 2.6 (see [32]). If a, b ∈ T, α, β ∈ R, and f , g ∈ C(T,R), then

(1)
∫b
a[αf(t) + βg(t)]Δt = α

∫b
a f(t)Δt + α

∫b
a g(t)Δt;

(2) if f(t) ≥ 0 for all a ≤ t < b, then
∫b
a f(t)Δt ≥ 0;

(3) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then | ∫ba f(t)Δt| ≤ ∫ba g(t)Δt.

Lemma 2.7 (see [33]). Let t1, t2 ∈ [0, ω]
T
. If x : T → R is ω periodic, then

x(t) � x(t1) +
∫ω

0

∣∣∣xΔ(s)
∣∣∣Δs, x(t) � x(t2) −

∫ω

0

∣∣∣xΔ(s)
∣∣∣Δs. (2.6)
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Definition 2.8. The periodic solution x∗(t) = (x∗
1(t), x

∗
2(t), . . . , x

∗
n(t))

T of system (1.1) is said
to be exponentially stable if there exists a positive constant α with 
α ∈ R+ such that
for every δ ∈ [−τ, 0]

T
, and there exists N = N(δ) � 1 such that the solution x(t) =

(x1(t), x2(t), . . . , xn(t))
T of system (1.1) through (δ, x(δ)) satisfies

n∑

i=1

∣∣xi(t) − x∗
i (t)
∣∣ � N

∥∥φ(δ) − x∗(δ)
∥∥e
α(t, δ), t ∈ T

+ := [0,∞)
T
, (2.7)

where ‖φ(δ) − x∗(δ)‖ =
∑n

i=1 maxδ∈[−τ,0]
T
|φi(δ) − x∗

i (δ)|.

In order to show that there exists at least one ω-periodic solution of system (1.1), we
need the following concepts and result which are cited from [34].

Let X, Y be Banach spaces, L : Dom L ⊂ X → dimY be a linear mapping, and N :
X → Y be a continuousmapping. Themapping Lwill be called a Fredholmmapping of index
zero if dimKer L = co dim Im L < +∞ and Im L is closed in Y. If L is a Fredholm mapping
of index zero and there exists continuous projector P : X → X and Q : Y → Y such that
Im P = Ker L,Ker Q = Im(I −Q), it follows that mapping L|Dom L∩Ker P : (I − P)X → Im L is
invertible. We denote the inverse of that mapping byKP . IfΩ is an open bounded subset of X,
themappingN will be called L compact onΩ ifQN(Ω) is bounded andKP (I−Q)N : Ω → X

is compact.

Lemma 2.9 (see [34]). Let X, Y be two Banach spaces and Ω ⊂ X be open bounded and symmetric
with 0 ∈ Ω. Suppose that L : D(L) ⊂ X → Y is a linear Fredholm operator of index zero with
D(L) ∩Ω/= ∅, and N : Ω → Y is L compact. Further, one also assumes that

(H) Lx −Nx/=λ(−Lx −N(−x)) for all x ∈ D(L) ∩ ∂Ω, λ ∈ (0, 1].

Then equation Lx = Nx has at least one solution on D(L) ∩Ω.

Definition 2.10 (see [35]). A real matrix P = (pij)n×n is said to be a nonsingular M matrix if
pij ≤ 0, i, j = 1, 2, . . . , n, i /= j, and all successive principal minors of P are positive.

For A = (aij)m×n, B = (bij)m×n ∈ R
mn, A ≥ B(A > B) means that each pair of

corresponding elements of A and B such that aij ≥ bij (aij > bij).

Lemma 2.11 (see [35]). Assume that P is a nonsingular M matrix and Py ≤ h, then y ≤ P−1h.

3. Existence of Periodic Solutions

In this section, by Lemma 2.9, we will study the existence of at least one periodic solution of
system (1.1).

Theorem 3.1. Suppose that (H1)-(H2) holds, E = (eij)n×n is a nonsingular M matrix, where

eij = z

{
ri + dii i = j,

dij i /= j,
(3.1)
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and ri = ci(1 −ωci)/(1 + ciω), dij = −(aij + bij)Mj , i, j = 1, 2, . . . , n, then system (1.1) has at least
one ω-periodic solution.

Proof. Let

X = Y =
{
x = (x1, x2, . . . , xn)T ∈ C(T,R) : x(t +ω) = x(t), t ∈ T

}
(3.2)

with the norm defined by ‖x‖ = max1≤i≤n|xi|0, where |xi|0 = maxt∈[0,ω]
T
|xi(t)|, then X and Y

are Banach spaces.
Set

Lx = xΔ(t), Px = Qx =
1
ω

∫ω

0
x(t)Δt, x ∈ X, (3.3)

and N : X → Y

Nxi(t) = −ci(t)xσ
i (t) +

n∑

j=1

aij(t)fj
(
xj(t)
)
+

n∑

j=1

bij(t)fj
(
xj

(
ξij(t, x(t))

))
+ Ii(t), (3.4)

where i = 1, 2, . . . , n. Obviously, Ker L = R
n, Im L = {x ∈ X :

∫ω
0 x(s)Δs = 0} is closed in Y

and

dim Ker L = n = codim Im L. (3.5)

Hence, L is a Fredholm mapping of index zero. Furthermore, similar to the proof of
Theorem 3.4 in [21], one can easily show that N is L compact on Ω with any open bounded
setΩ ⊂ X. Corresponding to the operator equation Lx −Nx = λ(−Lx −N(−x)), λ ∈ (0, 1], we
have

xΔ
i (t) =

1
1 + λ

⎡

⎣−ci(t)xσ
i (t) +

n∑

j=1

aij(t)fj
(
xj(t)
)
+

n∑

j=1

bij(t)fj
(
xj

(
ξij(t, x(t))

))
+ Ii(t)

⎤

⎦

− λ

1 + λ

⎡

⎣ci(t)xσ
i (t) +

n∑

j=1

aij(t)fj
(−xj(t)

)
+

n∑

j=1

bij(t)fj
(−xj

(
ξij(t, x(t))

))
+ Ii(t)

⎤

⎦,

(3.6)

where i = 1, 2, . . . , n.
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Suppose that x = (x1, x2, . . . , xn)
T is a solution of system (3.6) for some λ ∈ (0, 1]. In

view of (3.6) and (H2), we have

∫ω

0

∣∣∣xΔ
i (t)
∣∣∣Δt ≤

∫ω

0

∣∣ci(t)xσ
i (t)
∣∣Δt +

∫ω

0
|Ii(t)|Δt

+
1

1 + λ

∫ω

0

∣∣∣∣∣∣

⎡

⎣
n∑

j=1

aijfj
(
xj(t)
)
+

n∑

j=1

bijfj
(
xj

(
ξij(t, x(t))

))
⎤

⎦

∣∣∣∣∣∣
Δt

+
λ

1 + λ

∫ω

0

∣∣∣∣∣∣

⎡

⎣
n∑

j=1

aijfj
(−xj(t)

)
+

n∑

j=1

bijfj
(−xj

(
ξij(t, x(t))

))
⎤

⎦

∣∣∣∣∣∣
Δt

�
∫ω

0
ci
∣∣xσ

i (t)
∣∣Δt +

∫ω

0

⎡

⎣
n∑

j=1

aij

(
Mj

∣∣xj(t)
∣∣ +
∣∣fj(0)

∣∣)

+
n∑

j=1

bij
(
Mj

∣∣xj

(
ξij(t, x(t))

)∣∣ +
∣∣fj(0)

∣∣) + Ii

⎤

⎦Δt

� ciω|xi|0 +ω
n∑

j=1

(
aij + bij

)
Mj

∣∣xj

∣∣
0 +ω

⎡

⎣
n∑

j=1

(
aij + bij

)∣∣fj(0)
∣∣ + Ii

⎤

⎦

� ciω|xi|0 +ω
n∑

j=1

(
aij + bij

)
Mj

∣∣xj

∣∣
0 +ωαi, i = 1, 2, . . . , n,

(3.7)

where αi =
∑n

j=1(aij + bij)|fj(0)| + Ii.
Integrating both sides of (3.6) from 0 to ω, we obtain that

∫ω

0
ci(t)xσ

i (t)Δt =
1

1 + λ

∫ω

0

⎡

⎣
n∑

j=1

aij(t)fj
(
xj(t)
)
+

n∑

j=1

bij(t)fj
(
xj

(
ξij(t, x(t))

))
+ Ii(t)

⎤

⎦Δt

− λ

1 + λ

∫ω

0

⎡

⎣
n∑

j=1

aij(t)fj
(−xj(t)

)
+

n∑

j=1

bij(t)fj
(−xj

(
ξij(t, x(t))

))
+ Ii(t)

⎤

⎦Δt,

(3.8)

where i = 1, 2, . . . , n. Then we have from (3.7) that

∣∣∣∣

∫ω

0
ci(t)xσ

i (t)Δt

∣∣∣∣ �
∫ω

0

⎡

⎣
n∑

j=1

∣∣aij(t)fj
(
xj(t)
)∣∣ +

n∑

j=1

∣∣bij(t)fj
(
xj

(
ξij(t, x(t))

))∣∣ + |Ii(t)|
⎤

⎦Δt

� ω
n∑

j=1

(
aij + bij

)
Mj

∣∣xj

∣∣
0 +ωαi, i = 1, 2, . . . , n.

(3.9)
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From Lemma 2.7, for any ti1, t
i
2 ∈ [0, ω]

T
, i = 1, 2, . . . , n, we have

∫ω

0
ci(t)xσ

i (t)Δt �
∫ω

0
ci(t)xi

(
ti1

)
Δt +

∫ω

0
ci(t)
(∫ω

0

∣∣∣xΔ
i (t)
∣∣∣Δt

)
Δt,

∫ω

0
ci(t)xσ

i (t)Δt �
∫ω

0
ci(t)xi

(
ti2

)
Δt −

∫ω

0
ci(t)
(∫ω

0

∣∣∣xΔ
i (t)
∣∣∣Δt

)
Δt, i = 1, 2, . . . , n.

(3.10)

Dividing by
∫ω
0 ci(t)Δt on the two sides of the inequalities above, we obtain that

−xi

(
ti1

)
� − 1
∫ω
0 ci(t)Δt

∫ω

0
ci(t)xσ

i (t)Δt +
∫ω

0

∣∣∣xΔ
i (t)
∣∣∣Δt, (3.11)

xi

(
ti2

)
� 1
∫ω
0 ci(t)Δt

∫ω

0
ci(t)xσ

i (t)Δt +
∫ω

0

∣∣∣xΔ
i (t)
∣∣∣Δt, i = 1, 2, . . . , n. (3.12)

Let |xi(ti0)| = maxt∈[0,ω]
T
|xi(t)|, i = 1, 2, . . . , n. If for some i = 1, 2, . . . , n, xi(ti0) � 0, we

choose ti2 = ti0. Hence maxt∈[0,ω]
T
|xi(t)| = xi(ti2). From (3.12), we have

ci|xi|0 � ci

(
1

∫ω
0 ci(t)Δt

∫ω

0
ci(t)xσ

i (t)Δt +
∫ω

0

∣∣∣xΔ
i (t)
∣∣∣Δt

)

� 1
ω

∣∣∣∣

∫ω

0
ci(t)xσ

i (t)Δt

∣∣∣∣ + ci

∫ω

0

∣∣∣xΔ
i (t)
∣∣∣Δt.

(3.13)

If for some i = 1, 2, . . . , n, xi(ti0) � 0, we choose ti1 = ti0. Hence maxt∈[0,ω]
T
|xi(t)| = −xi(ti1). From

(3.11), we also have (3.13).
By using (3.7) and (3.9) and (3.13), for i = 1, 2, . . . , n, we obtain that

ci|xi|0 �
n∑

j=1

(
aij + bij

)
Mj

∣∣xj

∣∣
0 + αi + ciω|xi|0 + ciω

n∑

j=1

(
aij + bij

)
Mj

∣∣xj

∣∣
0 + ciωαi, (3.14)

so,

ci(1 −ωci)(
1 + ciω

) |xi|0 �
n∑

j=1

(
aij + bij

)
Mj

∣∣xj

∣∣
0 + αi, (3.15)

namely,

ri|xi|0 −
n∑

j=1

dij

∣∣xj

∣∣
0 � αi, i = 1, 2, . . . , n. (3.16)

Denote the following:

|x|0 = (|x1|0, |x2|0, . . . , |xn|0)T , C = (α1, α2, . . . , αn)T . (3.17)
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Thus (3.16) is rewritten in the matrix form

E|x|0 � C. (3.18)

From the conditions of Theorem 3.1, E is a nonsingular M matrix, therefore

|x|0 � E−1C := (B1, B2, . . . , Bn)T , (3.19)

that is, |xi|0 � Bi, i = 1, 2, . . . , n.
Take A = max1≤i≤nBi + 1 and

Ω = {x ∈ X : ‖x‖ < A}. (3.20)

It is clear that Ω satisfies all the requirements in Lemma 2.9, and condition (H) is satisfied. In
view of all the discussions above, we conclude from Lemma 2.9 that system (1.1) has at least
one ω-periodic solution. This completes the proof.

From Theorem 3.1, when T = R, ξij(t, ·) ≡ t − τij(t), we have the following.

Corollary 3.2. Under assumptions of Theorem 3.1, system (1.2) has at least one ω-periodic solution.

When T = Z, ξij(n, ·) ≡ n − τij(n), from Theorem 3.1, we have the following.

Corollary 3.3. Under assumptions of Theorem 3.1, system (1.3) has at least one ω-periodic solution.

4. Global Exponential Stability of the Periodic Solution

In this section, we will establish some results for the global exponential stability of the
periodic solution of (1.1). The following lemma is essential.

Lemma 4.1 (see [36]). Let p : T → R be rd-continuous and regressive. Suppose that f : T → R is
rd-continuous, δ ∈ T, and y0 ∈ R. Then y is the unique solution of the initial value problem

yΔ(t) + p(t)yσ(t) = h(t), y(δ) = y0, (4.1)

if and only if

y(t) = e
p(t, δ)y0 +
∫ t

δ

e
p(t, s)h(s)Δs. (4.2)

Theorem 4.2. Assume (H1), (H2), and (H4) hold. Furthermore, suppose that

(H5) for t ∈ [0, ω]
T
, i = 1, 2, . . . , n, ci(t) − M̂ > 0, where M̂ = max1≤i≤n{

∑n
j=1 aijMj +

∑n
j=1 bijMj}

holds. Then the ω-periodic solution of system (1.1) is globally exponentially stable.
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Proof. From Theorem 3.1, we see that system (1.1) has at least one ω-periodic solution x∗(t) =
(x∗

1(t), x
∗
2(t), . . . , x

∗
n(t))

T . Let x(t) = (x1(t), x2(t), . . . , xn(t))
T be an arbitrary solution of system

(1.1). Let y(t) = x(t) − x∗(t), and then we obtain that

yΔ
i (t) = − ci(t)yσ

i (t) +
n∑

j=1

aij(t)
[
f
(
xj(t)
) − f

(
x∗
j (t)
)]

+
n∑

j=1

bij(t)
[
fj
(
xj

(
ξij(t, x(t))

)) − fj
(
x∗
j

(
ξij(t, x(t))

))]
, i = 1, 2, . . . , n

(4.3)

with initial values given by

yi(s) = ϕi(s) − x∗
i (s), s ∈ [−τ, 0]

T
, i = 1, 2, . . . , n, (4.4)

where each ϕi ∈ C[(−τ, 0]
T
,R] is bounded.

Let h(t) = (h1(t), h2(t), . . . , hn(t))
T and

hi(t) =
n∑

j=1

aij(t)
(
f
(
xj(t)
) − f

(
x∗
j (t)
))

+
n∑

j=1

bij(t)
[
fj
(
xj

(
ξij(t, x(t))

)) − fj
(
x∗
j

(
ξij(t, x(t))

))]
, i = 1, 2, . . . , n.

(4.5)

From Lemma 4.1, then

yi(t) = e
ci(t, δ)y0 +
∫ t

δ

e
ci(t, s)hi(s)Δs, i = 1, 2, . . . , n, δ ∈ (−∞, 0]
T
, t ≥ δ (4.6)

is the unique solution of (4.3) with initial value y(δ) = y0. From (4.6), we have

∣∣yi(t)
∣∣

e
ci(t, δ)
≤ ∣∣y0

∣∣ +
∫ t

δ

1
e
ci(s, δ)

|hi(s)|Δs, i = 1, 2, . . . , n, t ≥ δ (4.7)

and, according to (4.5), we can obtain that

‖h‖ ≤
⎛

⎝
n∑

j=1

aijMj +
n∑

j=1

bijMj

⎞

⎠∥∥y
∥∥ ≤ M̂

∥∥y
∥∥, i = 1, 2, . . . , n, t ≥ δ. (4.8)

Thus, by (4.7), we have

∥∥y
∥∥

e
ci(t, δ)
≤ ∥∥y0

∥∥ +
∫ t

δ

M̂

∥∥y
∥∥

e
ci(s, δ)
Δs, i = 1, 2, . . . , n, t ≥ δ. (4.9)
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By virtue of Gronwall’s inequality ([32], Corollary 6.7), we obtain

∥∥y
∥∥

e
ci(t, δ)
≤ ∥∥y0

∥∥eM̂(t, δ), i = 1, 2, . . . , n, t ≥ δ. (4.10)

Hence we have

∥∥y
∥∥ ≤ ∥∥y0

∥∥eM̂(t, δ)e
ci(t, δ)

≤ ∥∥y0
∥∥e
ci⊕M̂(t, δ)

=
∥∥y0
∥∥e−(ci−M̂)/(1+μci)(t, δ)

≤ ∥∥y0
∥∥e−γ(t, δ), t ≥ δ,

(4.11)

where γ = min1≤i≤n{(ci − M̂)/(1 + μci)}, i = 1, 2, . . . , n. We can rewrite (4.10) as follows

n∑

i=1

∥∥xi(t) − x∗
i (t)
∥∥ ≤ ∥∥φ(δ) − x∗(δ)

∥∥e−γ(t, δ), t ≥ δ. (4.12)

Therefore, the ω-periodic solution of system (1.1) is globally exponentially stable. This
completes the proof.

From Theorem 4.2, when T = R, ξij(t, ·) ≡ t − τij(t), we have the following.

Corollary 4.3. Under assumptions of Theorem 4.2, all the ω-periodic solutions of system (1.2) are
globally exponentially stable.

When T = Z, ξij(n, ·) ≡ n − τij(n), we have the following.

Corollary 4.4. Under assumptions of Theorem 4.2, all the ω-periodic solutions of system (1.3) are
globally exponentially stable.

Remark 4.5. Corollaries 3.2 and 4.3 improve the corresponding results obtained in [4–6, 13, 14]
and are different from those in [8, 11, 12, 16, 17] and the references cited therein. Therefore,
the results of this paper are new, and they complement previously known results. Corollaries
3.3 and 4.4 improve the results obtained in [15].

5. An Example

Consider the following cellular neural networks with delays:

xΔ
i (t) = −ci(t)xi(t) +

2∑

j=1

aij(t)fj
(
xj(t)
)
+

2∑

j=1

bij(t)fj
(
xj

(
t − τij(t)

))
+ Ii(t), (5.1)

where t ∈ T, i = 1, 2, T is a 1-periodic time scale, c1(t) = 1/4 + (1/8) sin(2πt), c2(t) =
1/3 + (1/6) cos(2πt), a11(t) = sin2(πt), a12(t) = a21(t) = (1/4)sin4(πt), a22(t) = | cos(πt)|,
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b11(t) = 2cos2(πt), b12(t) = b21(t) = (1/8)cos6(πt), b22(t) = (1/2)| sin(πt)|, f1(x1) = (1/112)x+
(1/56) sin((1/2)x1) + 3, f2(x2) = (1/126)x + (1/42) cos((2/3)x2) − 11, I1(t) = sin6(πt),
I2(t) = 3 cos(2πt), τ11(t) = ecos(2πt), τ12(t) = 3sin

2(πt), τ21(t) = ln(sin4(πt)), τ22(t) = 3/7+5cos
6(πt).

By calculating, we have c1 = 3/8, c1 = 1/8, c2 = 1/2, c2 = 1/6, M1 = 1/56, M2 = 1/42,
a11 = 1, a12 = a21 = 1/4, a22 = 1, b11 = 2, b12 = b21 = 1/8, b22 = 1/2. It is not difficult to verify
that (H1)-(H2) are satisfied.

Also by calculating, we have that

E =
(
eij
)
2 × 2 =

⎛
⎜⎜⎝

1
28

− 1
112

− 15
228

1
28

⎞
⎟⎟⎠ (5.2)

is a nonsingular M matrix. If we take ξ1 = ξ2 = 1, we can obtain that

−ξ1c1 +
2∑

j=1

ξj
(
a1j + b1j

)
Mj = − 7

112
< 0, −ξ2c2 +

2∑

j=1

ξj
(
a2j + b2j

)
Mj = − 167

1344
< 0. (5.3)

The condition (H3) is satisfied. By Theorems 3.1 and 4.2, we know that system (5.1) has at
least one 1-periodic solution, and this solution is globally exponentially stable.

6. Conclusion

In this paper, without assuming the boundedness of the activation functions, we establish
the stability and existence of periodic solutions of cellular neural networks with delays on
time scales. Our results obtained in this paper are completely new even in case of the time
scale T = R or Z. Besides, our method used in this paper may be used to study other type
neural networks such as BAM neural networks, high-order Hopfield neural networks, and
Cohen-Grossberg neural networks.
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