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In the following text, we want to study the behavior of one point compactification operator in the chain Ξ := {Metrizable, Normal,
T2, KC, SC, US, T1, TD, TUD, T0, Top} of subcategories of category of topological spaces, Top (where we denote the subcategory of
Top, containing all topological spaces with property 𝑃 , simply by 𝑃). Actually we want to know, for 𝑃 ∈ Ξ and𝑋 ∈ 𝑃, the one point
compactification of topological space𝑋 belongs to which elements of Ξ. Finally we find out that the chain {Metrizable, T2, KC, SC,
US, T

1
, TD, TUD, T0, Top} is a forwarding chain with respect to one point compactification operator.

1. Introduction

The concept of forwarding and backwarding chains in a
category with respect to a given operator has been introduced
for the first time in [1] by the first author. The matter has
been motivated by the following sentences in [1]: “In many
problems, mathematicians search for theorems with weaker
conditions or for examples with stronger conditions. In other
words they work in a subcategory D of a mathematical
category, namely, C, and they want to change the domain
of their activity (theorem, counterexample, etc.) to another
subcategory of C like K such that K ⊆ D or D ⊆ K
according to their need.” Most of us have the memory of a
theorem and the following question of our professors: “Is
the theorem valid with weaker conditions for hypothesis or
stronger conditions for result?” The concept of forwarding,
backwarding, or stationary chains of subcategories of a
categoryC tries to describe this phenomenon.

In this text, Top denotes the category of topological
spaces. Whenever 𝑃 is a topological property, we denote the
subcategory of Top containing all the topological spaces with
property 𝑃, simply by 𝑃. For example, we denote the category
of all metrizable spaces by Metrizable.

We want to study the chain {Metrizable, Normal, T
2
, KC,

SC, US, T
1
, TD, TUD, T0, Top} of subcategories of Top in

the point of view of forwarding, backwarding, and stationary
chains’ concept with respect to one point compactification or
Alexandroff compactification operator.

Remark 1. Suppose ≤ is a partial order on 𝐴. We call 𝐵 ⊆ 𝐴

(i) a chain, if for all 𝑥, 𝑦 ∈ 𝐵, we have 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥;

(ii) cofinal, if for all 𝑥 ∈ 𝐴, there exists 𝑦 ∈ 𝐵 such that
𝑥 ≤ 𝑦.

In the following text, by a chain of subcategories of
categoryC, wemean a chain under “⊆” relation (of subclasses
of C). We recall that if M is a chain of subcategories of
category C such that ⋃M is closed under (multivalued)
operator 𝜓, then we callM

(i) a forwarding chain with respect to 𝜓; if for all 𝐶 ∈ M,
we have 𝜓((⋃M) \ 𝐶) ∩ 𝐶 = ⌀ (i.e., 𝜓((⋃M) \ 𝐶) ⊆

(⋃M) \ 𝐶);
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(ii) a full-forwarding chain with respect to 𝜓; if it is a
forwarding chain with respect to𝜓 and for all distinct
𝐶
1
, 𝐶
2
, 𝐶
3
∈ M, we have

𝐶
1
⊆ 𝐶
2
⊆ 𝐶
3
⇒ (∃𝑋 ∈ 𝐶

2
\ 𝐶
1
𝜓 (𝑋) ∈ 𝐶

3
\ 𝐶
2
) , (1)

where, for multivalued function𝜓, by𝜓(𝑋) ∈ 𝐶
3
\𝐶
2
,

wemean that at least one of the values of𝜓(𝑋) belongs
to 𝐶
3
\ 𝐶
2
;

(iii) a backwarding chain with respect to𝜓; if for all𝐶 ∈ M,
we have 𝜓(𝐶) ⊆ 𝐶;

(iv) a full-backwarding chain with respect to 𝜓; if it is a
backwarding chain with respect to 𝜓 and for any
distinct 𝐶

1
, 𝐶
2
, 𝐶
3
∈ M, we have

𝐶
1
⊆ 𝐶
2
⊆ 𝐶
3
⇒ (∃𝑋 ∈ 𝐶

3
\ 𝐶
2
𝜓 (𝑋) ∈ 𝐶

2
\ 𝐶
1
) , (2)

where, for multivalued function𝜓, by𝜓(𝑋) ∈ 𝐶
2
\𝐶
1
,

wemean that at least one of the values of𝜓(𝑋) belongs
to 𝐶
2
\ 𝐶
1
;

(v) a stationary chain with respect to 𝜓 if it is both
forwarding and backwarding chains with respect to
𝜓.

Basic properties of forwarding, backwarding, full-
forwarding, full-backwarding, and stationary chains with
respect to given operators have been studied in [1]. We refer
the interested reader to [2] for standard concepts of the
CategoryTheory.

We recall that byNwemean the set of all natural numbers
{1, 2, . . .}; also 𝜔 = {0, 1, 2, . . .} is the least infinite ordinal
(cardinal) number and Ω is the least infinite uncountable
ordinal number.Here ZFC andGCH (generalized continuum
hypothesis) are assumed (note: by GCH for infinite cardinal
number 𝛼, there is not any cardinal number 𝛽 with 𝛼 < 𝛽 <

2
𝛼, i.e., 𝛼+ = 2𝛼).

We call a collection F of subsets of 𝑋 a filter over 𝑋 if
⌀ ∉ F; for all 𝐴, 𝐵 ∈ F we have 𝐴 ∩ 𝐵 ∈ F; for all 𝐴 ∈ F
and 𝐵 ⊆ 𝑋 with 𝐴 ⊆ 𝐵 we have 𝐵 ∈ F. If F is a maximal
filter over 𝑋 (under ⊆ relation), then we call it an ultrafilter
over𝑋. If for all 𝐴 ∈ F, we have card(𝐴) = card(𝑋); then we
callF a uniform ultrafilter over𝑋.

We end this section by the following two examples.

(I) For 𝑛 ∈ N, let 𝐶
𝑛
:= [0, 1/𝑛] and 𝜓 : [0, 1] → [0, 1]

with 𝜓(0) = 0 and 𝜓(𝑥) = 𝑛
2
𝑥 + 1 − 𝑛 for 𝑥 ∈ 𝐶

𝑛
\

𝐶
𝑛+1

= (1/(𝑛 + 1), 1/𝑛]. Then {𝐶
𝑛
: 𝑛 ∈ N} is full-

forwarding with respect to 𝜓 [1, Example 2.2].

(II) Let ON denote the class of all ordinal numbers; CN
denotes the class of all cardinal numbers; for every set
𝐴 by |𝐴| wemean cardinal number of𝐴, and for each
cardinal number 𝛼 ∈ ON, 𝐷

𝛼
= {𝛾 ∈ ON: |𝛾| = 𝛼},

𝐶
𝛼
= {𝛾 ∈ ON: |𝛾| < 𝛼}. Define 𝜓 : ON→ON with

𝜓(𝛾) = 𝛾 − 𝛼 for 𝛾 ∈ 𝐷
𝛼
and 𝛼 ∈ CN. Then {𝐶

𝛼
:

𝛼 ≥ 𝜔} is a full-backwarding chain of subclasses of
ON with respect to 𝜓 [1, Example 2.3].

2. Basic Definitions in Separation Axioms

In this section we bring our basic definitions in Top.

Convention 1.Henceforth in the topological space𝑋 suppose
∞ ∉ 𝑋. So (see [3, 4])

B := {𝑈 ⊆ 𝑋 : 𝑈 is an open subset of 𝑋}

∪ {𝑉 ∪ {∞} : 𝑉 ⊆ 𝑋, 𝑋 \ 𝑉

is compact and closed}

(3)

is a topological basis on 𝑋 ∪ {∞}. The space 𝑋 ∪ {∞} with
topological basis B is called one point compactification or
Alexandroff compactification of𝑋.

Let

𝐴 (𝑋)

:= {
one point compactification of 𝑋 𝑋 is not compact,
𝑋 𝑋 is compact.

(4)

By the operator 𝐴, in this text we mean the above
mentioned operator.

Remark 2. We call a topological space𝑋 (if𝐴 ⊆ 𝑋, by𝐴, we
mean the set of all limit points of 𝐴 in𝑋)

(i) T
0
; if for all distinct 𝑥, 𝑦 ∈ 𝑋, there exist open

neighborhood 𝑈 of 𝑥 and open neighborhood 𝑉 of
𝑦 such that 𝑥 ∉ 𝑉 or 𝑦 ∉ 𝑈;

(ii) TUD; if for all 𝑥 ∈ 𝑋, {𝑥}
 is a union of closed subsets

of𝑋;
(iii) TD; if for all 𝑥 ∈ 𝑋, {𝑥}

 is a closed subset of𝑋;
(iv) T

1
; if for all 𝑥 ∈ 𝑋, {𝑥} is a closed subset of𝑋;

(v) US if any convergent sequence has a unique limit;
(vi) SC; if for any convergent sequence (𝑥

𝑛
: 𝑛 ∈ 𝜔) to

𝑥 ∈ 𝑋, {𝑥
𝑛
: 𝑛 ∈ 𝜔} ∪ {𝑥} is a closed subset of𝑋;

(vii) KC if any compact subset of𝑋 is closed;
(viii) T

2
(or Hausdorff); if for all distinct 𝑥, 𝑦 ∈ 𝑋

there exist open neighborhood 𝑈 of 𝑥 and open
neighborhood 𝑉 of 𝑦 with 𝑈 ∩ 𝑉 = ⌀;

(ix) normal; if it is T
2
and for every disjoint closed subsets

𝐴, 𝐵 of𝑋, there exist disjoint open subsets𝑈, 𝑉 of𝑋
with 𝐴 ⊆ 𝑈 and 𝐵 ⊆ 𝑉;

(x) 𝑘-space; if for all 𝐴 ⊆ 𝑋, 𝐴 is closed if and only if for
all closed compact subset 𝐾 of𝑋, 𝐴 ∩ 𝐾 is closed.

Regarding [5], we have T
2
⊆ KC ⊆ SC ⊆ US ⊆ T

1
. Also

by [6] we have T
1
⊆ TD ⊆ TUD ⊆ T

0
; therefore.

Metrizable ⊆ Normal ⊆ T
2
⊆ KC ⊆ SC ⊆ US ⊆ T

1
⊆

TD ⊆ TUD ⊆ T
0
⊆ Top.

In this section, we want to study the operator 𝐴 on the
above chain. However, it has been proved in [1, Lemma 3.1
and Corollary 3.2] that the chain T

1
⊆ TD ⊆ TUD ⊆ T

0
is
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stationary with respect to the operator𝐴; therefore, the main
interest is on Metrizable ⊆ Normal ⊆ T

2
⊆ KC ⊆ SC ⊆ US

⊆ T
1
.

Note 1. A topological space𝑋 is KC if and only if {𝑈 ⊆ 𝑋 : 𝑈

is an open subset of 𝑋} ∪ {𝑉 ∪ {∞} : 𝑉 ⊆ 𝑋 and 𝑋 \ 𝑉 is a
compact subset of𝑋} is a topological basis on𝑋.

Remark 3. Suppose 𝑋 is noncompact space and 𝐴(𝑋) =

𝑋 ∪ {∞} is one point compactification of 𝑋. We have the
following.

(1) If𝑋 is KC, then𝐴(𝑋) is US (therefore𝐴(𝑋) is T
1
too)

[7, Theorem 4].
(2) If𝑋 is KC, then𝐴(𝑋) is KC if and only if𝑋 is a 𝑘-space

[7, Theorem 5].
(3) 𝐴(𝑋) is T

2
if and only if 𝑋 is T

2
and locally compact

[4]; thus 𝐴(𝑋) is T
2
if and only if it is normal.

(4) 𝐴(𝑋) is an embedding of𝑋.
(5) If𝐴(𝑋) is KC, then𝑋 is KC too (hint: if𝐾 is a compact

subset of𝑋, then𝐾 is a compact subset of𝐴(𝑋) by (2).
If 𝐴(𝑋) is KC, then 𝐾 is a closed subset of 𝐴(𝑋), and
again by (2),𝐾 is a closed subset of𝑋, so𝑋 is KC).

(6) A T
2
space is a 𝑘-space if it is either first countable or

locally compact so every metrizable space is 𝑘-space
[3, 7].

(7) 𝑋 is T
1
if and only if 𝐴(𝑋) is T

1
[3]. Moreover if 𝑋 is

T
0
(and noncompact), then

(8) 𝑋 is TD if and only if 𝐴(𝑋) is TD [1, Lemma 3.1].
(9) 𝑋 is TUD if and only if 𝐴(𝑋) is TUD [1, Lemma 3.1].
(10) 𝐴(𝑋) is T

0
[1, Lemma 3.1].

For topological spaces𝑋,𝑌, by𝑋⊔𝑌, wemean topological
disjoint union of𝑋 and 𝑌.

Lemma 4. Let 𝑋
1
is a compact topological space, 𝑋

2
is a

noncompact topological space, then𝐴(𝑋
1
⊔𝑋
2
) = 𝑋

1
⊔𝐴(𝑋

2
).

Proof. Suppose 𝑋
1
∩ 𝑋
2
= ⌀ and 𝑈 is an open subset of

𝐴(𝑋
1
⊔ 𝑋
2
) = 𝑋

1
∪ 𝑋
2
∪ {∞}. Using the following cases,

𝑈 is an open subset of𝑋
1
⊔ 𝐴(𝑋

2
)(= 𝑋

1
∪ 𝑋
2
∪ {∞}) too.

(i) Consider ∞ ∉ 𝑈. In this case, 𝑈 is an open subset
of 𝑋
1
⊔ 𝑋
2
, so 𝑈

1
:= 𝑈 ∩ 𝑋

1
is an open subset of

𝑋
1
and 𝑈

2
:= 𝑈 ∩ 𝑋

2
is an open subset of not only

𝑋
2
but also 𝐴(𝑋

2
) using the definition of one point

compactification. Then the set 𝑈
1
∪ 𝑈
2
is an open

subset of 𝑋
1
⊔ 𝐴(𝑋

2
), since 𝑈 = 𝑈

1
∪ 𝑈
2
, 𝑈 is an

open subset of𝑋
1
⊔ 𝐴(𝑋

2
).

(ii) Consider∞ ∈ 𝑈. In this case, (𝑋
1
∪𝑋
2
)\𝑈 is a closed

compact subset of 𝑋
1
⊔ 𝑋
2
. Since 𝑋

1
and 𝑋

2
are two

closed subsets of𝑋
1
⊔𝑋
2
, ((𝑋
1
∪𝑋
2
)\𝑈)∩𝑋

1
= 𝑋
1
\𝑈

is a closed subset of 𝑋
1
and ((𝑋

1
∪ 𝑋
2
) \ 𝑈) ∩ 𝑋

2
=

𝑋
2
\ 𝑈 is a closed subset of 𝑋

2
and (𝑋

1
∪ 𝑋
2
) \ 𝑈, so

𝑋
2
\ 𝑈 is a closed compact subset of 𝑋

2
. Therefore,

𝑈
1
:= 𝑋
1
\ (𝑋
1
\ 𝑈) = 𝑋

1
∩𝑈 is an open subset of𝑋

1

and𝑈
2
:= 𝐴(𝑋

2
) \ (𝑋
2
\𝑈) = 𝐴(𝑋

2
)∩𝑈(= (𝑋

2
∩𝑈)∪

{∞}) is an open subset of𝐴(𝑋
2
). Then the set𝑈

1
∪𝑈
2

is an open subset of𝑋
1
⊔𝐴(𝑋

2
), since𝑈 = 𝑈

1
∪𝑈
2
,𝑈

is an open subset of𝑋
1
⊔𝐴(𝑋

2
). Conversely, if𝑉 is an

open subset of𝑋
1
⊔ 𝐴(𝑋

2
), then, using the following

cases, 𝑉 is an open subset of 𝐴(𝑋
1
⊔ 𝑋
2
) too.

(iii) Consider∞ ∉ 𝑉. In this case,𝑉
1
:= 𝑉∩𝑋

1
is an open

subset of 𝑋
1
. Also 𝑉

2
:= 𝑉 ∩ 𝐴(𝑋

2
) = 𝑉 ∩ 𝑋

2
is an

open subset of𝐴(𝑋
2
) and𝑋

2
. Thus,𝑉 = 𝑉

1
∪𝑉
2
is an

open subset of 𝑋
1
⊔ 𝑋
2
; hence it is an open subset of

𝐴(𝑋
1
⊔ 𝑋
2
).

(iv) Consider∞ ∈ 𝑉. In this case,𝑉
1
:= 𝑉∩𝑋

1
is an open

subset of 𝑋
1
by Remark 3(4). Using the compactness

of 𝑋
1
, 𝑋
1
\ 𝑉
1
is a closed compact subset of 𝑋

1
. Also

𝑉
2
:= 𝑉∩𝐴(𝑋

2
) is an open subset of𝐴(𝑋

2
) containing

∞; thus𝑋
2
\𝑉
2
is a closed compact subset of𝑋

2
. Since

𝑋
1
\𝑉
1
and𝑋

2
\𝑉
2
are two closed compact subsets of

𝑋
1
⊔ 𝑋
2
, (𝑋
1
\ 𝑉
1
) ∪ (𝑋

2
\ 𝑉
2
) = (𝑋

1
∪ 𝑋
2
) \ 𝑉 is a

closed compact subset of 𝑋
1
⊔ 𝑋
2
too. Hence 𝑉 is an

open subset of 𝐴(𝑋
1
⊔ 𝑋
2
).

Lemma 5. If 𝑌 is a closed subset of 𝑋, then 𝐴(𝑋) is an
embedding of 𝐴(𝑌).

Proof. If 𝑌 is compact, then 𝐴(𝑌) = 𝑌 and by Remark 3(4)
we are done. If 𝑌 is not compact,𝑋\𝑌 is an open subset of𝑋
and 𝐴(𝑋); thus 𝑌 ∪ {∞} is a closed compact subset of 𝐴(𝑋).
Suppose 𝐹 ⊆ 𝑌 ∪ {∞}; we prove that 𝐹 is a closed subset of
𝑌
∗
:= 𝑌∪{∞} as a subspace of𝐴(𝑋) if and only if𝐹 is a closed

subset of𝐴(𝑌) = 𝑌∪ {∞} as one point compactification of 𝑌.
However, we mention that 𝑌 ∪ {∞} in both topologies is an
embedding of 𝑌 by Remark 3(4).

First, suppose 𝐹 is a closed subset of 𝑌∗. Using the
following two cases, 𝐹 is a closed subset of 𝐴(𝑌) too.

(i) Consider∞ ∈ 𝐹. In this case, 𝑈 := 𝑌
∗
\ 𝐹 = 𝑌 \ 𝐹 is

an open subset of 𝑌; therefore it is an open subset of
𝐴(𝑌), so 𝐹 = 𝐴(𝑌) \ 𝑈 is a closed subset of 𝐴(𝑌).

(ii) Consider∞ ∉ 𝐹. In this case, 𝐹 is a closed subset of
𝐴(𝑋) since it is a closed subset of 𝑌∗ and 𝑌∗ is closed
in 𝐴(𝑋). Therefore, 𝑈 := 𝐴(𝑋) \ 𝐹 is an open subset
of𝐴(𝑋)with∞ ∈ 𝑈. So𝐴(𝑋)\𝑈 is a closed compact
subset of 𝑋. Therefore, (𝐴(𝑋) \ 𝑈) ∩ 𝑌

∗
= 𝐹 is a

closed compact subset of 𝑌∗. Since (𝐴(𝑋) \𝑈)∩𝑌∗ =
(𝐴(𝑋) \ 𝑈) ∩ 𝑌, 𝐹 is a closed compact subset of 𝑌, so
𝐹 is closed in 𝐴(𝑌). Conversely, suppose 𝐹 is a closed
subset of 𝐴(𝑌). Using the following two cases, 𝐹 is a
closed subset of 𝑌∗ too.

(iii) Consider∞ ∈ 𝐹. In this case, 𝑈 := 𝐴(𝑌) \ 𝐹 = 𝑌 \ 𝐹

is an open subset of 𝑌; therefore, there exists an open
subset 𝑉 of 𝑋 with 𝑉 ∩ 𝑌 = 𝑈. 𝑉 is an open subset
of 𝐴(𝑋) too; thus 𝑉 ∩ 𝑌

∗ is an open subset of 𝑌∗;
therefore 𝑌∗ \ (𝑉 ∩ 𝑌

∗
) = 𝑌
∗
\ (𝑉 ∩ 𝑌) = 𝑌

∗
\ 𝑈 = 𝐹

is a closed subset of 𝑌∗.
(iv) Consider∞ ∉ 𝐹. In this case, 𝐹 is a closed compact

subset of𝐴(𝑌)with∞ ∉ 𝐹; thus𝐹 is a closed compact
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subset of 𝑌. Hence, 𝐹 is a closed compact subset of
𝑋, and 𝑈 = 𝐴(𝑋) \ 𝐹 is an open subset of 𝐴(𝑋).
Therefore, 𝑈 ∩ 𝑌

∗
= 𝑌
∗
\ 𝐹 is an open subset of 𝑌∗,

so 𝐹 is a closed subset of 𝑌∗.

Lemma 6. Suppose C ∈ {Metrizable, Normal, T
2
, KC, SC,

US, T
1
, TD, TUD, T0, Top}; also consider topological spaces

𝑋,𝑌. We have the following.

(1) 𝑋 ⊔ 𝑌 ∈ C if and only if𝑋,𝑌 ∈ C.
(2) Consider two closed subsets 𝐴, 𝐵 of 𝑋 with 𝐴 ∪ 𝐵 = 𝑋

and 𝐴 ∩ 𝐵 = {𝑡}. So 𝐴, 𝐵 ∈ C if and only if𝑋 ∈ C.

Proof. (1) has a formal proof, sowe deal with (2). If𝑋 ∈ C and
𝐸 is a closed subspace of 𝑋, then 𝐸 ∈ C. Suppose 𝐴, 𝐵 ∈ C;
𝐴, 𝐵 are closed subspaces of𝑋with𝐴∩𝐵 = {𝑡} and𝐴∪𝐵 = 𝑋.
We prove𝑋 ∈ C.

First, note the fact that if 𝑉 is an open subset of 𝐴 (resp.
𝐵) with 𝑡 ∉ 𝑉, then 𝑉 is an open subset of 𝑋, since 𝑉 is an
open subset of 𝐴 \ {𝑡} and 𝐴 \ {𝑡}(= 𝑋 \ 𝐵) is an open subset
of𝑋. Now consider the following cases forC.

(i) Consider C = Metrizable. If 𝐴, 𝐵 are metrizable
subspaces of𝑋, then there existmetrics𝑑

1
, 𝑑
2
, respec-

tively, on 𝐴, 𝐵 such that 𝑑
1
, 𝑑
2

≤ 1, the metric
topology induced from 𝑑

1
on 𝐴 is subspace topology

on 𝐴 induced from 𝑋, and the metric topology
induced from 𝑑

2
on 𝐵 is subspace topology on 𝐵

induced from𝑋. Define 𝑑 : 𝑋 × 𝑋 → [0, +∞) with

𝑑 (𝑥, 𝑦) =

{{

{{

{

𝑑
1
(𝑥, 𝑦) 𝑥, 𝑦 ∈ 𝐴,

𝑑
2
(𝑥, 𝑦) 𝑥, 𝑦 ∈ 𝐵,

2 otherwise.
(5)

Then the metric topology induced from 𝑑 on 𝑋 coincides
with𝑋’s original topology.

(ii) Consider C = T
2
. Suppose 𝐴, 𝐵 are Hausdorff

subspaces of 𝑋 and 𝑥, 𝑦 ∈ 𝑋 are two distinct points
of𝑋. Consider the following cases:

(1) 𝑥 ∈ 𝑋 \ 𝐴 = 𝐵 \ {𝑡} and 𝑦 ∈ 𝑋 \ 𝐵 = 𝐴 \ {𝑡};
in this case, 𝐵 \ {𝑡} and 𝐴 \ {𝑡} are disjoint open
neighborhoods of, respectively, 𝑥 and 𝑦;

(2) 𝑥, 𝑦 ∈ 𝐴; there exist disjoint open subsets𝑈
1
, 𝑈
2

of 𝐴 with 𝑥 ∈ 𝑈
1
and 𝑦 ∈ 𝑈

2
. Suppose 𝑡 ∉ 𝑈

1
;

thus 𝑈
1
is an open subset of 𝑋. There exists an

open subset 𝑈 of 𝑋 with 𝑈 ∩ 𝐴 = 𝑈
2
. Hence,

𝑈
1
, 𝑈 are disjoint open subsets of𝑋with 𝑥 ∈ 𝑈

1

and 𝑦 ∈ 𝑈.

Using the above cases,𝑋 is Hausdorff.

(iii) Consider C = Normal. If 𝐴, 𝐵 are normal subspaces
of𝑋, then𝐴, 𝐵 areHausdorff and, using the case “C =

T
2
”, 𝑋 is Hausdorff. Now suppose 𝐸, 𝐹 are disjoint

closed subsets of 𝑋; also we may suppose 𝑡 ∉ 𝐸.

Let 𝐸
𝐴

:= 𝐸 ∩ 𝐴, 𝐸
𝐵

:= 𝐸 ∩ 𝐵, 𝐹
𝐴

:= 𝐹 ∩ 𝐴.
and 𝐹

𝐵
:= 𝐹 ∩ 𝐵. There are disjoint open subsets

𝑈
𝐸
, 𝑈
𝐹
of 𝐴 containing, respectively, 𝐸

𝐴
, 𝐹
𝐴
. Also

there are disjoint open subsets𝑉
𝐸
, 𝑉
𝐹
of 𝐵 containing,

respectively, 𝐸
𝐵
, 𝐹
𝐵
. There are open subsets 𝑈,𝑉 of

𝑋 with 𝑈
𝐹
= 𝐴 ∩ 𝑈 and 𝑉

𝐹
= 𝑉 ∩ 𝐵. Let 𝑊

𝐸
:=

(𝑈
𝐸
\{𝑡})∪(𝑉

𝐸
\{𝑡}) and𝑊

𝐹
:= 𝑈∪𝑉; then𝑊

𝐸
,𝑊
𝐹
are

disjoint open subsets of 𝑋 containing, respectively,
𝐸, 𝐹.

(iv) Consider C = KC. Suppose 𝐴, 𝐵 are KC and 𝐾 is a
compact subset of𝑋. Since𝐴, 𝐵 are closed,𝐴∩𝐾, 𝐵∩𝐾
are compact too. Since 𝐴 ∩ 𝐾 is a compact subset of
𝐴 and 𝐴 is KC, 𝐴 ∩ 𝐾 is a closed subset of 𝐴. Since
𝐴 ∩ 𝐾 is a closed subset of 𝐴 and 𝐴 is a closed subset
of 𝑋, 𝐴 ∩ 𝐾 is closed subset of 𝑋. Similarly, 𝐵 ∩ 𝐾 is
a closed subset of𝑋. Thus𝐾 = (𝐴 ∩ 𝐾) ∪ (𝐵 ∩ 𝐾) is a
closed subset of𝑋 and𝑋 is KC.

(v) Consider C = SC. Suppose 𝐴, 𝐵 are SC and (𝑥
𝑛
:

𝑛 ∈ 𝜔) is a sequence in 𝑋 converging to 𝑥. Using the
following cases, {𝑥

𝑛
: 𝑛 ∈ 𝜔}∪ {𝑥} is a closed subset of

𝑋.

(1) Consider 𝑥 ̸= 𝑡. Suppose 𝑥 ∈ 𝐴 \ {𝑡}. In this case,
𝐴 \ {𝑡} is an open neighborhood of 𝑥 in 𝑋, so
there exists 𝑁 ∈ 𝜔 such that 𝑥

𝑛
∈ 𝐴 \ {𝑡} for

all 𝑛 ≥ 𝑁. Hence (𝑥
𝑛
: 𝑛 ≥ 𝑁) is a converging

sequence to 𝑥 in𝐴. Since𝐴 is SC, {𝑥
𝑛
: 𝑛 ≥ 𝑁}∪

{𝑥} is a closed subset of 𝐴. Therefore, {𝑥
𝑛
: 𝑛 ≥

𝑁}∪{𝑥} is a closed subset of𝑋. For each 𝑛 ∈ 𝜔 if
𝑥
𝑛
∈ 𝐵 (resp. 𝑥

𝑛
∈ 𝐴), {𝑥

𝑛
} is a closed subset of𝐵

(resp.𝐴) since𝐵 (resp.𝐴) is SC and in particular
T
1
. Thus for all 𝑛 ∈ 𝜔, {𝑥

𝑛
} is a closed subset of

𝑋. By closeness of {𝑥
𝑛
: 𝑛 ≤ 𝑁} and {𝑥

𝑛
: 𝑛 ≥

𝑁}∪ {𝑥} in𝑋, the set {𝑥
𝑛
: 𝑛 ∈ 𝜔}∪ {𝑥} is closed

in𝑋.
(2) Consider 𝑥 = 𝑡 and there exists𝑁 ∈ 𝜔 such that

{𝑥
𝑛
: 𝑛 ≥ 𝑁} ⊆ 𝐴 or {𝑥

𝑛
: 𝑛 ≥ 𝑁} ⊆ 𝐵. Suppose

there exists 𝑁 ∈ 𝜔 with {𝑥
𝑛
: 𝑛 ≥ 𝑁} ⊆ 𝐴. In

this case. (𝑥
𝑛
: 𝑛 ≥ 𝑁) is a converging sequence

to𝑥 in𝐴, and, using the same argument as in the
second paragraph of the case “𝑥 ̸= 𝑡”, {𝑥

𝑛
: 𝑛 ∈ 𝜔}

is closed in𝑋.
(3) Consider none of the above two cases. In this

case, (𝑥
𝑛
: 𝑛 ∈ 𝜔) converges to 𝑡 and it has two

subsequences (𝑥
𝑛𝑘
: 𝑘 ∈ 𝜔) and (𝑥

𝑚𝑘
: 𝑘 ∈ 𝜔)

such that {𝑥
𝑛𝑘
: 𝑘 ∈ 𝜔} ⊆ 𝐴, {𝑥

𝑚𝑘
: 𝑘 ∈ 𝜔} ⊆ 𝐵,

and {𝑛
𝑘
: 𝑘 ∈ 𝜔} ∪ {𝑚

𝑘
: 𝑘 ∈ 𝜔} = 𝜔. Using item

(2), {𝑥
𝑛𝑘
: 𝑘 ∈ 𝜔}∪{𝑥} and {𝑥

𝑚𝑘
: 𝑘 ∈ 𝜔}∪{𝑥} are

two closed subsets of𝑋; thus {𝑥
𝑛
: 𝑘 ∈ 𝜔}∪{𝑥} =

{𝑥
𝑛𝑘
: 𝑘 ∈ 𝜔}∪{𝑥}∪{𝑥

𝑚𝑘
: 𝑘 ∈ 𝜔}∪{𝑥} is a closed

subset of𝑋.

(vi) Consider C = US. If 𝐴, 𝐵 are US and 𝑋 is not US,
consider converging sequence (𝑥

𝑛
: 𝑛 ∈ 𝜔) in 𝑋 to

𝑥, 𝑦 with 𝑥 ̸= 𝑦. Let 𝑥 ̸= 𝑡; we may suppose 𝑥 ∈ 𝐴. The
set 𝐴 \ {𝑡}(= 𝑋 \ 𝐵) is an open neighborhood of 𝑥.
Thus there exists 𝑁 ∈ 𝜔 with {𝑥

𝑛
: 𝑛 ≥ 𝑁} ⊆ 𝐴 \

{𝑡} and 𝑦 ∈ {𝑥
𝑛
: 𝑛 ≥ 𝑁} ⊆ 𝐴. So (𝑥

𝑛
: 𝑛 ≥ 𝑁) is a
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converging sequence to 𝑥, 𝑦 in 𝐴 and 𝑥 ̸= 𝑦; thus 𝐴 is
not US which is a contradiction.

(vii) ConsiderC = T
1
. Suppose 𝐴 and 𝐵 are T

1
; let 𝑥 ∈ 𝑋.

We may suppose 𝑥 ∈ 𝐴. Since 𝐴 is T
1
, {𝑥} is a closed

subset of 𝐴. Since 𝐴 is a closed subset of 𝑋 and {𝑥} is
a closed subset of 𝐴, {𝑥} is a closed subset of𝑋.

(viii) Use similar methods for the rest of the cases ofC.

Lemma7. SupposeC ∈ {Metrizable, Normal,T
2
,KC, SC,US,

T
1
,TD,TUD,T0, Top}; also consider topological spaces𝑋,𝑌.We

have 𝐴(𝑋 ⊔ 𝑌) ∈ C if and only if 𝐴(𝑋), 𝐴(𝑌) ∈ C.

Proof. By Lemma 6 and Lemma 4, it is clear if 𝑋 or 𝑌 is
compact. So we may suppose 𝑋 and 𝑌 are two disjoint
noncompact topological spaces. Since 𝑋 and 𝑌 are two open
subset of 𝑋 ⊔ 𝑌, two sets 𝑋∗ := 𝐴(𝑋 ⊔ 𝑌) \ 𝑌(= 𝑋 ∪ {∞})

and 𝑌∗ := 𝐴(𝑋 ⊔ 𝑌) \ 𝑋(= 𝑌 ∪ {∞}) are two closed subsets
of 𝐴(𝑋 ⊔ 𝑌) with 𝑋

∗
∪ 𝑌
∗

= 𝐴(𝑋 ⊔ 𝑌). By Lemma 6,
𝐴(𝑋 ⊔ 𝑌) ∈ C if and only if 𝑋∗, 𝑌∗ ∈ C. By Lemma 5, 𝑋∗
is homeomorphic to𝐴(𝑋) and𝑌∗ is homeomorphic to𝐴(𝑌);
hence 𝐴(𝑋 ⊔ 𝑌) ∈ C if and only if 𝐴(𝑋), 𝐴(𝑌) ∈ C.

Lemma 8. In topological space𝑋, if𝑋 is SC, then𝐴(𝑋) is US.

Proof. Let𝑋 be a noncompact SC space. Suppose (𝑥
𝑛
: 𝑛 ∈ 𝜔)

is a sequence in 𝐴(𝑋) = 𝑋 ∪ {∞} converging to 𝑥, 𝑦 ∈ 𝐴(𝑋).
We have the following cases.

(i) Consider 𝑥, 𝑦 ∈ 𝑋. In this case, 𝑋 is an open
neighborhood of 𝑥, 𝑦 in𝐴(𝑋); hence there exists𝑁 ∈

𝜔 such that 𝑥
𝑛
∈ 𝑋 for all 𝑛 ≥ 𝑁. Therefore, (𝑥

𝑛
: 𝑛 ≥

𝑁) is a converging sequence in 𝑋 to 𝑥, 𝑦. Since 𝑋 is
SC,𝑋 is US and 𝑥 = 𝑦.

(ii) Consider 𝑥 ∈ 𝑋, 𝑦 = ∞. In this case, there exists𝑁 ∈

𝜔 such that 𝑥
𝑛
∈ 𝑋 for all 𝑛 ≥ 𝑁. Therefore, (𝑥

𝑛
: 𝑛 ≥

𝑁) is a converging sequence in𝑋 to 𝑥. Thus {𝑥
𝑛
: 𝑛 ≥

𝑁} ∪ {𝑥} is a closed subset of𝑋. So {𝑥
𝑛
: 𝑛 ≥ 𝑁} ∪ {𝑥}

is a compact closed subset of𝑋 and𝑉 := 𝐴(𝑋) \ ({𝑥
𝑛
:

𝑛 ≥ 𝑁} ∪ {𝑥}) is an open neighborhood of ∞(= 𝑦)

which is a contradiction by 𝑥
𝑛
∉ 𝑉 for all 𝑛 ≥ 𝑁 and

by converging (𝑥
𝑛
: 𝑛 ∈ 𝜔) to 𝑦. So this case does not

occur.

Using the above cases, we have 𝑥 = 𝑦, and 𝐴(𝑋) is US.

3. The Main Table

See Figure 1; then we have Table 1 which we prove in this
Section and where:

The mark “√” indicates that in the corresponding case,
there exists 𝑋 ∈ 𝑃 such that 𝐴(𝑋) ∈ 𝑄, and the mark “—”
indicates that in the corresponding case for all𝑋 ∈ 𝑃we have
𝐴(𝑋) ∉ 𝑄.

Let

E := {𝐶
1
, 𝐶
2
\ 𝐶
1
, 𝐶
3
\ 𝐶
2
, 𝐶
4
\ 𝐶
3
,

𝐶
5
\ 𝐶
4
, 𝐶
6
\ 𝐶
5
, 𝐶
7
\ 𝐶
6
} ,

F := {𝐶
8
\ 𝐶
7
, 𝐶
9
\ 𝐶
8
, 𝐶
10
\ 𝐶
9
, 𝐶
11
\ 𝐶
10
} .

(6)

By Remark 3(7) in Table 1, the mark “—” for cases in which
“𝑃 ∈ E, 𝑄 ∈ F” or “𝑃 ∈ F, 𝑄 ∈ E” is evident. However, it
has been proved in [1, Lemma 3.1 and Corollary 3.2] that the
chain T

1
⊆ TD ⊆ TUD ⊆ T

0
is stationary with respect to

the operator𝐴, so corresponding marks of the cases in which
𝑃,𝑄 ∈ F are obtained. Thus it remains to discuss cases in
which 𝑃,𝑄 ∈ E.

Since the subspace of a metrizable (resp. T
2
, SC, and US)

space is metrizable (resp. T
2
, SC, and US) using Remark 3(4)

and (5), if𝐴(𝑋) is, respectively, metrizable T
2
, KC, SC, or US,

then 𝑋 is too. Hence we obtain “—” for the following cases
too (choose 𝑃 and 𝑄 from the same rows of Table 2).

Proof (proof of the rest of the cells of Figure 1).

First Row. Here we have 𝑃 = 𝐶
1
and the following cases for

𝑄.
(i) Consider 𝑄 = 𝐶

1
. Consider two spaces 𝑋 := (0, 1)

(with induced metric from Euclidean space R) and S1 =

{(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦
2
= 1} (with induced metric from

Euclidean space R2); then 𝐴(𝑋) is homeomorphic to S1;
moreover𝑋,S1 ∈ 𝐶

1
; therefore𝑋,𝐴(𝑋) ∈ 𝐶

1
.

(ii) Consider 𝑄 = 𝐶
2
\ 𝐶
1
. Consider 𝑋 := (0, 1) with

discrete topology.𝐴(𝑋) is compact Hausdorff, so it is normal.
IfD is a topological basis for 𝐴(𝑋), then for all 𝑡 ∈ (0, 1) we
have {𝑡} ∈ D. ThereforeD is uncountable and compact space
𝐴(𝑋) is not metrizable. Thus𝑋 ∈ 𝐶

1
and 𝐴(𝑋) ∈ 𝐶

2
\ 𝐶
1
.

(iii) Consider 𝑄 = 𝐶
3
\ 𝐶
2
. Use Remark 3(3).

(iv) Consider 𝑄 = 𝐶
4
\ 𝐶
3
. Consider 𝑋 as the set of

all rational numbers as a subspace of Euclidean space R.
Since 𝑋 is not locally compact, by Remark 3(3), 𝐴(𝑋) is not
Hausdorff. Suppose𝑀 is a compact subset of𝐴(𝑋)); in order
to show that 𝐴(𝑋) is KC, we show 𝑀 is a closed subset of
𝐴(𝑋). We have the following two cases.
Case 1. If ∞ ∉ 𝑀, then 𝑀 is a compact subset of 𝑋; since
𝑋 is a metric space,𝑀 is a closed subset of 𝑋 too. Therefore,
𝐴(𝑋) \ 𝑀 is an open subset of 𝐴(𝑋). Hence, 𝑀 is a closed
subset of 𝐴(𝑋).

Case 2. If ∞ ∈ 𝑀, we claim that 𝑋 \ 𝑀 is an open subset
of 𝑋 and so an open subset of 𝐴(𝑋); otherwise (since 𝑋 is
metrizable) there exists a one-to-one sequence (𝑥

𝑛
: 𝑛 ∈ 𝜔)

in𝑋\(𝑋\𝑀) (= 𝑋∩𝑀) converging to a point 𝑥 ∈ 𝑋\𝑀 (in
metric space𝑋). For all𝑚 ∈ 𝜔, {𝑥

𝑛
: 𝑛 ≥ 𝑚}∪{𝑥} is a compact

closed subset of 𝑋, and 𝑈
𝑚
:= 𝐴(𝑋) \ ({𝑥

𝑛
: 𝑛 ≥ 𝑚} ∪ {𝑥}) is

an open subset of 𝐴(𝑋). Since 𝑥 ∉ 𝑀,𝑀 ⊆ ⋃{𝑈
𝑚
: 𝑚 ≥ 0}.

Using the compactness of 𝑀, there exists 𝑚 ≥ 1 such that
𝑀 ⊆ 𝑈

0
∪ 𝑈
1
∪ ⋅ ⋅ ⋅ ∪ 𝑈

𝑚
. Since 𝑥

𝑚
∈ 𝑀 \ (𝑈

0
∪ 𝑈
1
∪ ⋅ ⋅ ⋅ ∪

𝑈
𝑚
) = 𝑀 \ 𝑈

𝑚
, we have 𝑀 ̸⊆ 𝑈

0
∪ 𝑈
1
∪ ⋅ ⋅ ⋅ ∪ 𝑈

𝑚
which
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C1 := Metrizable spaces C2 := Normal spaces
C4 := KC spaces

C5 := SC spaces C6 := US spaces

C11 := Top

Top

US
SC

KC

Normal
Metrizable

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C9 := TUD spaces

C3 := T2 spaces

C7 := T1 spaces
C10 := T0 spaces
C8 := TD spaces

T1

T0

T2

TD

TUD

Figure 1: Consider the previous classes of topological spaces (in order to be more convenient, note the right diagram).

Table 1

𝑃
𝑄

𝐶
1

𝐶
2
\ 𝐶
1

𝐶
3
\ 𝐶
2

𝐶
4
\ 𝐶
3

𝐶
5
\ 𝐶
4

𝐶
6
\ 𝐶
5

𝐶
7
\ 𝐶
6

𝐶
8
\ 𝐶
7

𝐶
9
\ 𝐶
8

𝐶
10
\ 𝐶
9

𝐶
11
\ 𝐶
10

𝐶
1

√ √ — √ — — — — — — —
𝐶
2
\ 𝐶
1

— √ — √ √ √ — — — — —
𝐶
3
\ 𝐶
2

— √ — √ √ √ — — — — —
𝐶
4
\ 𝐶
3

— — — √ √ √ — — — — —
𝐶
5
\ 𝐶
4

— — — — √ √ — — — — —
𝐶
6
\ 𝐶
5

— — — — — √ √ — — — —
𝐶
7
\ 𝐶
6

— — — — — — √ — — — —
𝐶
8
\ 𝐶
7

— — — — — — — √ — — —
𝐶
9
\ 𝐶
8

— — — — — — — — √ — —
𝐶
10
\ 𝐶
9

— — — — — — — — — √ —
𝐶
11
\ 𝐶
10

— — — — — — — — — — √

Table 2

𝑃 𝑄 Reason of omitting this case
𝐶
2
\ 𝐶
1
, 𝐶
3
\ 𝐶
2
, 𝐶
4
\ 𝐶
3
, 𝐶
5
\ 𝐶
4
, 𝐶
6
\ 𝐶
5
, 𝐶
7
\ 𝐶
6

𝐶
1

If 𝐴(𝑋) is metrizable, then𝑋 is metrizable too
𝐶
4
\ 𝐶
3
, 𝐶
5
\ 𝐶
4
, 𝐶
6
\ 𝐶
5
, 𝐶
7
\ 𝐶
6

𝐶
2
\ 𝐶
1
, 𝐶
3
\ 𝐶
2

If 𝐴(𝑋) is T
2
, then𝑋 is T

2
too

𝐶
5
\ 𝐶
4
, 𝐶
6
\ 𝐶
5
, 𝐶
7
\ 𝐶
6

𝐶
4
\ 𝐶
3

If 𝐴(𝑋) is KC, then𝑋 is KC too
𝐶
6
\ 𝐶
5
, 𝐶
7
\ 𝐶
6

𝐶
5
\ 𝐶
4

If 𝐴(𝑋) is SC, then𝑋 is SC too
𝐶
7
\ 𝐶
6

𝐶
6
\ 𝐶
5

If 𝐴(𝑋) is US, then𝑋 is US too



Chinese Journal of Mathematics 7

is a contradiction. Thus 𝑋 \ 𝑀 is an open subset of 𝑋, and
𝑀 = 𝐴(𝑋) \ (𝑋 \𝑀) is a closed subset of 𝐴(𝑋).

Finally we have𝑋 ∈ 𝐶
1
and 𝐴(𝑋) ∈ 𝐶

4
\ 𝐶
3
.

(v) Consider 𝑄 = 𝐶
5
\ 𝐶
4
. If 𝑋 is a metric space, then it

is a 𝑘-space and, by Remark 3(2), 𝐴(𝑋) is KC; hence 𝐴(𝑋) ∉
𝐶
5
\ 𝐶
4
.

(vi) Consider 𝑄 = 𝐶
6
\ 𝐶
5
or 𝐶
7
\ 𝐶
6
. We claim that if 𝑋

is a metric space, then𝐴(𝑋) is SC. First, note the fact that, by
Remark 3(1), 𝐴(𝑋) is US and hence T

1
. Suppose (𝑥

𝑛
: 𝑛 ∈ 𝜔)

is a sequence in 𝐴(𝑋) converging to 𝑥 ∈ 𝐴(𝑋); we show that
{𝑥
𝑛
: 𝑛 ∈ 𝜔} ∪ {𝑥} is a closed subset of 𝐴(𝑋). Consider the

following cases.
Case 1. 𝑥 ̸=∞; in this case, 𝑋 is an open neighborhood of
𝑥, thus there exists 𝑚 ∈ 𝜔 such that 𝑥

𝑛
∈ 𝑋 for all 𝑛 ≥

𝑚 and (𝑥
𝑛
: 𝑛 ≥ 𝑚) converges to 𝑥 in metric space 𝑋

(by Remark 3(4), 𝑋 as a subspace of 𝐴(𝑋) has its original
topology). Thus {𝑥

𝑛
: 𝑛 ≥ 𝑚} ∪ {𝑥} is a closed compact subset

of 𝑋; therefore 𝐴(𝑋) \ ({𝑥
𝑛
: 𝑛 ≥ 𝑚} ∪ {𝑥}) is an open subset

of 𝐴(𝑋). Finally {𝑥
𝑛
: 𝑛 ≥ 𝑚} ∪ {𝑥} is a closed subset of 𝐴(𝑋)

and since𝐴(𝑋) is T
1
, {𝑥
𝑛
: 𝑛 ≥ 𝑚}∪{𝑥}∪ {𝑥

0
, . . . , 𝑥

𝑚
} = {𝑥

𝑛
:

𝑛 ∈ 𝜔} ∪ {𝑥} is a closed subset of 𝐴(𝑋) too.

Case 2. 𝑥 = ∞ and {𝑥
𝑛
: 𝑛 ∈ 𝜔} is finite. In this case, {𝑥

𝑛
: 𝑛 ∈

𝜔} ∪ {𝑥} is a finite subset of (T
1
space) 𝐴(𝑋) and it is closed.

Case 3. 𝑥 = ∞ and {𝑥
𝑛
: 𝑛 ∈ 𝜔} is infinite. In this case, we

may assume 𝑥
𝑛
∈ 𝑋 for all 𝑛 ∈ 𝜔. If {𝑥

𝑛
: 𝑛 ∈ 𝜔} is not a closed

subset of 𝑋, then there exists a subsequence (𝑥
𝑛𝑘
: 𝑘 ∈ 𝜔) of

(𝑥
𝑛
: 𝑛 ∈ 𝜔) converging to 𝑦 ∈ 𝑋 \ {𝑥

𝑛
: 𝑛 ∈ 𝜔}. Thus

(𝑥
𝑛𝑘
: 𝑘 ∈ 𝜔) converges to 𝑦 in 𝐴(𝑋) too (use Remark 3(4)).

Since (𝑥
𝑛𝑘
: 𝑘 ∈ 𝜔) converges to 𝑦, 𝑥(= ∞) and 𝐴(𝑋) is US,

we have 𝑦 = 𝑥 which is a contradiction with 𝑦 ∈ 𝑋 = 𝐴(𝑋) \

{∞} = 𝐴(𝑋) \ {𝑥}. Therefore {𝑥
𝑛
: 𝑛 ∈ 𝜔} is a closed subset of

𝑋, so

𝑋 \ {𝑥
𝑛
: 𝑛 ∈ 𝜔} = 𝑋 \ ({𝑥

𝑛
: 𝑛 ∈ 𝜔} ∪ {𝑥})

= 𝐴 (𝑋) \ ({𝑥
𝑛
: 𝑛 ∈ 𝜔} ∪ {𝑥})

(7)

is an open subset of𝑋 and 𝐴(𝑋). Finally {𝑥
𝑛
: 𝑛 ∈ 𝜔} ∪ {𝑥} is

a closed subset of 𝐴(𝑋).
Using the above three cases, {𝑥

𝑛
: 𝑛 ∈ 𝜔} ∪ {𝑥} is a closed

subset of 𝐴(𝑋) and we are done.

Second Row.Here we have𝑃 = 𝐶
2
\𝐶
1
and the following cases

for 𝑄.
(i) Consider 𝑄 = 𝐶

2
\ 𝐶
1
. Suppose Ω is the least

uncountable ordinal number. Consider𝑋 = Ω+1 (with order
topology). Since 𝑋 is well ordered, it is normal. However, 𝑋
is not metrizable and 𝐴(𝑋) = 𝑋.

(ii) Consider 𝑄 = 𝐶
3
\ 𝐶
2
. If𝑋 and 𝐴(𝑋) are T

2
, then, by

Remark 3(3), 𝐴(𝑋) is normal.
(iii) Consider 𝑄 = 𝐶

4
\ 𝐶
3
. Consider 𝑋 as disjoint union

of 𝑋
1
= Ω + 1 with order topology and 𝑋

2
= Q as the set

of all rational numbers with induced metric from Euclidean
space R. The topological space 𝑋 is normal since 𝑋

1
, 𝑋
2
are

normal. Moreover,𝑋 is disjoint union of𝑋
1
and𝑋

2
, so𝑋 has

nonmetrizable subspace𝑋
1
, thus𝑋 is nonmetrizable and𝑋 ∈

𝐶
2
\ 𝐶
1
. Since 𝑋

1
is compact, by Lemma 4 we have 𝐴(𝑋) =

𝑋
1
⊔𝐴(𝑋

2
). Considering case “𝑃 = 𝐶

1
,𝑄 = 𝐶

4
\𝐶
3
”, we have

𝐴(𝑋
2
) ∈ 𝐶
4
\ 𝐶
3
. Using Lemma 6(1), we have 𝑋

1
⊔ 𝐴(𝑋

2
) ∈

𝐶
4
\ 𝐶
3
; thus 𝐴(𝑋) ∈ 𝐶

4
\ 𝐶
3
.

(iv) Consider 𝑄 = 𝐶
5
\ 𝐶
4
. Let 𝑋 be an uncountable

set and 𝑏 ∈ 𝑋. Consider 𝑋 under Fortissimo topology with
particular point 𝑏, that is, under the topology {𝑈 ⊆ 𝑋 : 𝑏 ∉

𝑈 ∨ (𝑋 \ 𝑈 is countable)} (see [4, counterexample 25]). For
distinct 𝑥, 𝑦 ∈ 𝑋, suppose 𝑥 ̸= 𝑏. Then 𝑈 = {𝑥}, 𝑉 = 𝑋 \ {𝑥}

are disjoint open subsets of 𝑋 and 𝑋 is Hausdorff. On the
other hand, if 𝐸, 𝐹 are disjoint closed subsets of 𝑋, suppose
𝑏 ∉ 𝐸, then 𝐸 and 𝑋 \ 𝐸(⊇ 𝐹) are disjoint open subsets of 𝑋
containing 𝐸 and 𝐹. Thus𝑋 is normal.

Moreover, if𝑊 is an open neighborhood of 𝑏, then𝑋\𝑊

is countable; therefore𝑊 is uncountable and𝑊∩(𝑋\{𝑏}) ̸=⌀.
Therefore, 𝑏 ∈ 𝑋 \ {𝑏}. Let (𝑥

𝑛
: 𝑛 ∈ 𝜔) be a sequence of

elements of 𝑋 \ {𝑏}. The sequence (𝑥
𝑛
: 𝑛 ∈ 𝜔) does not

converge to 𝑏, since𝑋\{𝑥
𝑛
: 𝑛 ∈ 𝜔} is an open neighborhood

of 𝑏.The space𝑋 is not metrizable since 𝑏 ∈ 𝑋 \ {𝑏} and there
is not any sequence in𝑋\{𝑏} converging to 𝑏. So𝑋 ∈ 𝐶

2
\𝐶
1
.

On the other hand, using the definition of one point
compactification, any subset 𝑀 of 𝐴(𝑋) containing ∞ is a
compact subset of 𝐴(𝑋). Therefore, 𝐴(𝑋) \ {𝑏} is a compact
subset of𝐴(𝑋), but it is not a closed subset of𝐴(𝑋); thus𝐴(𝑋)
is not KC. We claim that 𝐴(𝑋) is SC. Suppose (𝑥

𝑛
: 𝑛 ∈ 𝜔) is

a sequence in 𝐴(𝑋) converging to 𝑤. We have the following
cases.
Case 1. Consider 𝑤 ∈ 𝑋 \ {𝑏}. In this case, {𝑤} is an open
neighborhood of 𝑤 and there exists 𝑁 ≥ 1 such that for all
𝑛 ≥ 𝑁 we have 𝑥

𝑛
= 𝑤. Using Remark 3(1), 𝐴(𝑋) is T

1
; thus

{𝑥
𝑛
: 𝑛 ∈ 𝜔}∪{𝑤} = {𝑥

0
, . . . , 𝑥

𝑁
, 𝑤} is a closed subset of𝐴(𝑋).

Case 2. Consider 𝑤 = 𝑏. The set 𝑋 \ {𝑥
𝑛
: 𝑛 ∈ 𝜔, 𝑥

𝑛
̸= 𝑏} is an

open neighborhood of 𝑤; thus there exists 𝑁 ≥ 1 such that
for all 𝑛 ≥ 𝑁 we have 𝑥

𝑛
∈ (𝑋 \ {𝑥

𝑛
: 𝑛 ∈ 𝜔, 𝑥

𝑛
̸= 𝑏}) (thus

for all 𝑛 ≥ 𝑁we have 𝑥
𝑛
= 𝑏). Using Remark 3(1),𝐴(𝑋) is T

1
;

thus {𝑥
𝑛
: 𝑛 ∈ 𝜔} ∪ {𝑤} = {𝑥

0
, . . . , 𝑥

𝑁
, 𝑤} is a closed subset of

𝐴(𝑋).

Case 3. Consider 𝑤 = ∞. In this case, 𝐴(𝑋) \ ({𝑥
𝑛
: 𝑛 ∈

𝜔} ∪ {𝑤}) = 𝑋 \ {𝑥
𝑛
: 𝑛 ∈ 𝜔} is an open subset of𝑋; therefore

it is an open subset of𝐴(𝑋).Thus {𝑥
𝑛
: 𝑛 ∈ 𝜔}∪{𝑤} is a closed

subset of 𝐴(𝑋).

Using the above three cases, {𝑥
𝑛
: 𝑛 ∈ 𝜔} ∪ {𝑤} is a closed

subset of 𝐴(𝑋), and 𝐴(𝑋) is SC.
Since 𝐴(𝑋) is SC and it is not KC, 𝐴(𝑋) ∈ 𝐶

5
\ 𝐶
4
.

(v) Consider 𝑄 = 𝐶
6
\ 𝐶
5
. Suppose F is a uniform

ultrafilter overN. Consider𝑋 = N∪ {0}(= 𝜔) under topology
{𝐴 ⊆ 𝑋 : 0 ∉ 𝐴 ∨ 𝐴 \ {0} ∈ F}. If 𝑥, 𝑦 ∈ 𝑋 are distinct
with 𝑥 ̸= 0, then {𝑥}, 𝑋 \ {𝑥} are disjoint open subsets of 𝑋
containing 𝑥, 𝑦 and𝑋 is Hausdorff. If 𝐸, 𝐹 are disjoint closed
subsets of 𝑋, suppose 0 ∉ 𝐸. Therefore, 𝐸,𝑋 \ 𝐸(⊇ 𝐹) are
disjoint open subsets of 𝑋 and 𝑋 is normal. Since F is a
uniformultrafilter overN, it does not contain any finite subset
of 𝑋. Since all of the elements of F are infinite, 0 is a limit
point of 𝑋 and 0 ∈ 𝑋 \ {0}. Consider a sequence (𝑥

𝑛
: 𝑛 ∈ 𝜔)

in𝑋 \ {0}. We have the following cases.
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Case 1. (𝑥
𝑛
: 𝑛 ∈ 𝜔) has a constant subsequence like (𝑥

𝑛𝑘
:

𝑘 ∈ 𝜔). Since 𝑋 is Hausdorff and every sequence converges
to at most one point, (𝑥

𝑛𝑘
: 𝑘 ∈ 𝜔) converges to its constant

value and does not converge to 0. Thus (𝑥
𝑛
: 𝑛 ∈ 𝜔) does not

converge to 0.

Case 2. (𝑥
𝑛
: 𝑛 ∈ 𝜔)does not have any constant subsequence.

Suppose (𝑥
𝑛𝑘
: 𝑘 ∈ 𝜔) is a one-to-one subsequence of (𝑥

𝑛
:

𝑛 ∈ 𝜔). SinceF is an ultrafilter over𝑋 \ {0}(= N), and {𝑥
𝑛2𝑘

:

𝑘 ∈ 𝜔} ∩ {𝑥
𝑛2𝑘+1

: 𝑘 ∈ 𝜔} = ⌀, we have {𝑥
𝑛2𝑘

: 𝑘 ∈ 𝜔} ∉ F
or {𝑥
𝑛2𝑘+1

: 𝑘 ∈ 𝜔} ∉ F. Suppose {𝑥
𝑛2𝑘

: 𝑘 ∈ 𝜔} ∉ F. Since
F is an ultrafilter over N, N \ {𝑥

𝑛2𝑘
: 𝑘 ∈ 𝜔} ∈ F. Therefore

(N \ {𝑥
𝑛2𝑘

: 𝑘 ∈ 𝜔}) ∪ {0} is an open neighborhood of 0 and
(𝑥
𝑛
: 𝑛 ∈ 𝜔) does not converge to 0.
Since 0 ∈ 𝑋 \ {0} and by the above two cases, there is not

any sequence in𝑋 \ {0} converging to 0;𝑋 is not metrizable.
Thus𝑋 ∈ 𝐶

2
\ 𝐶
1
.

Now pay attention to the following claims.

Claim 1. The sequence (𝑛 : 𝑛 ≥ 1) converges to∞ in 𝐴(𝑋).
Suppose 𝑈 is an open neighborhood of ∞ in 𝐴(𝑋). Since
𝑋 is T

1
, 𝐴(𝑋) is T

1
too. Therefore, 𝑉 := 𝑈 \ {0} is an open

neighborhood of∞ in𝐴(𝑋); thus𝐴(𝑋)\𝑉 = 𝑋\𝑉(⊆ 𝑋\{0})

is a compact (and closed) subset of𝑋. Also𝐴(𝑋) \𝑉 is finite,
since 𝑋 \ {0} is discrete and 𝐴(𝑋) \ 𝑉 is a compact subset of
𝑋 \ {0} (use Remark 3(4)). Suppose𝑁 = max(𝐴(𝑋) \ 𝑉). For
all 𝑛 > 𝑁, we have 𝑛 ∈ 𝑉 ⊆ 𝑈. Hence (𝑛 : 𝑛 ≥ 1) converges to
∞.

Claim 2. {𝑛 : 𝑛 ≥ 1} ∪ {∞} is not a closed subset of 𝐴(𝑋).
Using the fact that 0 ∈ 𝑋 \ {0}, we have {𝑛 : 𝑛 ≥ 1} ∪ {∞} =

𝐴(𝑋); hence {𝑛 : 𝑛 ≥ 1} ∪ {∞} is not a closed subset of 𝐴(𝑋).
Regarding Claims 1 and 2, 𝐴(𝑋) is not SC. Since 𝑋 is

normal, it is KC; so using Remark 3(1),𝐴(𝑋) is US.Therefore,
𝐴(𝑋) ∈ 𝐶

6
\ 𝐶
5
.

(vi) Consider 𝑄 = 𝐶
7
\ 𝐶
6
. If 𝑋 is Normal, then it is KC

and by Remark 3(1), 𝐴(𝑋) is US. Thus 𝐴(𝑋) ∉ 𝐶
7
\ 𝐶
6
.

Third Row.Here we have 𝑃 = 𝐶
3
\ 𝐶
2
and the following cases

for 𝑄.

(i) Consider 𝑄 = 𝐶
2
\ 𝐶
1
. Suppose 𝑋 is a Hausdorff

locally compact nonnormal topological space. Since
𝑋 is not normal, it is not metrizable and𝑋 ∈ 𝐶

3
\ 𝐶
2
.

By Remark 3(3), 𝐴(𝑋) is normal. By Remark 3(4),
𝐴(𝑋) is not metrizable. Hence 𝐴(𝑋) ∈ 𝐶

2
\ 𝐶
1
.

Moreover 𝑋 = ((𝜔 + 1) × (Ω + 1)) \ {(𝜔,Ω)}, where
𝜔 + 1 and Ω + 1 have their order topology and (𝜔 +

1) × (Ω+ 1) equipped with product topology (deleted
Tykhonoff plank [4, counterexample 87]) isHausdorff
locally compact nonnormal topological space and is
an example for this case.

(ii) Consider𝑄 = 𝐶
3
\𝐶
2
. Use a similarmethod described

for 𝑃 = 𝐶
2
\ 𝐶
1
and 𝑄 = 𝐶

3
\ 𝐶
2
.

(iii) Consider 𝑄 = 𝐶
4
\ 𝐶
3
. Consider 𝑋 = R under

topology {𝑂 \ 𝐵 : 𝑂 is an open subset of R in
its Euclidean topology and 𝐵 ⊆ {1/𝑛 : 𝑛 ∈ N}},
then 𝑋 ∈ 𝐶

3
\ 𝐶
2
(Smirnov’s deleted sequence

topology [4, counterexample 64]). Also 𝑋 is first

countable; therefore it is a 𝑘-space by Remark 3(6).
By Remark 3(2), 𝐴(𝑋) is KC. Moreover, 𝐴(𝑋) is not
Hausdorff, since 𝑋 is not locally compact in 0 (use
Remark 3(3)). Hence 𝐴(𝑋) ∈ 𝐶

4
\ 𝐶
3
.

(iv) Consider 𝑄 = 𝐶
5
\ 𝐶
4
. Consider 𝑋 as disjoint union

of𝑋
1
and𝑋

2
, where

(1) 𝑋
1
is an uncountable set under Fortissimo

topology with particular point 𝑏 ∈ 𝑋
1
, that is,

under topology {𝑈 ⊆ 𝑋
1
: 𝑏 ∉ 𝑈 ∨ (𝑋

1
\ 𝑈

is countable)} (see [4, counterexample 25] and
proof of Table 1 regarding case “𝑃 = 𝐶

2
\ 𝐶
1
,

𝑄 = 𝐶
5
\ 𝐶
4
”);

(2) 𝑋
2
= R under the topology {𝑂 \ 𝐵 : 𝑂 is an

open subset of R in its Euclidean topology and
𝐵 ⊆ {1/𝑛 : 𝑛 ∈ N}} (see Smirnov’s deleted
sequence topology [4, counterexample 64] and
proof of Table 1 regarding case “𝑃 = 𝐶

3
\ 𝐶
2
,

𝑄 = 𝐶
4
\ 𝐶
3
”).

Since 𝑋
1
∈ 𝐶
2
\ 𝐶
1
and 𝑋

2
∈ 𝐶
3
\ 𝐶
2
, we have 𝑋 =

𝑋
1
⊔𝑋
2
∈ 𝐶
3
\𝐶
2
by Lemma 6(1). Moreover𝐴(𝑋

1
) ∈ 𝐶
5
\𝐶
4

and𝐴(𝑋
2
) ∈ 𝐶
4
\𝐶
3
lead us to𝐴(𝑋) = 𝐴(𝑋

1
⊔𝑋
2
) ∈ 𝐶
5
\𝐶
4

by Lemma 7.

(v) Consider 𝑄 = 𝐶
6
\ 𝐶
5
. Consider 𝑋 as disjoint union

of𝑋
1
and𝑋

2
, where we have the following.

(1) Suppose F is a uniform ultrafilter over N.
Consider 𝑋

1
= N ∪ {0}(= 𝜔) under topology

{𝐴 ⊆ 𝑋 : 0 ∉ 𝐴 ∨ 𝐴 \ {0} ∈ F} (see proof
of Table 1 regarding case “𝑃 = 𝐶

2
\ 𝐶
1
, 𝑄 =

𝐶
6
\ 𝐶
5
”).

(2) 𝑋
2
is Smirnov’s deleted sequence topological

space (see proof of Table 1 regarding case “𝑃 =

𝐶
3
\ 𝐶
2
, 𝑄 = 𝐶

4
\ 𝐶
3
”).

Then 𝑋 ∈ 𝐶
3
\ 𝐶
2
by 𝑋
1
∈ 𝐶
2
\ 𝐶
1
and 𝑋

2
∈ 𝐶
3
\ 𝐶
2

and Lemma 6(1). Also 𝐴(𝑋) ∈ 𝐶
6
\ 𝐶
5
by 𝐴(𝑋

1
) ∈ 𝐶

6
\ 𝐶
5
,

𝐴(𝑋
2
) ∈ 𝐶
4
\ 𝐶
3
, and Lemma 7.

(vi) Consider 𝑄 = 𝐶
7
\ 𝐶
6
. If𝑋 is T

2
, then it is KC and by

Remark 3(1), 𝐴(𝑋) is US. Thus 𝐴(𝑋) ∉ 𝐶
7
\ 𝐶
6
.

Fourth Row.Here we have𝑃 = 𝐶
4
\𝐶
3
and the following cases

for 𝑄.
(i) Consider 𝑄 = 𝐶

4
\ 𝐶
3
. Consider 𝑊 as the set of all

rational numbers as a subspace of Euclidean space R. Using
the case “𝑃 = 𝐶

1
, 𝑄 = 𝐶

4
\ 𝐶
3
” for 𝑋 := 𝐴(𝑊), we have

𝑋 ∈ 𝐶
4
\𝐶
3
. Since𝑋 is compact, we have𝐴(𝑋) = 𝑋 ∈ 𝐶

4
\𝐶
3
.

(ii) Consider 𝑄 = 𝐶
5
\ 𝐶
4
. Consider uncountable set 𝑋

with countable complement topology {𝑈 ⊆ 𝑋 : 𝑈 = ⌀∨(𝑋\𝑈

is countable)} [4, counterexamples 20 and 21]. Since every two
nonempty open subsets of 𝑋 have nonempty intersection, 𝑋
is not Hausdorff. It is clear that 𝑋 is T

1
. Moreover, 𝑀 is a

compact subset of𝑋 if and only if𝑀 is finite.Therefore, every
compact subset of𝑋 is closed and𝑋 is KC. So𝑋 ∈ 𝐶

4
\ 𝐶
3
.

Now suppose 𝐸 is an uncountable subset of 𝑋 with
uncountable complement. So 𝐸 is not closed. For all compact
subset𝑀 of 𝑋, the set 𝐸 ∩ 𝑀 is finite and closed. Therefore,
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𝑋 is not a 𝑘-space. Using Remark 3(2),𝐴(𝑋) is not KC. Using
Remark 3(1), 𝐴(𝑋) is US; we claim that 𝐴(𝑋) is SC. Suppose
(𝑥
𝑛
: 𝑛 ∈ 𝜔) is a sequence in 𝐴(𝑋), converging to 𝑥 ∈ 𝐴(𝑋).

We have the following cases.
Case 1. Consider 𝑥 ∈ 𝑋. In this case, 𝑈 := (𝑋 \ {𝑥

𝑛
: 𝑛 ∈

𝜔}) ∪ {𝑥} is an open neighborhood of 𝑥 in 𝐴(𝑋). So there
exists 𝑁 ≥ 1 such that for all 𝑛 ≥ 𝑁 we have 𝑥

𝑛
∈ 𝑈 and

𝑥
𝑛
= 𝑥. Therefore, {𝑥

𝑛
: 𝑛 ∈ 𝜔} ∪ {𝑥} = {𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑁
, 𝑥} is a

(finite and) closed subset of𝑋.

Case 2. Consider 𝑥 = ∞. Since 𝐴(𝑋) \ ({𝑥
𝑛
: 𝑛 ∈ 𝜔} ∪ {𝑥}) =

𝑋 \ {𝑥
𝑛
: 𝑛 ∈ 𝜔} is open in 𝑋, it is open in 𝐴(𝑋) too. Thus

{𝑥
𝑛
: 𝑛 ∈ 𝜔} ∪ {𝑥} is closed in 𝐴(𝑋).

By the above cases, {𝑥
𝑛
: 𝑛 ∈ 𝜔} ∪ {𝑥} is closed in 𝐴(𝑋)

and 𝐴(𝑋) is SC. Hence 𝐴(𝑋) ∈ 𝐶
5
\ 𝐶
4
.

(iii) Consider 𝑄 = 𝐶
6
\ 𝐶
5
. Consider 𝑋 as disjoint union

of𝑋
1
and𝑋

2
, where we have the following.

(1) Suppose F is a uniform ultrafilter over N. Consider
𝑋
1
= N ∪ {0}(= 𝜔) under topology {𝐴 ⊆ 𝑋 : 0 ∉

𝐴 ∨ 𝐴 \ {0} ∈ F} (see proof of Table 1 regarding case
“𝑃 = 𝐶

2
\ 𝐶
1
, 𝑄 = 𝐶

6
\ 𝐶
5
”).

(2) 𝑋
2
is an uncountable set with countable complement

topology {𝑈 ⊆ 𝑋
2
: 𝑈 = ⌀∨(𝑋

2
\𝑈 is countable)} (see

[4, counterexamples 20 and 21] and proof of Table 1
regarding case “𝑃 = 𝐶

4
\ 𝐶
3
, 𝑄 = 𝐶

5
\ 𝐶
4
”).

Then 𝑋 ∈ 𝐶
4
\ 𝐶
3
by 𝑋
1
∈ 𝐶
2
\ 𝐶
1
, 𝑋
2
∈ 𝐶
4
\ 𝐶
3
, and

Lemma 6(1). Also𝐴(𝑋) ∈ 𝐶
6
\𝐶
5
by𝐴(𝑋

1
) ∈ 𝐶
6
\𝐶
5
,𝐴(𝑋
2
) ∈

𝐶
5
\ 𝐶
4
, and Lemma 7.

(iv) Consider𝑄 = 𝐶
7
\𝐶
6
. If𝑋 is KC and by Remark 3(1),

𝐴(𝑋) is US. Thus 𝐴(𝑋) ∉ 𝐶
7
\ 𝐶
6
.

Fifth Row. Here we have 𝑃 = 𝐶
5
\ 𝐶
4
and the following cases

for 𝑄.

(i) Consider 𝑄 = 𝐶
5
\ 𝐶
4
. Consider 𝑋 as Ω + 1 with

doublingΩ [8]; that is, if𝑝 ∉ Ω+1, let𝑋 = (Ω+1)∪{𝑝}

under topological basis {(𝛼, 𝛽) : 𝛼 and 𝛽 are ordinal
numbers with 𝛼, 𝛽 < Ω} ∪ {[0, 𝛼) : 𝛼 is an ordinal
numberwith𝛼 < 𝜔}∪{(𝛼, Ω] : 𝛼 is an ordinal number
with 𝛼 < 𝜔} ∪ {(𝛼, Ω) ∪ {𝑝} : 𝛼 is an ordinal number
with 𝛼 < 𝜔}. Then 𝑋 ∈ 𝐶

5
\ 𝐶
4
and 𝑋 is compact

which leads to 𝐴(𝑋) ∈ 𝐶
5
\ 𝐶
4
too.

(ii) Consider 𝑄 = 𝐶
6
\ 𝐶
5
. Consider 𝑋 as disjoint union

of𝑋
1
and𝑋

2
, where we have the following.

(1) 𝑋
1
is Ω + 1 with doubling Ω [8] as in case “𝑃 =

𝐶
5
\𝐶
4
,𝑄 = 𝐶

5
\𝐶
4
”.Then𝑋

1
= 𝐴(𝑋

1
) ∈ 𝐶
5
\𝐶
4
.

(2) For uniform ultrafilterF overN, consider𝑋
2
=

N∪{0}(= 𝜔) is equipped with topology {𝐴 ⊆ 𝑌 :

0 ∉ 𝐴 ∨ 𝐴 \ {0} ∈ F}. Using case “𝑃 = 𝐶
2
\ 𝐶
1
,

𝑄 = 𝐶
6
\𝐶
5
”, we have𝑋

2
∈ 𝐶
2
\𝐶
1
and𝐴(𝑋

2
) ∈

𝐶
6
\ 𝐶
5
. By 𝑋

1
∈ 𝐶
5
\ 𝐶
4
, 𝑋
2
∈ 𝐶
2
\ 𝐶
1
, and

Lemma 6(1), we have𝑋 = 𝑋
1
⊔𝑋
2
∈ 𝐶
5
\𝐶
4
. By

𝐴(𝑋
1
) ∈ 𝐶
5
\𝐶
4
,𝐴(𝑋
2
) ∈ 𝐶
6
\𝐶
5
, and Lemma 7,

we have 𝐴(𝑋) = 𝐴(𝑋
1
⊔ 𝑋
2
) ∈ 𝐶
6
\ 𝐶
5
.

(iii) Consider 𝑄 = 𝐶
7
\ 𝐶
6
. Use Lemma 8.

Table 3

𝑃
𝑄

T
2

KC \ T
2

SC \ KC T
1
\ SC

T
2

√ √ √ √

KC \ T
2

— √ √ √

SC \ KC — — √ √

T
1
\ SC — — — √

Sixth Row.Here we have 𝑃 = 𝐶
6
\ 𝐶
5
and the following cases

for 𝑄.

(i) Consider 𝑄 = 𝐶
6
\ 𝐶
5
. Consider 𝑋 as (𝜔 + 1) ∪ {F},

such that 𝜔 + 1 has its usual order topology, F is a
uniform ultrafilter over 𝜔, and {{F} ∪ 𝑈 : 𝑈 ∈ F} is
an open neighborhood basis for F [8, example 1.2];
then𝑋 is compact and 𝐴(𝑋) = 𝑋 ∈ 𝐶

6
\ 𝐶
5
.

(ii) Consider 𝑄 = 𝐶
7
\ 𝐶
6
. According to [7, example 5],

there exists a US topological space 𝑋 such that 𝐴(𝑋)
is not US. By Remark 3(7),𝐴(𝑋) is T

1
. Hence𝐴(𝑋) ∈

𝐶
7
\𝐶
6
. Moreover, by Lemma 8,𝑋 is not SC; thus𝑋 ∈

𝐶
6
\ 𝐶
5
.

Seventh Row. Here we have 𝑃 = 𝐶
7
\ 𝐶
6
and 𝑄 = 𝐶

7
\ 𝐶
6
.

Suppose𝑋 as an infinite set with finite complement topology
{𝑈 ⊆ 𝑋 : 𝑈 = ⌀∨(𝑋 \ 𝑈 is finite)} [4, counterexamples 18
and 19]. Then𝑋 is compact and 𝐴(𝑋) = 𝑋 ∈ 𝐶

7
\ 𝐶
6
.

4. Some Observations in Figure 1

Using Figure 1, we have the following results.
(i) The collection {T

2
, KC, SC, T

1
} is a full-forwarding

chain with respect to 𝐴. In other words, Table 3 is valid.
In Table 3, themark “√” indicates that in the correspond-

ing case there exists𝑋 ∈ 𝑃 such that𝐴(𝑋) ∈ 𝑄, and the mark
“—” indicates that

in the corresponding case for all 𝑋 ∈ 𝑃 we have 𝐴(𝑋) ∉
𝑄.

(ii) The collection {Metrizable, T
2
, KC, SC, US, T

1
, TD,

TUD, T0, Top} is a forwarding chain with respect to 𝐴. The
collection T

1
,TD,TUD,T0, Top is a stationary chain with

respect to 𝐴.
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