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Copyright © 2017 Zhe Ding et al.This is an open access article distributed under theCreative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Datamining techniques are applied to identify hidden patterns in large amounts of patient data.These patterns can assist physicians
in making more accurate diagnosis. For different physical conditions of patients, the same physiological index corresponds to a
different symptom association probability for each patient. Data mining technologies based on certain data cannot be directly
applied to these patients’ data. Patient data are sensitive data. An adversary with sufficient background information can make use
of the patterns mined from uncertain medical data to obtain the sensitive information of patients. In this paper, a new algorithm
is presented to determine the top 𝐾 most frequent itemsets from uncertain medical data and to protect data privacy. Based on
traditional algorithms for mining frequent itemsets from uncertain data, our algorithm applies sparse vector algorithm and the
Laplace mechanism to ensure differential privacy for the top𝐾most frequent itemsets for uncertain medical data and the expected
supports of these frequent itemsets. We prove that our algorithm can guarantee differential privacy in theory. Moreover, we carry
out experiments with four real-world scenario datasets and two synthetic datasets. The experimental results demonstrate the
performance of our algorithm.

1. Introduction

The Internet of Things (IoT) involves a lot of different base
technologies, such as wireless sensors, datamanagement, and
cloud computing [1]. Today, IoT technology is successfully
applied in the field of eHealth [2–4]. Medical personnel can
utilize IoT technology to collect large amounts of patient data
that can assist them in providing better medical services to
patients [5, 6].

Frequent itemsets mining is applied in fields such as
eHealth and bioinformatics. Traditional algorithms for min-
ing frequent itemsets from medical data are based on certain
data [7] and can be applied to discover hidden symptom pat-
terns from a huge amount of data on patient symptoms.These
patterns can be used by health managers to provide better
healthcare for users [8]. For example, in [9, 10], the Apriori
algorithm was applied to identify prevalent diseases and ana-
lyze medical billing. However, the Apriori algorithm mines
frequent itemsets from certain data. Inmedicine, for different
physical conditions of patients, the same physiological index
corresponds to a different symptom association probability

for each patient. As a result, there is uncertainty in patient
data. Therefore, traditional algorithms for mining frequent
itemsets from certain data cannot be directly applied to
patient data.

Another important factor is that medical records contain
sensitive patient information. An adversary with sufficient
background information can make use of frequent patterns
mined frompatient data to obtain the sensitive information of
patients. Hence, it is very important to protect patient privacy
when mining frequent itemsets from medical data [11].

The set of symptoms that a patient suffers from constitute
the patient’s data. Because of the probabilities associated with
these symptoms, there is uncertainty in patient data. A large
amount of patient data constitutes uncertain data. In the
field of medicine, there are plenty of researches on symptom
association probability. For example, one study monitored
oesophageal pH over a 24 h period to obtain symptom associ-
ation probability, whichwas then utilized to evaluate the asso-
ciation between a patient’s symptoms and gastroesophageal
reflux [12]. By analyzing the large amounts of patient data,
Beglinger et al. determined the probability that a patient
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suffering from Huntington’s disease also had obsessive and
compulsive symptoms [13]. By analyzing the data of patients
suffering from irritable bowel syndrome, Arsiè et al. deter-
mined the probability that indicated the association between
meal ingestion and abdominal pain symptoms for patients
suffering from irritable bowel syndrome [14]. In this paper,
based on symptom association probability obtained by med-
ical technology, we focus on how to mine frequent itemsets
from uncertain medical data, while also protecting data
privacy. In the uncertainmedical data, each item corresponds
to a symptom of patients.

In this paper, a new algorithm, denoted as U-PrivMining
(uncertain medical data differentially private frequent item-
sets mining), is proposed to mine the top 𝐾 most frequent
itemsets from uncertain medical data in a differentially
privateway. In uncertainmedical data, each item corresponds
to a symptom of patients. U-PrivMining has two phases. In
the first phase, based on traditional algorithms for mining
frequent itemsets fromuncertain data, spare vector algorithm
and the Laplace mechanism are applied to ensure differential
privacy for all the frequent itemsets mined from uncertain
medical data. In the second phase, based on the frequent
itemsets, the Laplacemechanism is applied to ensure differen-
tial privacy for the top𝐾most frequent itemsets for uncertain
data, as well as the expected supports of these frequent
itemsets. We used the spare vector algorithm to improve the
efficiency of our algorithm. The spare vector algorithm was
used to mine the top 𝐾 most frequent itemsets from certain
data and guaranteed differential privacy in [15]. One major
advantage of the spare vector algorithm is that information
disclosure affecting differential privacy occurs only for count
queries above the threshold; negative answers do not count
against the “privacy budget” [15].The sparse vector algorithm
is also suitable for guaranteeing differential privacy when
mining frequent itemsets from uncertain data. For certain
data, the fixed occurrence counting of an itemset has been
applied to determine whether the itemset is frequent. For
mining frequent itemsets based on expected support from
uncertain data, the expectation of support of an itemset has
been utilized to judge whether the itemset is frequent [16]. To
summarize, our key contributions are the following:

(i) A new algorithm is proposed to mine the top𝐾most
frequent itemsets from uncertain medical data and
ensure differential privacy. Traditional algorithms for
mining frequent itemsets in differential privacy ways
are based on certain data and thus cannot be directly
applied to process uncertain medical data.

(ii) Through privacy analysis, we prove that U-Priv-
Mining guarantees differential privacy in theory. Our
experimental results on four real-world scenario data-
sets and two synthetic datasets illustrate the efficiency
of U-PrivMining.

This paper is organized as follows. Section 2 presents an
overview of related work on eHealth, IoT, frequent itemsets
mining for uncertain data, and differential privacy. In Sec-
tion 3, some notations used in this paper are introduced. The
U-PrivMining algorithm and the proof that U-PrivMining

satisfies differential privacy in theory are presented in Sec-
tion 4. In Section 5, the performance of U-PrivMining is
evaluated with six datasets. In the last section, we conclude
our work.

2. Related Works

eHealth applies IoT technology to provide better healthcare
services to users. In 2009, Niyato et al. proposed a remote and
mobile patient monitoring system that applies heterogeneous
wireless access to monitor the biosignals of patient mobility
[17]. In 2015, based on the limitations of traditional cellular
networks for eHealth services, Yi et al. designed a transmis-
sion schedulingmechanism for delay-sensitivemedical pack-
ets in an eHealth network [18]. The eHealth system based on
IoT used monitoring devices to collect large amounts of
patient data. Data mining can find hidden patterns in these
data, which can assist medical personnel in providing
improved medical services to patients. In 2009, Karaolis et al.
proposed an algorithm that used mining association rules
to assess the risk of coronary events [19]. When traditional
data mining technologies are applied to medical data, many
useless patterns are discovered. In 2013, Lee et al. proposed a
novel algorithm for mining association rule to determine the
relationship between blood factors and disease history [20].
This algorithm reduced the number of useless patternsmined
from medical data. In 2014, Park et al. used association rules
mined from medical data to identify risk behaviors in daily
life [21].

The phenomenon of data uncertainty is very common.
Traditional algorithms for mining frequent itemsets based on
certain data cannot be directly applied tomine frequent item-
sets from uncertain data.There are two categories of research
on mining frequent itemsets from uncertain data [22]. The
first category is mining frequent itemsets based on expected
support. In 2007, Chui et al. proposed the notion of expected
support and proposed the U-Apriori algorithm based on the
Apriori algorithm [23]. The second category is probabilistic
frequent itemsets mining. In 2012, the characteristics of Pois-
son binomial distribution were introduced to mine probabi-
listic frequent itemsets [24]. In 2012, Bernecker et al. proposed
an algorithm based on the frequent pattern tree to mine
probabilistic frequent itemsets from uncertain data [25].

Protecting the privacy of patient data is challenge for
eHealth and plenty of studies have been conducted on
eHealth security [26–33]. Differential privacy can ensure that
when one record in the input database of mechanism 𝐴 is
changed, the output of 𝐴 is insensitive to the change [34]. In
2006, Dwork et al. proposed the Laplace mechanism to
ensure differential privacy for real-valued output [35]. In
2010, Bhaskar et al. proposed an algorithm based on trun-
cated frequencies to ensure differential privacy for the top 𝐾
most frequent itemsets for certain data [36]. In 2012, Li et
al. introduced the notion of basis set to ensure differential
privacy for mining the top 𝐾 most frequent itemsets from
certain data [37]. In 2014, Lee et al. applied sparse vector
algorithm and the Laplace mechanism to guarantee differ-
ential privacy for the top 𝐾 frequent itemsets mined from
certain data [15]. In 2015, Su et al. introduced a smart splitting
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method to mine frequent itemsets from certain data and
ensure differential privacy [38].

Although there are many studies on mining frequent
itemsets from certain data in differentially private ways,
research on mining frequent itemsets from uncertain data in
differentially private ways remains few.This paper focuses on
research on mining the top 𝐾 most frequent itemsets from
uncertain data in differentially private ways.

3. Preliminaries

The fundamental notions of mining frequent itemsets from
uncertain data [23] and differential privacy [34, 35] will be
reviewed in this section.These fundamental notions are used
throughout this paper. The terms “item” and “symptom” are
used interchangeably; “itemset” and “symptom set” can be
swapped.

3.1. Frequent Itemsets Mining for Uncertain Data. Let 𝑉 ={V1, V2, . . . , V𝑚} be a set of 𝑚 items and 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} as
uncertain data with 𝑛 records. Each record 𝑡𝑖 = ⟨(V𝑖1 , 𝑃(V𝑖1 ∈𝑡𝑖)), . . . , (V𝑖𝑘 , 𝑃(V𝑖𝑘 ∈ 𝑡𝑖))⟩ (1 ≤ 𝑖 ≤ 𝑛) is a set of uncertain
items. For (V𝑖𝑗 , 𝑃(V𝑖𝑗 ∈ 𝑡𝑖)) ∈ 𝑡𝑖, V𝑖𝑗 ∈ 𝑉 is assigned with
existential probability 𝑃(V𝑖𝑗 ∈ 𝑡𝑖) , which indicates the likeli-
hood that V𝑖𝑗 appears in 𝑡𝑖. For example, let𝑉 = {hypotension,
eating disorder, anemia, neurasthenia}. The uncertain data is
shown in Table 1. We can obtain the information from
Table 1 as follows. 𝑇 = {𝑡1, 𝑡2} and 𝑡1 = {(hypotension: 0.3),(eating disorder: 0.1)}, which means that user 𝑡1 may be suf-
fering from hypotension and eating disorder. The probability
of {hypotension} existing in 𝑡1 is equal to 0.3; in other words,𝑃(hypotension ∈ 𝑡1) = 0.3 . This means that the probability
of user 𝑡1 suffering from hypotension is equal to 0.3.

A set of possible worlds (possible certain database),
denoted as 𝑊 = {𝑤1, 𝑤2, . . . , 𝑤|𝑊|}, can be inferred from
uncertain data 𝑇. According to the existing probabilities𝑃(V𝑗 ∈ 𝑡𝑖), each possible world 𝑤𝑔 (1 ≤ 𝑔 ≤ |𝑊|) is
illustrated by generating 𝑡𝑖 ∈ 𝑇. Table 2 shows a set of possible
worlds inferred from the uncertain data shown in Table 1. For
instance, the possible world 𝑤2 = {{hypotension}, {anemia,
hypotension}} in Table 2 means that the user 𝑡1 is suffering
from hypotension and user 𝑡2 is suffering from anemia and
hypotension.

We assume that all the records in the uncertain data
and all the uncertain items in the same record are mutually
independent.The probability of a possible world𝑤𝑔, denoted
as 𝑃(𝑤𝑔), can be obtained by the following [23]:

𝑃 (𝑤𝑔) = 𝑛∏
𝑖=1

( ∏
𝑥∈𝑇(𝑤𝑔,𝑡𝑖)

𝑃 (𝑥 ∈ 𝑡𝑖)

⋅ ∏
𝑦∉𝑇(𝑤𝑔,𝑡𝑖)

(1 − 𝑃 (𝑦 ∈ 𝑡𝑖))) ,
(1)

Table 1: Uncertain data.

ID Records𝑡1 (hypotension: 1), (eating disorder: 0.3)𝑡2 (anemia: 1), (hypotension: 0.7), (neurasthenia: 0.6)

where 𝑇(𝑤𝑔, 𝑡𝑖) denotes the set of items contained in record𝑡𝑖 and belonging to 𝑤𝑔. The expected support of itemset 𝑋,
denoted as 𝑆𝑒(𝑋), can be obtained by the following [23]:

𝑆𝑒 (𝑋) = |𝑊|∑
𝑖=1

𝑃 (𝑤𝑖) × 𝑆 (𝑋,𝑤𝑖) , (2)

where 𝑆(𝑋,𝑤𝑔) is the support count of itemset 𝑋 in possible
world 𝑤𝑔. For Table 2, in 𝑤2, we can obtain the information
as𝑃(𝑤2) = 1×(1−0.3)×1×0.7×(1−0.6) = 0.196, 𝑇(𝑤2, 𝑡1) ={hypotension} and 𝑇(𝑤2, 𝑡2) = {anemia, hypotension}.
3.2. Differential Privacy. Differential privacy can ensure that
output of the analysis mechanism is insensitive to changes in
input records. If an analysis mechanism ensures differential
privacy, its output will be insensitive to the addition or
removal of a record from the input database. As a result, the
output cannot be used by adversaries to gain access to a
patient’s record using their background information [35].
Many studies on privacy protection are based on two assump-
tions. The first assumption is that the background informa-
tion of adversaries is already known to the security manager.
The second one is that the securitymanager has knownwhich
information should be kept private for users. Differential pri-
vacy can protect sensitive information of users without that
information [34]. Two databases, 𝐷1 and 𝐷2, are a pair of
neighboring databases if and only if they differ by no more
than one record.

Definition 1 (M-differential privacy [34]). Let Range(𝐴) be the
domain of a random algorithm 𝐴’s output. 𝐷 and 𝐷 are any
pair of neighboring datasets. If (3) is satisfied, then algorithm𝐴 guarantees M-differential privacy.

𝑃 [𝐴 (𝐷) = 𝑆] ≤ 𝑒M ⋅ 𝑃 [𝐴 (𝐷) = 𝑆] , (3)

where M is the privacy budget of differential privacy and 𝑆 ∈
Range(𝐴).

The sensitivity is used to obtain the maximal possible
difference value between outputs for any pair of neighboring
datasets.

Definition 2 (sensitivity [34]). Given the function 𝑓 : 𝐷𝑛 →𝑅𝑑, the sensitivity of 𝑓, denoted as Δ𝑓, can be obtained by

Δ𝑓 = max 𝑓 (𝐷) − 𝑓 (𝐷)1 , (4)

where𝐷 and𝐷 are any pair of neighboring datasets.
Definition 3 (the Laplace mechanism [35]). Given dataset 𝐷,
let𝑄 = (𝑞1, 𝑞2, . . . , 𝑞𝑝) be a query sequence and the sensitivity
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Table 2: Possible worlds.

𝑊 Possible world 𝑃 (𝑤𝑖)𝑤1 {hypotension}, {anemia} 0.084𝑤2 {hypotension}, {anemia, hypotension} 0.196𝑤3 {hypotension}, {anemia, neurasthenia} 0.126𝑤4 {hypotension}, {anemia, hypotension, neurasthenia} 0.294𝑤5 {eating disorder, hypotension}, {anemia} 0.036𝑤6 {eating disorder, hypotension}, {anemia, hypotension} 0.084𝑤7 {eating disorder, hypotension}, {anemia, neurasthenia} 0.054𝑤8 {eating disorder, hypotension}, {anemia, hypotension, neurasthenia} 0.126

of𝑄 isΔ𝑄. Let (𝜉1, 𝜉2, . . . , 𝜉𝑝) be a vector, inwhich 𝜉𝑖 (1 ≤ 𝑖 ≤𝑝) are i.i.d. drawn from the Laplace distribution whose scale
and mean are Δ𝑄/M and 0, respectively. The algorithm

𝐴 (𝐷) = 𝑄 (𝐷) + (𝜉1, 𝜉2, . . . , 𝜉𝑝) (5)

guarantees M-differential privacy.

Lemma 4 (composition lemma [34]). Given a sequence of
algorithm, denoted as 𝑓 = 𝑓1, 𝑓2, . . . , 𝑓𝑑, if each algorithm𝑓𝑖 (1 ≤ 𝑖 ≤ 𝑑) guarantees M𝑖-differential privacy, then 𝑓
ensures ∑𝑑𝑖=1 M𝑖-differential privacy.
4. U-PrivMining Algorithm

This section introduces theU-PrivMining algorithm to deter-
mine the top 𝐾 most frequent itemsets from uncertain data,
in which each item corresponds to a symptom of patients,
in a differentially private way. The process of U-PrivMining
consists of two phases. In the first phase, the assigned privacy
budget is equal to M1 = 𝛼⋅M. In the second phase, the assigned
privacy budget is equal to M2 = (1 − 𝛼) ⋅ M. The parameter𝛼 ∈ (0, 1) is applied to control the value of the privacy bud-
gets assigned in the two phases. In this study, we chose 𝛼 =1/3 for all uncertain data. However, this choice may not be
optimal. It appears that the optimal allocation depends on the
characteristics of the uncertain medical data and value of 𝐾
[36].

4.1. Description of U-PrivMining. The whole process of U-
PrivMining is introduced in this section. U-PrivMining is
composed of two phases. In the first phase, we can obtain𝜃 so that the expected supports of the top 𝐾 most frequent
itemsets are greater than or equal to 𝜃. The privacy budget
allocated to this step is equal to M1 = (1/3) ⋅ M. On the basis
of traditional algorithm for mining frequent itemsets from
uncertain data, we apply the sparse vector algorithm [15] and
Laplace mechanism to ensure (M/3)-differential privacy for
this phase. The steps in the first phase of U-PrivMining are
as follows.

Step 1. The expected support of the 𝐾th most frequent
itemset, denoted as 𝑆𝑘, is obtained by utilizing traditional
algorithms for mining frequent itemsets based on expected
support from uncertain data.

Step 2. The noisy threshold, denoted as 𝑆𝐾, can be obtained
by

𝑆𝐾 = 𝑆𝐾 + Lap(12
M
) , (6)

where Lap(12/M) is the noisy data generated by the Laplace
distribution, whose mean and scale are 0 and (12/M), respec-
tively.

Step 3. On the basis of traditional algorithms for mining
frequent itemsets from uncertain data, the sparse vector
algorithm is applied to obtain all the frequent itemsets whose
assessment expected supports are greater than or equal to the
noisy threshold 𝑆𝐾. The assessment expected support of an
itemset𝑋, denoted as 𝑆𝑒(𝑋) can be obtained by

𝑆𝑒 (𝑋) = 𝑆𝑒 (𝑋) + Lap(4
M
) , (7)

where 𝑆𝑒(𝑋) is the expected support of itemset 𝑋 and
Lap(4/M) is the noisy data generated by the Laplace distribu-
tion, whose mean and scale are 0 and (4/M), respectively.
Step 4. All the frequent itemsets obtained in Step 3 and the
expected supports of these itemsets are taken as the output of
this phase.

In the second phase, according to the output of the first
phase, U-PrivMining can obtain the top 𝐾 most frequent
itemsets for uncertain data and the noisy expected supports
of these frequent itemsets.The privacy budget allocated to the
second phase is equal to M2 = (2/3) ⋅ M. The privacy budgets
allocated to ensure differential privacy for the top 𝐾 most
frequent itemsets for uncertain data and for the expected
supports of these itemsets for uncertain data are equal to
M2,1 = 𝛽 ⋅ M2 and M2,2 = (1 − 𝛽) ⋅ M2, respectively. The second
phase of U-PrivMining is described below.

Let 𝐻 = {ℎ1, ℎ2, . . . , ℎ|𝐻|} be a set of itemsets obtained in
the first phase of U-PrivMining. Let 𝑆𝑒(ℎ𝑖) (1 ≤ 𝑖 ≤ |𝐻|) be
the expected support of itemset ℎ𝑖. The steps in the second
phase of U-PrivMining are as follows.

Step 1 (if |𝐻| is less than or equal to 𝐾, 𝛽 is equal to 0). All
the itemsets in𝐻 belong to the top𝐾most frequent itemsets
for uncertain data. And then Step 3 is directly executed.
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Step 2 (if |𝐻| is greater than 𝐾, 𝛽 is equal to 0.5). The
perturbation expected supports of all the itemsets in 𝐻 can
be obtained. The perturbation expected support of itemsetℎ𝑖 (1 ≤ 𝑖 ≤ |𝐻|), denoted as 𝜍(𝐻𝑖), can be obtained by

𝜍 (ℎ𝑖) = 𝑆𝑒 (ℎ𝑖) + 𝜉𝑖, (8)

where 𝜉1, 𝜉2, . . . , 𝜉|𝐻| are mutually independent and drawn
from the Laplace distribution, whose mean and scale are 0
and (|𝐻|/M2,1), respectively.The top𝐾most frequent itemsets
for the perturbation expected supports in 𝐻 are the top 𝐾
most frequent itemsets for uncertain data.

Step 3. Let 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝐾} be the set of the top 𝐾 most
frequent itemsets for uncertain data, which are obtained in
above steps. The noisy expected supports of all the itemsets
in 𝑅 can be obtained. The noisy expected support of itemset𝑟𝑖 (1 ≤ 𝑖 ≤ 𝐾) can be obtained by

𝜎 (𝑟𝑖) = 𝑆𝑒 (𝑟𝑖) + 𝜆𝑖, (9)

where 𝜆1, 𝜆2, . . . , 𝜆𝐾 are mutually independent and drawn
from the Laplace distributionwhosemean and scale are equal
to 0 and (𝐾/M2,2), respectively.
Step 4. The top 𝐾 most frequent itemsets for uncertain data
and the noisy expected supports of these itemsets are taken
as the output of U-PrivMining.

4.2. Privacy Analysis for U-PrivMining. In this section, we
prove that U-PrivMining is M-differentially private. In order
to prove that U-PrivMining guarantees differential privacy,
we introduce the notions of count query set and threshold
query set.

Definition 5 (count query set [15]). Let 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠|𝑆|}
be a set of itemsets with |𝑆| itemsets. A count query set is
composed of a number of queries. Let 𝐶𝑄 = (𝑞1, 𝑞2, . . . , 𝑞|𝑆|)
be the count query set, where each query 𝑞𝑖 (1 ≤ 𝑖 ≤ |𝑆|) asks
for the expected support of the 𝑖th itemset in 𝑆.
Definition 6 (threshold query set [15]). Let 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠|𝑆|}
be a set of itemsets with |𝑆| itemsets. A threshold query set
is composed of a number of threshold queries. Let 𝑇𝑄 =(𝑞1, 𝑞2, . . . , 𝑞|𝑆|) be the threshold query set, where each 𝑞𝑖 (1 ≤𝑖 ≤ |𝑆|) returns 1 if 𝑆(𝑠𝑖) ≥ 𝑆𝐾 (1 ≤ 𝑖 ≤ |𝑆|); otherwise 𝑞𝑖
returns 0.

According to the definition of count query set, the
sensitivity of the count query and count query set can be
obtained as follows.

Lemma 7. Let 𝐶𝑄 = (𝑞1, 𝑞2, . . . , 𝑞|𝐻|) be a count query set.
The sensitivity of 𝑞𝑖 (1 ≤ 𝑖 ≤ |𝐻|) and CQ are equal to 1 and|𝐻|, respectively.
Proof. According to (2), we can obtain the other method to
compute the expected support of an itemset 𝑋, denoted as𝑆𝑒(𝑋), as follows [23]:

𝑆𝑒 (𝑋) = 𝑛∑
𝑖=1

∏
𝑥∈𝑋

𝑃 (𝑥 ∈ 𝑡𝑖) , (10)

where 𝑛 is the number of records in an uncertain data 𝑇 and𝑡𝑖 (1 ≤ 𝑖 ≤ 𝑛) is a record in 𝑇. Let 𝑇 and 𝑇 be a pair of neigh-
bor databases. Let𝐷 = {𝑡 | 𝑡 ∈ 𝑇 ∩ 𝑡 ∈ 𝑇} be the intersection
of 𝑇 and 𝑇. Let |𝑇|, |𝑇|, and |𝐷| be the total size of 𝑇, 𝑇,
and 𝐷, respectively. Let 𝑆𝑇𝑒 (𝑋) and 𝑆𝑇𝑒 (𝑋) be the expected
supports of itemset 𝑋 for 𝑇 and 𝑇, respectively. According
to (10), the values of 𝑆𝑇𝑒 (𝑋) and 𝑆𝑇𝑒 (𝑋) can be computed as
follows:

𝑆𝑇𝑒 (𝑋) = |𝑇|∑
𝑗=1

∏
𝑥∈𝑋

𝑃 (𝑥 ∈ 𝑡𝑗)

= |𝐷|∑
𝑗=1

∏
𝑥∈𝑋

𝑃 (𝑥 ∈ 𝑡𝑗)
+ ∏
𝑥∈𝑋

𝑃 (𝑥 ∈ 𝑑1)

𝑆𝑇𝑒 (𝑋) = |𝑇|∑
𝑗=1

∏
𝑥∈𝑋

𝑃 (𝑥 ∈ 𝑡𝑗)

= |𝐷|∑
𝑗=1

∏
𝑥∈𝑋

𝑃 (𝑥 ∈ 𝑡𝑗)
+ ∏
𝑥∈𝑋

𝑃 (𝑥 ∈ 𝑑2)
⇓

𝑆𝑇𝑒 (𝑋) − 𝑆𝑇𝑒 (𝑋)1 ≤ 1,

(11)

where𝑑1 = {𝑡 | 𝑡 ∈ 𝑇∩𝑡 ∉ 𝑇} and 𝑑2 = {𝑡 | 𝑡 ∈ 𝑇∩𝑡 ∉ 𝑇}. As
a result, the sensitivity of each query 𝑞𝑖 (1 ≤ 𝑖 ≤ |𝐻|) is equal
to 1. Since there are |𝐻| queries in CQ, the sensitivity of CQ is
equal to |𝐻|.

Based on the sensitivity of the count query and count
query set for uncertain data, we can conclude that U-
PrivMining guarantees M-differential privacy. The proof pro-
cedure is outlined below.

Theorem 8. The first phase of U-PrivMining is (M/3)-differ-
entially private.

Proof. According to Lemma 7, the sensitivity of obtaining 𝑆𝐾
is equal to 1. As a result, according to the Laplace mecha-
nism, it is (M/12)-differentially private to generate the noisy
threshold 𝑆𝐾. Let 𝑆𝐷1𝐾 and 𝑆𝐷2𝐾 be the noisy threshold for a pair
of neighboring databases𝐷1 and𝐷2, respectively. According
to Definition 1, (12) is satisfied.

𝑃 (𝑆𝐷1𝐾 = 𝑥) ≤ 𝑃 (𝑆𝐷2𝐾 = 𝑥) ⋅ 𝑒(M/12). (12)

Let 𝐻 = {ℎ1, ℎ2, . . . , ℎ|𝐻|} be the set of itemsets. The
threshold query set is applied to model the set of answers as
a vector 𝑄 = (𝑞1, 𝑞2, . . . , 𝑞|𝐻|) where 𝑞𝑖 = 1 (1 ≤ 𝑖 ≤ |𝐻|) if𝑆𝑒(ℎ𝑖) ≥ 𝑆𝐾 (1 ≤ 𝑖 ≤ |𝐻|); otherwise 𝑞𝑖 = 0. Given any pair
of neighboring databases 𝐷1 and 𝐷2, 𝑉1 and 𝑉2 denote the
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output distribution on𝑄when𝐷1 and𝐷2 are input neighbor
databases, respectively. Then, (13) is satisfied (the details of
the proof are shown in [15]).

𝑉1 (𝑄)𝑉2 (𝑄) ≤ 𝑒(M/3). (13)

Thus, the first phase of U-PrivMining ensures (M/3)-
differential privacy.

Theorem 9. The second phase of U-PrivMining is (2M/3)-dif-
ferentially private.

Proof. According to Lemma 7, the sensitivity of obtaining the
expected support of an itemset is equal to 1. Therefore, the
sensitivity of obtaining the expected support of all frequent
itemsets in 𝐻 is equal to |𝐻|. In |𝐻| that is greater than𝐾, according to the Laplace mechanism, the scale of the
Laplace distribution, which is used to ensure differential
privacy for the top 𝐾 most frequent itemsets, is equal to(|𝐻|/M2,1). Hence, obtaining the top𝐾most frequent itemsets
ensures M2,1-differential privacy. The sensitivity of obtaining
the expected supports of the top 𝐾 most frequent itemsets
is equal to𝐾. According to the Laplace mechanism, the noisy
data, which is used to obtain the noisy expected support of the
top𝐾 frequent itemsets, obeys the Laplace distributionwhose
scale is equal to (𝐾/M2,2). Hence, it ensures M2,2-differential
privacy for obtaining noisy expected supports of the top 𝐾
most frequent itemsets for uncertain data. As a consequence,
according to Lemma 4, the second phase of U-PrivMining
guarantees (2M/3)-differential privacy.

According to analysis of the two phases of U-PrivMining,
we can conclude that the first and second phases are (M/3)-
differentially private and (2M/3)-differentially private, respec-
tively. According to Lemma 4, U-PrivMining is M-differen-
tially private.

5. Experiments

In our experiments, four real-world scenario datasets and
two synthetic datasets were utilized to verify the efficiency
of U-PrivMining, which can be downloaded from [39]. The
parameters of these public datasets are shown in Table 3,
where the number of items in the datasets is denoted as 𝑚
and the number of transactions in the dataset is denoted as 𝑛.
The maximal length of transactions in the dataset is denoted
as max|𝑡|. The average length of transactions in the dataset is
denoted as avg|𝑡|. In order to add uncertainty to these data-
sets, an existential random probability in the range of [0, 1] is
assigned to each item in each transaction.

5.1. Evaluation Metrics. U-PrivMining applies the Laplace
mechanism and the spare vector algorithm to ensure dif-
ferential privacy for the top 𝐾 most frequent itemsets for
uncertain data and the expected supports of these frequent
itemsets. The Laplace mechanism can protect the privacy of
U-PrivMining’s output by adding noisy data to the output of

Table 3: Dataset.

Dataset 𝑚 𝑛 max|𝑡| avg|𝑡|
Accidents 468 340183 51 33.8
Kosarak 41270 990002 2498 8.1
Pumsb 2113 49046 74 74
Pumsb star 2088 49046 63 50.5
T10I4D100K 870 100000 29 10.1
T40I10D100K 942 100000 77 39.6

mining frequent itemsets from uncertain data. Thus, the F-
score and relative error (RE) are applied to evaluate the
influence of noisy data on the experimental results.

Definition 10 (F-score [15]). Let𝐹 be the set of the top𝐾most
frequent itemsets for uncertain data and 𝐹 be the set of the
frequent itemsets obtained byU-PrivMining.The F-score can
be obtained by

𝐹-score = 2 × precision × recall
precision + recall

, (14)

where precision = |𝐹 ∩ 𝐹|/| 𝐹| and recall = |𝐹 ∩ 𝐹|/|𝐹|.
Definition 11 (relative error [15]). Let 𝑆𝑒(𝑋) and 𝜎(𝑋) be the
expected support of itemset 𝑋 for uncertain data and the
noisy expected support of itemset 𝑋, respectively, which is
obtained in the second phase of U-PrivMining. The RE can
be obtained by

RE = median𝑋∈𝐹
𝑆𝑒 (𝑋) − 𝜎 (𝑋)𝑆𝑒 (𝑋) . (15)

As described in Definition 10, for all the itemsets mined
byU-PrivMining, the precision is utilized to evaluate the pro-
portion of itemsets mined by U-PrivMining and belonging to
the correct top 𝐾 most frequent itemsets for uncertain data.
The recall is also used to evaluate the proportion of itemsets
mined by U-PrivMining and belonging to the correct top𝐾 most frequent itemsets for uncertain data. The F-score is
the harmonic mean of both precision and recall. When the
number of the frequent itemsets obtained from the first phase
of U-PrivMining is greater than or equal to 𝐾, the value of|𝐹| and | 𝐹| is equal to𝐾. As a result, the value of F-score and
recall is equal to the value of precision.

As described in Definition 11, the value of RE is utilized to
evaluate the influence of the noisy data on the noisy expected
supports of the top 𝐾 most frequent itemsets for uncertain
data. There may be extremely large or small values in the
experimental results. The median was not skewed because
these values were extremely large or small. Therefore, the
median was applied to evaluate the relative error.

5.2. Analysis of Experimental Results. U-PrivMining can
identify the top 𝐾 most frequent itemsets from uncertain
data in differentially private way. In traditional algorithms for
mining the top𝐾most frequent itemsets from uncertain data
and certain data, the 𝐾 values were predetermined by users
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Figure 1: F-score by varying privacy budget.

or domain experts [7]. In order to evaluate the influence of
privacy budget on the F-score and RE, we conducted four
group experiments.The𝐾 values were set as 50, 100, 150, and
200, respectively.

Figure 1 shows the results of the F-score obtained by U-
PrivMining running on the six public datasets under different
privacy budget values. As it can be seen from the figure, when𝐾 value is fixed, the F-score fluctuates and is close to 1 with
increasing privacy budget. In the first phase ofU-PrivMining,
the algorithm obtains noisy data to generate noisy threshold
and assessment expected supports of itemsets. According to
(6) and (7), the greater the value of the privacy budget, the
smaller the scale of Laplace distribution used to generate the
noisy data in this step. In the second phase of U-PrivMining,
the algorithm can obtain the top 𝐾 most frequent itemsets
by adding noisy data to the expected support. The noisy data
is drawn from the Laplace distributions, whose mean and
scale are equal to 0 and (𝐻/M2,1), respectively. As a result,
the F-score improves and is close to 1 with increasing privacy

budget. From Figure 1, we can conclude that the lower the
expected supports of the top 𝐾 most frequent itemsets for
the uncertain data, the lower the convergence speed of the
F-score. For the T10I4D100K dataset, the expected supports
of the top 𝐾 most frequent itemsets are less than other
datasets. Therefore, the convergence speed of U-PrivMining
running on the T10I4D100K data set is lower than that of
U-PrivMining running on the other datasets. U-PrivMining
applied the Laplacemechanism to ensure data privacy.Hence,
if the noisy data is relatively greater for the expected supports
of the top 𝐾 most frequent itemsets, then the F-score of U-
PrivMining is relatively lower.

Figure 2 shows the RE results obtained by U-PrivMining
running on six public datasets under different privacy budget
values. When 𝐾 is a fixed value, with increasing privacy
budget, the value of RE fluctuates and is close to 0. The
noisy expected support of an itemset is obtained by adding
the noisy data drawn from the Laplace distribution to the
expected support of the itemset. As a consequence, when the
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Figure 2: RE by varying privacy budget.

𝐾 and privacy budget values are fixed values, the expected
supports of the top 𝐾 most frequent itemsets for the dif-
ferent datasets are lower, and the RE of U-PrivMining is
higher. When the privacy budget is a fixed value, and, with
increasing 𝐾, the lower expected supports of the top 𝐾 most
frequent itemsets for different datasets, the higher RE of U-
PrivMining. For the same dataset and privacy budget, RE
values increasewith increasing𝐾.Thenoisy expected support
of an itemset can be obtained by adding the noisy data drawn
from the Laplace distribution to the expected support of the
itemset.

5.3. Discussion. In the field ofmedicine, for different physical
conditions of patients, the same physiological index corre-
sponds to a different symptom association probability for
each patient. There are plenty of medical technologies to
obtain symptom association probability for patients. There is
uncertainty in patient data. However, existing algorithms for
mining frequent itemsets from medical data in differentially
private ways are all based on certain data and cannot be

directly used for uncertain medical data. Therefore, in this
paper, we proposed the U-PrivMining algorithm, which can
mine the top 𝐾 most frequent itemsets from uncertain med-
ical data and ensure differential privacy. The experimental
results verified the effectiveness of U-PrivMining.

6. Conclusion

In this paper, we proposed a new algorithm to mine the top𝐾most frequent itemsets fromuncertainmedical data, where
each item corresponds to a patient symptom,while protecting
data privacy. These frequent itemsets can assist physicians
in making diagnoses. Through theoretical and experimental
analyses, we can conclude that not only does U-PrivMining
ensure differential privacy but, with increasing privacy bud-
get, the top 𝐾 most frequent itemsets obtained by U-
PrivMining and the noisy expected supports of these frequent
itemsets are close to the true top 𝐾 most frequent itemsets
and expected supports of these itemsets for uncertain data,
respectively. However, the privacy budget allocation may not



Scientific Programming 9

be optimal.The optimization of privacy budget allocationwill
be focus of future research.
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