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This paper presents a novel iterative detection and channel estimation scheme that combines the effort of superimposed training
(ST) and pilot-aided training (PAT) for multiple-input multiple-output (MIMO) flat fading channels. The proposed method,
hereafter known as joint mean removal ST and PAT (MRST-PAT), implements an iterative detection and channel estimation that
achieves the performance of data-dependent ST (DDST) algorithm, with the difference that the data arithmetic cyclic mean is
estimated and removed from data at the receiver’s end. It is demonstrated that this iterative and cooperative detection and channel
estimator algorithm surpasses the effects of data detection identifiability condition that DDST has shown when higher orders of
modulation are used. Theoretical performance of the MRST-PAT scheme is provided and corroborated by numerical simulations.
In addition, the performance comparison between the proposed method and different MIMO channel estimation techniques
is analyzed. The joint effort between ST and PAT shows that MRST-PAT is a solid candidate in communications systems for
multiamplitude constellations in Rayleigh fading channels, while achieving high-throughput data rates withmanageable complexity
and bit-error rate (BER) as a figure of merit.

1. Introduction

Estimation theory deals with the basic problem of inferring a
set of required statistical parameters of a random experiment
based on the observation of its outcome. It is assumed that it
is possible to produce an effect in the experiment by means
of a controlled excitation signal. This approach is normally
adopted in practical communications systems where channel
estimation is an essential part of standard receiver designs [1]
and carried out by transmitting training symbols commonly
known as pilot symbols [2]. In this case, the random experi-
ment can be seen as an unknown system that is identified by
observing how the system reacts to the applied excitation or
training signal.

Traditionally, the most widely used channel estimation
technique is pilot-assisted training where the pilots are

multiplexed in time or frequency. This is widely known in
the literature as pilot symbol assistedmodulation (PSAM) [2]
and is denominated as pilot-assisted transmission (PAT) [3].
This scheme employs a nonrandom training pilot sequence
known a priori by the transmitter and the receiver.The train-
ing pilots are periodically inserted into certain positions in
the time (frequency) with the information-bearing symbols,
before modulation and transmission. Using the knowledge of
the training symbols and the corresponding received signal,
the channel estimation block at the receiver is able to make
an estimate of the channel impulse response (CIR). Con-
ventional PAT-based channel estimation methods use pilot
symbols in time-division multiplexing (TDM) schemes, thus
decreasing the effective data transmission rate.

Recently, an alternative channel estimation strategy that
circumvents the unwanted effect of data rate reduction has
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emerged, called implicit training (IT) [4]. Two outstanding IT
approaches, known as superimposed training (ST) [5, 6] and
data-dependent ST (DDST) [7, 8], achieve higher effective
data rates with manageable complexity [9]. These techniques
are based on a training sequence added (superimposed) to the
information-bearing symbols. Both schemes provide a simple
(unsophisticated) channel estimation process [10, 11] and
differ only in that the arithmeticmean of the transmitted data
of the DDST scheme is superimposed onto the transmitted
sequence. Both techniques have been successfully applied to
single-input single-output (SISO), as well as multiple-input
multiple-output (MIMO) systems [11–17], combined with
orthogonal frequency division multiplexing (OFDM) modu-
lations [18–20], and time-varying channels [21–23]. Likewise,
there are interesting alternatives to OFDM in [24, 25], where
the single-carrier modulation approach is employed, using a
joint frequency domain equalization and channel estimation.

Although DDST outperforms ST [12] in terms of channel
estimation error, it is worth mentioning that the data decod-
ing underDDST is of an iterative nature, as it needs to remove
the data-dependent distortion. Furthermore, DDST [8] per-
forms similarly to TDM-based channel estimation, while sav-
ing the overhead in TDM data rate due to pilot transmission.
There are, however, some drawbacks that must be taken
into consideration when DDST is used. First, this technique
introduces a delay in the transmitted data when it calculates
the data-dependent signal; second, it assigns less transmis-
sion power to the data signal; hence, the symbol demapping
operation is not suitable for higher orders of modulation due
to identifiability problems, as was highlighted in [26]. This is
an important issue, because recent communication standards
consider this type ofmodulation; for example,WiMAX (IEEE
802.16e-2005 standard) uses 64-QAM digital modulation
that DDST cannot support. In addition, DDST presents two
more drawbacks: its performance is highly sensitive to the
data block length used as well as the increased peak-power
and peak-to-average ratio (PAPR) in the transmitted signal,
as shown in [27].

This paper proposes an iterative detection and channel
estimation structure for MIMO systems, which is capable
of dealing with the data identifiability problem previously
described. The novel algorithm is based on the use of joint
(fusion of both techniques) implicit and explicit training
for the channel estimation and symbol detection processes.
Previous results of the authors related to implicit training
for MIMO systems were presented in [28], which introduced
the mean removal ST (MRST) technique devoted to estimate
the arithmetic cycling mean of the data block signal at the
receiver side (instead of at the transmitter side like DDST
does). However, later on it was recognized that MRST is
not able to deal with the identifiability problem, just like
DDST, when the MIMO system employs high-order digital
modulation schemes.

The proposal of an iterative detection and channel
estimation scheme is hereafter referred to as joint mean
removal ST and PAT (MRST-PAT).Themethod is based on a
reliable preliminary channel estimate using PAT with a small
number of dedicated pilot symbols. Subsequently, it uses the
time-average estimator with the ST signal added to each

transmitted data block, achieving an improvement in system
throughput.Thus,MRST-PATmerges the best qualities of the
two techniques, achieving a better BER performance than if
employed separately. In addition, the proposedmethod elim-
inates the data identifiability difficulties that DDST exhibits
when higher orders of modulation are used [26].

This paper is organized as follows: Section 2 presents the
space-time MIMO signal model. Section 3 summarizes the
fundamental theory and performance of PAT (TDM), ST,
and DDST channel estimation techniques. Section 4 details
the structure of the iterative MIMO detection and channel
estimation joint MRST-PAT and its theoretical performance
analysis. Section 5 depicts the application of the iterative joint
MRST-PATusing aG2-OSTBCcoder. Section 6 considers the
numerical simulation results and performance analysis for
the training-based frequency-flat block-fading MIMO chan-
nel estimation using TDM, DDST, and MRST-PAT. Finally,
some concluding remarks in Section 7 close this paper.

Notation. Bold letters in lower (upper) case are used to denote
vector (matrices);C stands for the complex number field; (⋅)𝑇

and (⋅)
𝐻 represent transpose and conjugate transpose, respec-

tively; I
𝑛𝑇
denotes 𝑛

𝑇
×𝑛
𝑇
identity matrix; ‖ ⋅ ‖ and ‖ ⋅ ‖

𝐹
repre-

sent Euclidean norm and Frobenius norm, respectively; Tr{⋅}
denotes trace of a matrix; ⊗ stands for Kronecker product;
andCN(a,Σ) denotes amultidimensional complex Gaussian
distribution with mean a and covariance matrix Σ.

2. Space-Time Signal Model

This section describes the space-time signal model applicable
to most existing space-time coding designs such as Vertical
Bell Labs Layered Space-Time (VBLAST) [29] and the gen-
eralized schemes referred to as space-time block codes from
orthogonal designs [30].

With reference to Figure 1, this paper considers a MIMO
single-carrier system operating over frequency-flat qua-
sistatic block-fading channel model, with 𝑛

𝑇
transmit and 𝑛

𝑅

receive antennas described by

r = Hx + n, (1)

where x ∈ C𝑛𝑇 is the transmitted vector comprising 𝑛
𝑇

elements denoted as [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛𝑇
]
𝑇 and r ∈ C𝑛𝑅 is the

received vector.
We use a random matrix H ∈ C𝑛𝑅×𝑛𝑇 that represents the

flat fading channel in a baseband equivalent model, where
each element is generated as an independent and identically
distributed (i.i.d.) circularly symmetric complex Gaussian
random variableCN(0, 1). In addition, n ∈ C𝑛𝑅 is an additive
white circularly symmetric complex Gaussian noise vector,
with zero mean and variance 𝜎2

𝑛
= 𝑁

0
/2 per real and

imaginary dimension.
Let us assume the block transmission scheme, where a

“block” is defined as a single transmission burst. The channel
matrix H is assumed to be constant for 𝑁 channel uses and
then changes to an independent realization for the next block
[31]. Here, 𝑁 denotes the block length. For any 𝑛

𝑇
× 𝑁
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Figure 1: A generalized PAT transceiver.

transmitted signal matrix X = (𝑥
𝑖𝑗
), the expression in (1) can

be written as

R = HX + N, (2)

where

R ≜ [r (1) r (2) ⋅ ⋅ ⋅ r (𝑁)] ,

X ≜ [x (1) x (2) ⋅ ⋅ ⋅ x (𝑁)] ,

N ≜ [n (1) n (2) ⋅ ⋅ ⋅ n (𝑁)]

(3)

are the matrices of the received signals, transmitted signals,
and noise, respectively.

The transmit symbol vector, prior to space-time coding,
of size𝑁

𝑆
is denoted by

s ≜ [𝑠1 𝑠
2

⋅ ⋅ ⋅ 𝑠
𝑁𝑆

]
𝑇

, (4)

where 𝑠
𝑖
∈ S and S denotes a normalized (average symbol

energy of S is assumed to be one) signal constellation to
which information symbols belong.

The vector s of𝑁
𝑆
information symbols is fed into a space-

time encoder, which maps (one-to-one mapping) this vector
to 𝑛
𝑇
× 𝑁
𝐺
code matrix

G = (

𝑔
11

⋅ ⋅ ⋅ 𝑔
1𝑁𝐺

... d
...

𝑔
𝑛𝑇1

⋅ ⋅ ⋅ 𝑔
𝑛𝑇𝑁𝐺

) ∈ C
𝑛𝑇×𝑁𝐺 (5)

associated with the space-time scheme in use. Therefore, the
space-time code data rate, in symbols per channel use, is
given by 𝜂 = 𝑁

𝑆
/𝑁
𝐺
. Additionally, the transmitted signal X

is formed by using Δ = 𝑁/𝑁
𝐺
concatenated code matrices,

where the block length𝑁 is a positive integer multiple of𝑁
𝐺
.

Particularly, 𝑛
𝑇

× 𝑁
𝐺
complex matrix-valued function

G(s) is called anOSTBC if it satisfies the following conditions
[30]:

(a) All entries ofG(s) are linear functions of𝑁
𝑆
complex

random variables 𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑁𝑆
and their complex

conjugates.
(b) For any arbitrary s in C𝑁𝑆×1,

G (s)G𝐻 (s) = ‖s‖2 I𝑛𝑇 . (6)

3. Channel Estimation Techniques

Consider the PAT diagram in Figure 1. During the trans-
mission of one block of information, the data and pilot
symbols, depicted by white and dark boxes, respectively, can
be transmitted separately or combined in different ways. For
the purpose of channel estimation, the key to unifying various
schemes is to view the problem of training design as one of
power allocation [3].

Conventionally, a PAT scheme where some known
symbols (pilots) are time-multiplexed (TDM) with the
information-bearing data is known as a conventional pilot-
(CP-) based MIMO system [32]. This transmission scheme is
shown in Figure 2 and analyzed in the following subsection.
In this case, pilot symbols are known at the receiver and can
be used for channel estimation. Since pilot symbols carry no
data information, the time and the power spent on pilot sym-
bols degrade the throughput of the system. If more frequent
pilot symbols are transmitted, then a better channel estima-
tion is achieved. However, the PAT transceiver shown in Fig-
ure 1 suggests another scheme for solving the problem, where
a training sequence is superimposed onto the data.This tech-
nique, known as superimposed pilots (SIP) in [32], was intro-
duced in [5] and has been developed extensively under differ-
ent modalities such as ST in [33], implicit training in [4, 6],
and DDST in [7].

It should be emphasized that, in the following calcula-
tions, H is assumed to be random. The estimation process,
however, will obtain estimates of the parameters of a par-
ticular realization of H that corresponds to the current data
block.We consider the channel estimation procedure applied
to TDM, ST, DDST, and MRST-PAT schemes, starting from
the least squares (LS) analysis proposed in [34].

3.1. PAT (TDM) Case. With reference to Figure 2, let us
consider a PAT transceiver under TDM modality with 𝑁 =

𝑇+𝐿. In this scenario,𝑇 is the number of pilot symbols trans-
mitted in a given transmission interval (block). 𝑛

𝑇
×𝑇matrix

C = (𝑐
𝑖𝑗
) represents the training signal transmitted at the

beginning of each block of information (preamble), and 𝑛
𝑇
×𝐿

matrix B = (𝑏
𝑖𝑗
) represents the information-bearing data of

length 𝐿 per transmit antenna. In this scheme, the data and
training symbols have the same average power defined as𝑃

𝑏
=

𝐸{|𝑏
𝑖𝑗
|} and 𝑃

𝑐
= 𝐸{|𝑐

𝑖𝑗
|}; that is, 𝑃

𝑏
= 𝑃
𝑐
. It is clear that during

the training stage, the transmission power is allocated to the
pilot symbols; that is, 𝑃

𝑐
= 𝑃
𝑥
, where 𝑃

𝑥
= 𝐸{|𝑥

𝑖𝑗
|} denotes

the average power of the transmitted symbol.
It is important to note that the TDM-based channel

estimation algorithm employs only the pilot signals. It follows
that the noise contribution and the received signal span
during 𝑇 channel uses. In this case,R andN have dimensions
𝑛
𝑅
× 𝑇.
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Figure 2: Block diagram of PAT transceiver using TDM transmitter.

Assuming thatC has full row-rank, knowing the received
signalR, and using the LS approach as is developed in [34, 35],
then the realization of channel matrixH can be estimated as

ĤTDM = RC𝐻 (CC𝐻)
−1

= RC†, (7)

where C† = C𝐻(CC𝐻)−1 is the pseudoinverse of C. Con-
straining the transmitted power during the training interval,
the following is obtained:

‖C‖
2

𝐹
= 𝑛
𝑇
𝑇𝑃
𝑥
= P. (8)

Let us findC that minimizes the channel estimation error
and satisfies condition (8). This is equivalent to the following
optimization problem:

min
C

𝐸 {
󵄩󵄩󵄩󵄩󵄩
H − ĤTDM

󵄩󵄩󵄩󵄩󵄩

2

𝐹
} . (9)

Using (2) and (7), we have H − ĤTDM = NC† and, therefore,
the objective function can be written as

JTDM = 𝐸 {
󵄩󵄩󵄩󵄩󵄩
H − ĤTDM

󵄩󵄩󵄩󵄩󵄩

2

𝐹
} . (10)

Using E{N𝐻N} = 𝜎2
𝑛
𝑛
𝑅
I
𝑇
with 𝜎2

𝑛
representing the receiver

noise power, then (10) can be rewritten as

JTDM = 𝐸 {
󵄩󵄩󵄩󵄩󵄩
NC†󵄩󵄩󵄩󵄩󵄩
2

𝐹
} = 𝜎
2

𝑛
𝑛
𝑅
Tr {C†𝐻C†}

= 𝜎
2

𝑛
𝑛
𝑅
Tr {(CC𝐻)

−1

} .

(11)

From (11), the optimization problem shown by (9) can be
equivalently reformulated as

min
C

Tr {(CC𝐻)
−1

} . (12)

The choice ofCmust be such thatCC𝐻 is nonsingular, which
implies that 𝑇 ≥ 𝑛

𝑇
. Furthermore, any training matrix is

optimal in the sense of (12) if it satisfies

CC𝐻 =
P

𝑛
𝑇

I
𝑛𝑇
. (13)

In other words, any matrix C with orthogonal rows of the
same norm√P/𝑛

𝑇
is optimal [35].

For optimal training that satisfies (13), the LS channel
estimate (7) yields

ĤTDM = (
𝑛
𝑇

P
)RC𝐻 = H + (

𝑛
𝑇

P
)NC𝐻; (14)

that is, the estimation error is (𝑛
𝑇
/P)NC𝐻.

From (11) and (13), it follows that the channel estimation
error under the MSE criterion and optimal training is given
by

MSETDM (Ĥ) =
𝜎2
𝑛
𝑛2
𝑇
𝑛
𝑅

P
. (15)

Finally, using the constraint indicated in (8), for the TDM-
based estimate, the channel estimation error can be expressed
as

MSETDM (Ĥ) =
𝜎2
𝑛
𝑛
𝑇
𝑛
𝑅

𝑇𝑃
𝑥

. (16)

3.2. Superimposed Training Case. Let us consider Figure 1
with an ST-based channel estimation algorithm. In compari-
son with TDM-based channel estimation, the ST scheme has
𝑃
𝑏

̸= 0 throughout the transmission, and the training matrix
C is 𝑛
𝑇
×𝑁matrix; that is,𝑇 ≡ 0. For this reason this scheme is

called overlay pilot in [32]. It follows that (2) can be described
as

R = H (B + C) + N. (17)

Accordingly, the least square (LS) channel estimate can
be obtained by treating HB as an extra additive noise term
for channel estimation purposes. Even though there are an
infinite number of matrices C that satisfy the optimum con-
dition of (12), the goal is to select a trainingmatrix that makes
the ST technique computationally attractive.

Under frequency-flat fading conditions, the optimal
length of the training interval is 𝑛

𝑇
[36]. Hence the training

matrix C may be a block column matrix that can be con-
structed by 𝑄 concatenated replicas of C

𝑏
matrix, where 𝑄 =

𝑁/𝑛
𝑇
, and the block length𝑁 is chosen to be an integermulti-

ple of the number of transmit antennas 𝑛
𝑇
.Then, the training

matrix C can be written as

C = u ⊗ C
𝑏
, (18)

where u is the unit 1×𝑄 vector and the block training pattern
C
𝑏
is 𝑛
𝑇
× 𝑛
𝑇
matrix, where their rows are orthogonal to each

other, and it satisfies the constraint C
𝑏
C𝐻
𝑏

= 𝑛
𝑇
𝑃
𝑐
I
𝑛𝑇
.

The training sequence at ℓth transmit antenna is given by

𝑐 (ℓ, 𝑛) = √𝑃
𝑐
exp(

𝑗2𝜋𝑛 (ℓ − 1)

𝑛
𝑇

) (19)

with ℓ = 1, . . . , 𝑛
𝑇
and 𝑛 = 0, . . . , 𝑁−1. Another way to build

the training sequence is by shaping C
𝑏
matrix as a circulant

matrix whose first row entries are given by

𝑐
𝑏 (1, V) = √𝑃

𝑐
(exp(

𝑗𝜋

𝑛
𝑇

))

(V(V+𝛼))

, (20)
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where V = 0, . . . , 𝑛
𝑇
− 1, with 𝛼 = 2 when 𝑛

𝑇
is even, and

𝛼 = 1 if 𝑛
𝑇
is odd [6]. The Walsh-Hadamard matrices are

other attractive options.
The benefit of using any of these training patterns is that a

time-domain estimator based on the synchronized averaging
of the received signal R can be implemented, as in the SISO
case described in [12].

Let R̃ be 𝑛
𝑅
× 𝑛
𝑇
matrix, which defines the time-average

of the received signal R. We assume that the channel remains
constant over the entire block length of time 𝑁. Specifically,
(𝑖, 𝑗)th entry of R̃ is given by

R̃
𝑖,𝑗

= (
1

𝑄
)

𝑄

∑
𝑘=1

R
𝑖,𝑗+𝑛𝑇(𝑘−1)

, (21)

where 𝑖 = 1, 2, . . . , 𝑛
𝑅
and 𝑗 = 1, 2, . . . , 𝑛

𝑇
.

It follows that R̃ can be written as

R̃ = (
1

𝑄
)RU, (22)

where U is 𝑁 × 𝑛
𝑇
matrix constructed by 𝑄 concatenated

replicas of identity matrix I
𝑛𝑇

and is given by

U = u𝑇 ⊗ I
𝑛𝑇
. (23)

From (17) and (22), R̃ can be reformulated as

R̃ = H [(
1

𝑄
) (BU + CU)] + (

1

𝑄
)NU

= H (B̃ + C
𝑏
) + Ñ,

(24)

where B̃ is 𝑛
𝑇
×𝑛
𝑇
matrix and Ñ is 𝑛

𝑅
×𝑛
𝑇
matrix that represent

the time-average of the data B and noise N, respectively, for
every block transmitted. Moreover, C

𝑏
= (1/𝑄)CU. Since

the training matrix C
𝑏
is known at the receiver, the channel

matrix realization can be estimated as

ĤST = R̃C−1
𝑏
. (25)

From (24) and (25), the channel estimation error is given by

ĤST −H = HB̃C−1
𝑏

+ ÑC−1
𝑏
. (26)

Since C
𝑏
is an orthogonal matrix that satisfies C

𝑏
C𝐻
𝑏

=

𝑛
𝑇
𝑃
𝑐
I
𝑛𝑇

then C−1
𝑏

= (1/𝑛
𝑇
𝑃
𝑐
)C𝐻
𝑏
. Therefore, using this

result in (26), the channel estimate (for the ST case) can be
expressed as

ĤST =
1

𝑛
𝑇
𝑃
𝑐

[H (B̃ + C
𝑏
) + Ñ]C𝐻

𝑏

= H +
1

𝑛
𝑇
𝑃
𝑐

(HB̃ + Ñ)C𝐻
𝑏
.

(27)

The MSE of the ST case can be found in [11]. It may be
inferred from (27) that B̃ represents an extra term for the
channel estimate. This time-average term is exploited by the
following method.

3.3. Data-Dependent ST Case. In DDST, the signal B̃ =

(1/𝑄)BU is used to define the perturbation matrix

E = − (u ⊗ B̃) , (28)

which will be arithmetically added to the data signal B,
in every transmitted block. Hence the transmitted signal is
determined byX = B+E+C, and the corresponding received
signal is given by

R = H (B + E + C) + N. (29)

It is important to stress that the term B̃will be nonexistent
at the receiver end, because it was removed at the transmitter
side when the signal Ewas added. Hence, using (25) and (27),
the LS time-domain channel estimator based on the synchro-
nized averaging of the received signal R is given by

ĤDDST = H + (
1

𝑛
𝑇
𝑃
𝑐

) ÑC𝐻
𝑏
. (30)

Subsequently, the mean-square channel estimation error
under optimal training with C

𝑏
C𝐻
𝑏

= 𝑛
𝑇
𝑃
𝑐
I
𝑛𝑇

is given by

MSEDDST (Ĥ) = 𝐸 {
󵄩󵄩󵄩󵄩󵄩
ĤLS −H󵄩󵄩󵄩󵄩󵄩

2

𝐹
} = 𝐸 {

󵄩󵄩󵄩󵄩󵄩
ÑC−1
𝑏

󵄩󵄩󵄩󵄩󵄩

2

𝐹
} . (31)

Using Ñ = (1/𝑄)NU, the DDST mean-square estimation
error may be expressed as

MSEDDST (Ĥ) = 𝐸{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑄
(NU)C−1

𝑏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

} ; (32)

by replacing the inverse of C
𝑏
, ‖A‖2

𝐹
= Tr{A𝐻A} and

𝐸{N𝐻N} = 𝑛
𝑅
𝜎2
𝑛
I, then

MSEDDST (Ĥ) =
𝑛
𝑅
𝜎2
𝑛

(𝑛
𝑇
𝑃
𝑐
𝑄)
2
Tr {C
𝑏
U𝐻UC𝐻

𝑏
} , (33)

which is finally reduced to

MSEDDST (Ĥ) =
𝑛
𝑅
𝜎
2

𝑛

(𝑛
𝑇
𝑃
𝑐
𝑄)
2
𝑄 (𝑛
𝑇
𝑛
𝑇
𝑃
𝑐
) =

𝑛
𝑇
𝑛
𝑅
𝜎
2

𝑛

𝑁𝑃
𝑐

. (34)

In order to have the same estimation error performance
between the DDSTmethod and the TDM-based estimate, we
compare (16) and (34), and the resulting relation is given by

𝑃
𝑐

𝑃
𝑥

=
𝑇

𝑁
. (35)

Similar expressions for (34) and (35) are obtained using
another procedure in [11].

In DDST, the data-dependent term has the purpose
of removing the dependency on data; therefore, certain
frequency components are removed at the transmitter and
data symbolsmay be distorted.This data distortion becomes a
problem at the receiver when its value is commensurable with
the Euclidean distance between the symbols of the constella-
tion used. It is more significant as the order of modulation
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increases, at fixed transmission power. In this case, the
receiver would not be able to identify the signals from the
constellation. This problem was highlighted and designated
the data identifiability problem in [26]. In preliminary DDST
works, such as [7, 8], the data distortion is removed in the
receiver using an iterative method that performs effectively
for low orders of modulations. Recently in [26], another iter-
ative removal scheme is proposed for high orders of modula-
tions. In what follows, we will show a hybrid trainingmethod
that overcomes this impairment by combining ST and PAT.

4. Iterative Joint MRST-PAT

Even though the DDST channel estimate is better (according
to the LS criterion) than the ST estimate, theDDST technique
presents several disadvantages compared to ST, as mentioned
in the Introduction. Here, we want to stress only its main
drawbacks: it cannot work with high-order constellations,
and it is highly sensitive to block length. For these main
reasons, it is desirable to find ST improvements that do not
present these disadvantages.

The MRST scheme in [28, 37] was developed from the
following two points: (i) the fact that the difference between
ST (27) and DDST (30) channel estimation techniques is the
factor HB̃ and (ii) the hypothesis that if we could obtain an
estimate of the signal E at the receiver end, we would achieve
the performance of DDST in terms of channel estimate MSE.
However, as more power is allocated to data signals, BER
performance should increase.

Assuming this hypothesis, the signalE can be approached
as E ≃ −(u ⊗

̂̃B) with ̂̃B = (1/𝑄)B̂U, where B̂ represents the
data estimate computed at the receiver. Then, using (24) and
(25), the MRST-PAT channel estimate is given by

ĤMRST-PAT = R̃C−1
𝑏

= (H (B̃ + C
𝑏
) − Ĥ ̂̃B + Ñ)C−1

𝑏

= H +
1

𝑛
𝑇
𝑃
𝑐

[(HB̃ − Ĥ ̂̃B) + Ñ]C𝐻
𝑏
;

(36)

it follows that if Ĥ ̂̃B = HB̃ then ĤMRST-PAT = ĤDDST and,
subsequently, MSEMRST-PAT(Ĥ) = MSEDDST(Ĥ).

As its name indicates, theMRST algorithm has the goal of
removing the mean of the data-bearing signal at the receiver
in an iterative way. The structure of this algorithm offers
another benefit.

The initial channel estimation may be performed in one
of several ways: employing the ST scheme, designating a
few pilots according to [36] at the beginning of each block
transmitted in the TDM scheme, or using the expectation
maximization (EM) algorithm with iterative decoding strate-
gies [38].

In order to make a reliable estimate ( ̂̃B) of B̃, we consider
the joint effort of PAT (TDM) and ST techniques. This is
illustrated in Figure 3, where P represents 𝑛

𝑇
× 𝑇 matrix of

pilot symbols.The pilots are considered to have a preliminary
channel estimate and consequently an initial estimate, ̂̃B,
of B̃; then the superimposed training signal is used in the

CIR
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TDM and ST transmitter

X
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R

1

2

nT
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X̂

Ĥ

B: data
C: ST signal

P: pilot

̂̃B

Figure 3: Block diagram of a transceiver with MRST-PAT.

refinement phase to improve upon the initial estimate. The
following steps describe the iterative detection and channel
estimation procedure of the joint MRST-PAT technique:

(1) Set 𝑁,𝑇 and compute 𝐿 = 𝑁 − 𝑇. In this case 𝑄 =

𝐿/𝑛
𝑇
.

(2) Set the number of iterations denoted by numIterST
for the ST phase.

(3) Use (14) to obtain a preliminary channel estimate
using the pilots in the TDM case.

(4) Use the channel estimated to obtain B̂, which repre-
sents an estimate of the transmitted symbols.

(5) If numIterST > 0, compute the signal ̂̃B with ̂̃B =

(1/𝑄)B̂U, else end.
(6) Compute the time-average of the received signal R

and make R̃old
= R̃.

(7) Remove ̂̃B from the received signal to obtain new R̃new

according to

R̃new
= R̃old

− Ĥ ̂̃B. (37)

(8) Use (36) with R̃ = R̃new to obtain the channel estimate
ĤMRST−PAT.

(9) Decrease the value of numIterST.
(10) Go to step (4).

5. MRST-PAT for Alamouti
Space-Time Coding

In this section, we will show the use of the proposed MRST-
PAT channel estimation method with G2-OSTBC system
(Alamouti scheme), using 𝑛

𝑇
= 2 and 𝑛

𝑅
= 2. This

implementation assumes 𝑁 and 𝑇 to be even, so 2 × 𝑁
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transmitted matrix is given by X = [G1 G
2

⋅ ⋅ ⋅ G
Δ]. In

extended form

X =
[
[
[

[

𝑠
1

−𝑠∗
2

𝑠
3

−𝑠∗
4

⋅ ⋅ ⋅ 𝑠
𝑁−1

−𝑠∗
𝑁

𝑠
2

𝑠∗
1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

G1

𝑠
4

𝑠∗
3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

G2
. . .

𝑠
𝑁

𝑠∗
𝑁−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

GΔ

]
]
]

]

. (38)

Thematrix’s rows and columns indicate the transmit antenna
and the time slot (channel use), respectively.

2 × 𝑇 pilot matrix P is given by

P = [
𝑝
1

−𝑝∗
2

𝑝
3

−𝑝∗
4

⋅ ⋅ ⋅ 𝑝
𝑇−1

−𝑝∗
𝑇

𝑝
2

𝑝∗
1

𝑝
4

𝑝∗
3

⋅ ⋅ ⋅ 𝑝
𝑇

𝑝∗
𝑇−1

] . (39)

The entries of the pilot matrix are given by the Walsh-
Hadamard bipolar spreading sequences [39]. The Walsh-
Hadamard sequences of length𝑀, with𝑀 = 2

𝑚 and𝑚 ∈ N,
are often defined using Hadamard matricesW

𝑀
[2] with

W
2
= [

1 1

1 −1
] ,

W
2𝑀

= [
W
𝑀

W
𝑀

W
𝑀

−W
𝑀

] .

(40)

The resulting matrices W
𝑀

are orthogonal matrices; that is,
for every𝑀 we have

W
𝑀
W𝑇
𝑀

= 𝑀I
𝑀
, (41)

where I
𝑀
is the𝑀-dimensional identitymatrix. Additionally,

the structure of W
2
assures that the rows (or columns) of a

Hadamard matrix are mutually orthogonal.
2 × 𝐿 data-bearing matrix B is given by

B = [
𝑏
1

−𝑏∗
2

𝑏
3

−𝑏∗
4

⋅ ⋅ ⋅ 𝑏
𝐿−1

−𝑏∗
𝐿

𝑏
2

𝑏∗
1

𝑏
4

𝑏∗
3

⋅ ⋅ ⋅ 𝑏
𝐿

𝑏∗
𝐿−1

] . (42)

In this case, the matrix U has a dimension of 𝐿 × 2 and
therefore B̃ = (1/𝑄)BU is a 2 × 2matrix.

Assuming a frequency-flat fading scenario [36], C
𝑏

matrix can be composed of two symbols 𝑐
1
, 𝑐
2
and two other

symbols generated through the Alamouti scheme, exploiting
the property of orthogonality. In this way

C
𝑏
= [

𝑐
1

−𝑐∗
2

𝑐
2

𝑐∗
1

] . (43)

Likewise, 2 × 𝐿 ST matrix C is given by

C =
[
[

[

𝑐
1

−𝑐∗
2

𝑐
1

−𝑐∗
2

⋅ ⋅ ⋅ 𝑐
1

−𝑐∗
2

𝑐
2

𝑐∗
1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

C𝑏

𝑐
2

𝑐∗
1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

C𝑏

⋅ ⋅ ⋅ 𝑐
2

𝑐∗
1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

C𝑏

]
]

]

(44)

and therefore the two row vectors of matrixC are orthogonal.
The initial channel estimate (step (3) of the iterative

algorithm) is performed using the symbol pilot matrix P

with the TDM scheme. An improved estimate of the channel
matrix H will be made using the ST time-domain estimator
pursuant to the iterative algorithm described in Section 4.

Let us estimate the channel matrix H. For the sake of
simplicity, we restricted the analysis to a noise-free scenario.
From (24), the time-average of the received signal is given by

vec {R̃} =

[
[
[
[
[
[
[

[

ℎ
11

(�̃�
1
+ 𝑐
1
) + ℎ
12

(𝑏
2
+ 𝑐
2
)

ℎ
21

(�̃�
1
+ 𝑐
1
) + ℎ
22

(𝑏
2
+ 𝑐
2
)

−ℎ
11

(�̃�
2
+ 𝑐
2
)
∗

+ ℎ
12

(𝑏
1
+ 𝑐
1
)
∗

−ℎ
21

(�̃�
2
+ 𝑐
2
)
∗

+ ℎ
22

(𝑏
1
+ 𝑐
1
)
∗

]
]
]
]
]
]
]

]

, (45)

where vec{⋅} is the column-wise vectorization operator. Sub-
sequently, the expression in (45) can be reformulated as

vec {R̃} = A vec {H𝑇} (46)

with A = [

[

(�̃�1+𝑐1) (�̃�2+𝑐2) 0 0

0 0 (�̃�1+𝑐1) (�̃�2+𝑐2)

−(�̃�2+𝑐2)
∗
(�̃�1+𝑐1)

∗
0 0

0 0 −(�̃�2+𝑐2)
∗
(�̃�1+𝑐1)

∗

]

]

.

An estimate of A can be used for the purpose of avoiding
the computational complexity of Ĥ ̂̃B in step (7); therefore,

Â

=

[
[
[
[
[
[
[
[
[

[

(
̂̃
𝑏
1
+ 𝑐
1
) (

̂̃
𝑏
2
+ 𝑐
2
) 0 0

0 0 (
̂̃
𝑏
1
+ 𝑐
1
) (

̂̃
𝑏
2
+ 𝑐
2
)

−(
̂̃
𝑏
2
+ 𝑐
2
)
∗

(
̂̃
𝑏
1
+ 𝑐
1
)
∗

0 0

0 0 − (
̂̃
𝑏
2
+ 𝑐
2
)
∗

(
̂̃
𝑏
1
+ 𝑐
1
)
∗

]
]
]
]
]
]
]
]
]

]

.
(47)

It is important to note that Â is an orthogonal matrix.
Consequently, the channel estimate matrix is given by

vec {Ĥ𝑇} = Â−1vec {R̃} (48)

and, finally,

Ĥ = [(vec {I
𝑛𝑅
}
𝑇

⊗ I
𝑛𝑇
) (I
𝑛𝑅

⊗ vec {Ĥ𝑇})]
𝑇

, (49)

where I
𝑛𝑇

and I
𝑛𝑅

are 𝑛
𝑇
× 𝑛
𝑇
and 𝑛

𝑅
× 𝑛
𝑅
identity matrices,

respectively. Matrix Ĥ represents a new MIMO channel
estimate, which is used in the iterative procedure to obtain
a new estimate of the arithmetic mean of the data-bearing.

The key idea of this procedure is the removal of the mean
at the receiver. Instead of subtracting themean from the time-
average received matrix R̃, this MRST-PAT implementation
incorporates the estimated mean ̂̃B in the matrix Â to obtain
an estimate of the channel.

6. Simulation Results

The following section presents the performance of the pro-
posed channel estimation scheme in a frequency-flat fading
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Figure 4:MSE of channel estimate exhibited by theG2-OSTBC 2×2

system employing QPSK.

scenario. A G2-OSTBC system with 𝑛
𝑇

= 𝑛
𝑅

= 2 antennas
was used.This simulation scenario was also employed in [28].
The block length was fixed to 𝑁 = 256 symbols, unless
another value is indicated, and all simulations were run until
1000 block errors were found. The BER is represented as a
function of the average SNR, where𝑁

0
= 𝐸
𝑠
𝑛
𝑇
/SNR and𝐸

𝑠
is

the average symbol energy. QPSK and 𝑀-ary QAM (𝑀 > 4)
constellations were used with Gray-coded symbols, and the
transmitted power level for each antenna was normalized to
one; for example, 𝑃

𝑥
= 1 (Watt).

To test the channel estimation techniques, we use as a fig-
ure of merit the MSE of channel estimate. Figure 4 plots this
metric for DDST and MRST-PAT using QPSK. Both of these
use 𝑃
𝑐
= 17% of the transmitted power 𝑃

𝑥
. This power level

was chosen using the values of previous works such as [6, 15,
28].

The initial channel estimation for theMRST-PAT scheme
was implemented using 𝑇 = 4 pilots per block transmitted
(remember that an Alamouti space-time coding scheme is
considered); hence, the overhead associated with the pilots is
𝑂
ℎ
= 𝑇/𝑁 = 4/256, which is 1.56%. For the ST stage, 𝐿 = 252

symbols are used.
Through an analysis of this performance, it can be noted

that the proposed scheme approaches DDST for SNR values
higher than 10 dB, as was anticipated. However, it is worth
highlighting that although the MSE channel estimate in
MRST-PAT is not close to DDST at low SNR levels, it is good
enough to provide a close BER performance, which is the
ultimate metric for system comparison.

Before considering the BER performance, let us discuss
Figure 5, which shows the MSE versus power fraction for
training signal, with the SNR fixed at 15 dB andQPSK signals.
Three different channel estimation schemes (TDM, DDST,
andMRST-PAT) were compared. If 𝑃

𝑐
/𝑃
𝑥
= 𝑇/𝑁, with 𝑇 = 4

and𝑁 = 256, then the three schemes have the sameMSE per-
formance. It can be observed that the proposed MRST-PAT
scheme follows DDST for all power levels of 𝑃

𝑐
. The selected

SNR value is based on [11], because it allows a suitable BER.
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Figure 5: MSE of channel estimate versus power fraction for
training exhibited by theG2-OSTBC 2×2, at SNR= 15 dB employing
QPSK.
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Figure 6: BER performance exhibited by the G2-OSTBC 2 × 2

system employing QPSK.

TheBERperformance of thisMIMOsystemworkingwith
QPSK signals is shown in Figure 6. It can be seen that the
TDM scheme achieves the best BER performance at the cost
of 17% of data rate overhead due to pilot transmission, while
MRST-PAT,with 1.56%of overhead, for example,𝑂

ℎ
= 4/256,

achieves very close to DDST BER performance.
In this scenario, DDST matches the relation described in

(35) for the purpose of having the same MSE performance as
TDM; the parameters forMRST-PATwere chosen to have the
same training power𝑃

𝑐
as DDST and 4 pilots, although under

frequency-flat fading conditions the minimum length is 𝑛
𝑇

[36].
According to [26], when𝑀-ary QAM constellations with

𝑀 ≥ 16 are used, there is evidence of DDST performance
degradation due to the data identifiability problem, which is
discussed in the following paragraph.

In some block realizations, the data-dependent signal
distortion can have more power than the difference between
two symbols; consequently, the data-bearing signal will be
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Figure 8: BER performance exhibited by the G2-OSTBC 2 × 2

system employing 64 QAM.

modified to such a degree that it is not possible to correctly
recover it.

Figure 7 shows the block error rate (BLER) performance
using 16 QAM signals. In this case, BLER performance
is used because it is a relevant measurement used for 3
GPP performance testing requirements, which determine the
quality of the radio link. It corresponds to the ratio of the
number of blocks received with at least one symbol error to
the total number of blocks transmitted.

It can be observed that at fixed BLER of 10−2 an advantage
close to 1 dB was accomplished by MRST-PAT over DDST,
both using one iteration and 𝑃

𝑐
= 9.25% of the transmitted

power.
Figure 8 plots the BER performance for 64 QAM signals.

Here, the advantage of the proposed MRST-PAT algorithm
is more evident. An interesting analysis is that MRST-PAT
(𝑂
ℎ
= 4/256 and one iteration) shows the same performance

as TDM with 𝑂
ℎ
= 8/256. MRST-PAT (𝑂

ℎ
= 2/256 and two
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Figure 9: BER versus block length of G2-OSTBC 2 × 2 system at
SNR = 30 dB and 𝑃

𝑐
= 7.5% for 64 QAM.

iterations) approaches TDM with 𝑂
ℎ
= 8/256 in 0.5 dB, for

SNR levels above 20 dB.
Figure 9 plots the performance of 64 QAM G2-OSTBC

versus the block length for the SNR fixed at 30 dB and 𝑃
𝑐
=

7.5% forDDST andMRST-PAT. It can be seen from the figure
that DDST for short block length yields poor results and for
large block length (𝑁 = 8192 symbols) approachesTDMwith
eight pilots, while MRST-PAT for short block length yields
good results and the performance increases proportionally as
𝑁 increases.

It is important to note that DDST’s BER performance
is highly sensitive to block length. In this scenario, we can
appreciate the benefits and flexibility of theMRST-PAT struc-
ture, which exploits the presence of the known training sym-
bols and the fact that the ST algorithm achieves a better chan-
nel estimate when the block length of the data transmitted
is increased. Hence, the system user can change the param-
eters according to the requirements of block length or less
rate loss, for example, fewer dedicated pilots or BER perfor-
mance.

Finally, it is important to analyze the BER performance
versus the power fraction for the training signal, with the
SNR fixed at 34 dB and 256 QAM signals. This SNR value is
commonly required for this order of modulation. Figure 10
shows that DDST exhibits a poor BER performance for every
value of power fraction allocated to the training signal. How-
ever, the BER performance exhibited by the MRST-PAT con-
firms that the proposed method overcomes the identifiability
problem andmakes the superimposed technique an attractive
choice for multiamplitude QAM constellations. The same
behavior is found at other SNR levels.

For future research purposes, the proposed approach will
be used with more sophisticated equalizers, such as that
developed in [24, 25, 28], as well as with channel coders. The
results obtained in this future researchwill allow determining
the scenarios under which this new technique represents the
best practical solution to be employed.
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Figure 10: BER performance versus power fraction for training
exhibited by theG2-OSTBC 2×2 system at SNR = 34 dB employing
256 QAM.

7. Conclusion

The iterative joint MRST-PAT MIMO detection and channel
estimation technique introduced in this contribution deals
effectively with DDST’s identifiability problem when higher-
order modulation schemes are used. This leads to commu-
nication systems that achieve near-DDST performance for
low-order symbols, such as BPSK and QPSK, and attain
PAT (TDM) performance for higher-order symbols, such as
16 QAM or beyond, with minimal reduction in throughput
and using a computationally efficient implementation. Since
MRST-PAT is an iterative joint scheme, it can take advantage
of both efforts, that is, using pilots by means of explicit train-
ing (PAT) and taking the benefit of the implicit training using
the ST training signal in the transmitted block. Consequently,
more flexible communication systemsmay be built according
to different requirements and constraints. Similar results are
expected for MIMO frequency-selective channels.
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