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The object of investigation of the paper is a special type of difference equations containing the
maximum value of the unknown function over a past time interval. These equations are adequate
models of real processes which present state depends significantly on their maximal value over
a past time interval. An algorithm based on the quasilinearization method is suggested to solve
approximately the initial value problem for the given difference equation. Every successive
approximation of the unknown solution is the unique solution of an appropriately constructed
initial value problem for a linear difference equation with “maxima,” and a formula for its explicit
form is given. Also, each approximation is a lower/upper solution of the given mixed problem. It
is proved the quadratic convergence of the successive approximations. The suggested algorithm is
realized as a computer program, and it is applied to an example, illustrating the advantages of the
suggested scheme.

1. Introduction

In the last few decades, great attention has been paid to automatic control systems and their
applications to computational mathematics and modeling. Many problems in the control
theory correspond to the maximal deviation of the regulated quantity. In the case when the
dynamic of these problems is modeled discretely, the corresponding equations are called dif-
ference equations with “maxima”. The presence of the maximum function in the equation
requires not only more complicated calculations but also a development of new methods for
qualitative investigations of the behavior of their solutions(see, e.g., the monograph [1]). The
character of the maximum function leads to variety of the types of difference equations.
Some special types of difference equations are studied in [2–18]. At the same time, when the
unknown function at any point is presented in both sides of the equation nonlinearly as well
as it is involved in the maximum function, the given equation is not possible to be solved in
an explicit form. It requires development of some approximate methods for their solving.
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In the present paper, a nonlinear difference equation of delayed type is considered. The
equation contains the maximum of the unknown function over a discrete past time interval.
The main goal of the paper is suggesting an algorithm for an approximate solving of an initial
value problem for the given difference equation.

2. Preliminary Notes

Let R+ = [0,∞), Z be the set of all integers, let h ≥ 0 be a given fixed integer and a, b ∈ Z be
such that a < b. Denote by Z[a, b] = {z ∈ Z : a ≤ z ≤ b}.

Note that for any function Q : Z[m,n] → R, m < n, the equalities
∑m

i = n Q(i) = 0 and
∏m

i = nQ(i) = 1 hold.
Consider the following nonlinear difference equation with “maxima”:

Δu(k − 1) = f

(

k, u(k), max
s∈Z[k−h,k]

u(s)
)

for k ∈ Z[a + 1, T] (2.1)

with an initial condition

u(k) = ϕ(k) for k ∈ Z[a − h + 1, a], (2.2)

where the functions u : Z[a−h+1, T] → R,Δu(k−1) = u(k)−u(k−1), f : Z[a+1, T]× R
2 → R,

and ϕ : Z[a − h + 1, a] → R, the points a, T ∈ Z are such that 0 ≤ a < T .

Definition 2.1. Onewill say that the function α : Z[a+1−h, T] → R is a lower (upper) solution
of the problem (2.1), (2.2), if

Δα(k − 1) ≤ (≥)f
(

k, α(k), max
s∈Z[k−h,k]

α(s)
)

for k ∈ Z[a + 1, T],

α(k) ≤ (≥) ϕ(k) for k ∈ Z[a + 1 − h, a].

(2.3)

Let α, β : Z[a + 1 − h, T] → R be given functions such that α(k) ≤ β(k) for k ∈
Z[a + 1 − h, T]. Define the following sets:

S
(
α, β

)
=
{
u : Z[a + 1 − h, T] → R : α(k) ≤ u(k) ≤ β(k), k ∈ Z[a + 1 − h, T]

}
,

Ω
(
α, β

)
=

{
(k, x1, x2) ∈ Z[a + 1, T] × R

2 : α(k) ≤ x1 ≤ β(k),
max

s∈Z[k−h,k]
α(s) ≤ x2 ≤ max

s∈Z[k−h,k]
β(s)

}

.
(2.4)

3. Comparison Results

In our further investigations, we will use the following results for difference inequalities with
“maxima”.
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Lemma 3.1 (existence and uniqueness). Let the following conditions be fulfilled:

(1) The function Q : Z[a + 1, T] → R.

(2) The functions M : Z[a + 1, T] → R, N : Z[a + 1, T] → R+ are such that

M(k) +N(k) < 1 for k ∈ Z[a + 1, T]. (3.1)

Then the initial value problem for linear difference equation with “maxima”

Δu(k − 1) = Q(k) +M(k)u(k) +N(k) max
s∈Z[k−h,k]

u(s) for k ∈ Z[a + 1, T],

u(k) = ϕ(k) for k ∈ Z[a + 1 − h, a]
(3.2)

has an unique solution on the interval Z[a + 1 − h, T].

Proof. Wewill use the step method to solve the initial value problem (3.2). Assume for a fixed
k ∈ Z[a + 1, T] all values u(j), j ∈ Z[a + 1 − h, k − 1] are known. Then from (3.2), we obtain
(1 −M(k))u(k) = u(k − 1) +Q(k) +N(k)maxs∈Z[k−h,k]u(s).

Consider the following two possible cases.
Case 1. Let maxl∈Z[1,h]u(k − l) ≤ (Q(k) + u(k − 1))/(1 −M(k) −N(k)), or (Q(k) + u(k −

1))/(1 −M(k) −N(k)) ≥ u(k − l) for l ∈ Z[1, h].
Therefore, maxs∈Z[k−h,k]u(s) = u(k). Then applying the inequality (3.1), we obtain the

unique solution u(k) of the problem (3.2) given by the equality

u(k) =
Q(k) + u(k − 1)
1 −M(k) −N(k)

. (3.3)

Case 2. Let (Q(k) +u(k − 1))/(1−M(k)−N(k)) < maxl∈Z[1,h]u(k − l) = u(k −m)where
m ∈ Z[1, h].

If we assume u(k) ≥ u(k − m) then from (3.2), we obtain u(k − m) ≤ u(k) = (Q(k) +
u(k − 1))/(1 −M(k) −N(k)) < u(k −m). The obtained contradiction proves u(k) < u(k −m)
and maxs∈Z[k−h,k]u(s) = u(k −m).

From the inequalities (3.1) and N(k) ≥ 0, it follows that M(k) < 1 and therefore, the
unique solution of problem (3.2) is given by the equality

u(k) =
u(k − 1) +Q(k) +N(k)u(k −m)

1 −M(k)
. (3.4)

Thus, we receive the value u(k), k ∈ Z[a + 1, T].

Lemma 3.2. Let the following conditions be fulfilled:

(1) The functions M,N : Z[a + 1, T] → R satisfy the inequality

M(k) +N(k) < 1 for k ∈ Z[a + 1, T]. (3.5)
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(2) The function u : Z[a − h + 1, T] → R satisfies the inequalities

Δu(k − 1) ≤ M(k)u(k) +N(k) max
s∈Z[k−h,k]

u(s), k ∈ Z[a + 1, T],

u(k) ≤ 0, k ∈ Z[a − h + 1, a].
(3.6)

Then u(k) ≤ 0 for k ∈ Z[a − h + 1, T].

Proof. Assume the claim of Lemma 3.2 is not true. Then there exists j ∈ Z[a + 1, T] such that
u(j) > 0 and u(k) ≤ 0 for k ∈ Z[a − h + 1, j − 1]. Therefore, maxs∈Z[j−h,j]u(s) = u(j) and
according to inequality (3.6), we get

u
(
j
) ≤ u

(
j
) − u

(
j − 1

) ≤ (
M

(
j
)
+N

(
j
))
u
(
j
)
. (3.7)

The above inequality contradicts (3.5).

Remark 3.3. Note if both M(k),N(k) ≤ 0 for k ∈ Z[a + 1, T], then inequality (3.5) is satisfied.

Now, we will prove a linear difference inequality in which at any point both the
unknown function and its maximum over a past time interval are involved also in the right
side of the inequality.

In the proof of our preliminary results, we will need the following lemma.

Lemma 3.4 (see [2], Theorem 4.1.1). Let f, q : Z(a,∞) → R+, p, u : Z(a,∞) → R and

u(k) ≤ p(k) + q(k)
k−1∑

l=a

f(l)u(l) for k ∈ Z(a,∞). (3.8)

Then for all k ∈ Z(a,∞), the following inequality is valid:

u(k) ≤ p(k) + q(k)
k−1∑

l= a

p(l)f(l)
k−1∏

τ= l+1

(
1 + q(τ)f(τ)

)
. (3.9)

Now, we will solve a generalized linear difference inequality with “maxima.”

Lemma 3.5. Let the following conditions be fulfilled:

(1) The functions q,Q : Z[a + 1, T] → R+ and

q(k) +Q(k) < 1 for k ∈ Z[a + 1,T]. (3.10)
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(2) The function u : Z[a + 1 − h, T] → R+ and satisfies the inequalities

u(k) ≤ C +
k∑

l=a+1

q(l)u(l) +
k∑

l= a+1

Q(l) max
s∈Z[l−h,l]

u(s), k ∈ Z[a + 1, T],

u(k) ≤ C, k ∈ Z[a + 1 − h, a],

(3.11)

where C = const ≥ 0.
Then,

u(k) ≤ C
∏k

τ=a+1
(
1 − q(τ) −Q(τ)

) for k ∈ Z[a + 1, T]. (3.12)

Proof. Define a function z : Z[a + 1 − h, T] → R+ by the equalities

z(k) =

⎧
⎪⎨

⎪⎩

C +
k∑

l= a+1

q(l)u(l) +
k∑

l= a+1

Q(l) max
s∈Z[l−h,l]

u(s), k ∈ Z[a + 1, T],

C, k ∈ Z[a + 1 − h, a].

(3.13)

It is easy to check that for any k ∈ Z[a+1, T], the inequality z(k+1) ≥ z(k) holds. Also,
from the definition of z(k), it follows that u(k) ≤ z(k), k ∈ Z[a+ 1, T], and maxs∈Z[k−h,k]u(s) ≤
maxs∈Z[k−h,k]z(s) = z(k) for k ∈ Z[a + 1, T]. Therefore, for any k ∈ Z[a + 1, T], we obtain

z(k) ≤ C +
k∑

l= a+1

(
q(l) +Q(l)

)
z(l). (3.14)

From inequality (3.14), it follows

z(k) ≤ C
(
1 − q(k) −Q(k)

) +
1

(
1 − q(k) −Q(k)

)
k−1∑

l= a+1

(
q(l) +Q(l)

)
z(l). (3.15)

According to Lemma 3.4 from inequality (3.15), we get for k ∈ Z[a + 1, T]

z(k) ≤ C
(
1 − q(k) −Q(k)

)

×
{

1 +
k−1∑

l= a+1

q(l) +Q(l)
1 − q(l) −Q(l)

k−1∏

τ= l+1

(

1 +
q(τ) +Q(τ)

1 − q(τ) −Q(τ)

)}

=
C

(
1 − q(k) −Q(k)

)

×
{

1 +
k−1∑

l= a+1

[
q(l) +Q(l)

1 − q(l) −Q(l)
1

∏k−1
τ= l+1

(
1 − q(τ) −Q(τ)

)

]}

≤ C
∏k

τ= a+1
(
1 − q(τ) −Q(τ)

) .

(3.16)

Inequality (3.16) implies the validity of the required inequality (3.12).
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4. Quasilinearization

We will apply the method of quasilinearization to obtain approximate solution of the IVP for
the nonlinear difference equation with “maxima” (2.1), (2.2). We will prove the convergence
of the sequence of successive approximations is quadratic.

Theorem 4.1. Let the following conditions be fulfilled:

(1) The functions α0, β0 : Z[a+1−h, T] → R are a lower and an upper solutions of the problem
(2.1), (2.2), respectively, and such that α0(k) ≤ β0(k) for k ∈ Z[a + 1 − h, T].

(2) The function f : Z[a + 1, T] × R
2 → R satisfies for (k, x, y) ∈ Ω(α0, β0) the equality

f
(
k, x, y

)
= F

(
k, x, y

) −G
(
k, x, y

)
, (4.1)

where the functions F,G : Ω(α0, β0) → R are continuous and twice continuously differ-
entiable with respect to their second and third arguments and the following inequalities are
valid for k ∈ Z[a + 1, T], (k, x, y) ∈ Ω(α0, β0):

Fxx

(
k, x, y

) ≥ 0, Fxy

(
k, x, y

) ≥ 0, Fyy

(
k, x, y

) ≥ 0,

Gxx

(
k, x, y

) ≥ 0, Gxy

(
k, x, y

) ≥ 0, Gyy

(
k, x, y

) ≥ 0,
(4.2)

Gx

(

k, β0(k), max
s∈Z[k−h,k]

β0(s)
)

≤ Fx

(

k, α0(k), max
s∈Z[k−h,k]

α0(s)
)

, (4.3)

Gy

(

k, β0(k), max
s∈Z[k−h,k]

β0(s)
)

≤ Fy

(

k, α0(k), max
s∈Z[k−h,k]

α0(s)
)

, (4.4)

M(k) +N(k) < 1, (4.5)

where

M(k) = Fx

(

k, β0(k), max
s∈Z[k−h,k]

β0(s)
)

−Gx

(

k, α0(k), max
s∈Z[k−h,k]

α0(s)
)

,

N(k) = Fy

(

k, β0(k), max
s∈Z[k−h,k]

β0(s)
)

−Gy

(

k, α0(k), max
s∈Z[k−h,k]

α0(s)
)

.

(4.6)

(3) The function ϕ : Z[a − h + 1, a] → R.

Then there exist two sequences {αn(k)}∞n= 0 and {βn(k)}∞n= 0, k ∈ Z[a+1−h, T], such that:

(a) The functions αn : Z[a + 1 − h, T] → R, (n = 1, 2, . . .) are lower solutions of IVP
(2.1), (2.2).

(b) The functions βn : Z[a + 1 − h, T] → R, (n = 1, 2, . . .) are upper solutions of IVP
(2.1), (2.2).

(c) The following inequalities hold for k ∈ [a + 1 − h, T]

α0(k) ≤ α1(k) ≤ · · · ≤ αn(k) ≤ · · · ≤ βn(k) ≤ · · · ≤ β1(k) ≤ β0(k). (4.7)
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(d) Both sequences are convergent on Z[a + 1 − h, T] and their limits V (k) =
limn→∞αn(k) and W(k) = limn→∞βn(k) are the minimal and the maximal solu-
tions of IVP (2.1), (2.2) in S(α0, β0). In the case, IVP (2.1), (2.2) has an unique
solution in S(α0, β0) both limits coincide, that is, V (k) = W(k).

(e) The convergence is quadratic, that is, there exist constants λi, μi > 0, i = 1, 2 such
that for the solution x(k) of IVP (2.1), (2.2) in S(α0, β0), the inequalities

‖x − αn+1‖ ≤ λ1‖x − αn‖2 + λ2
∥
∥x − βn

∥
∥2

,

∥
∥x − βn+1

∥
∥ ≤ μ1‖x − αn‖2 + μ2

∥
∥x − βn

∥
∥2

(4.8)

hold, where ||u|| = maxs∈Z[a+1−h,T]|u(s)| for any function u : Z[a + 1 − h, T] → R.

Proof. From Taylor formula and condition (2) of Theorem 4.1 for (k, x1, y1), (k, x2, y2) ∈ Ω(α0,
β0), the following inequalities are valid:

f
(
k, x2, y2

) − f
(
k, x1, y1

) ≤ Fx

(
k, x2, y2

)
(x2 − x1) + Fy

(
k, x2, y2

)(
y2 − y1

)

−G
(
k, x2, y2

)
+G

(
k, x1, y1

)
,

−G(
k, x2, y2

)
+G

(
k, x1, y1

) ≤ Gx

(
k, x1, y1

)
(x1 − x2) +Gy

(
k, x1, y1

)(
y1 − y2

)
.

(4.9)

Consider the initial value problem for the linear difference equation with “maxima”

Δx(k − 1) = Q0(k)x(k) + q0(k) max
s∈Z[k−h,k]

x(s) + P0(k), k ∈ Z[a + 1, T], (4.10)

x(k) = ϕ(k), k ∈ Z[a + 1 − h, a], (4.11)

where the functions P0, Q0, q0 : Z[a + 1, T] → R are defined by the equalities

P0(k) = f

(

k, α0(k), max
s∈Z[k−h,k]

α0(s)
)

−Q0(k)α0(k) − q0(k) max
s∈Z[k−h,k]

α0(s),

Q0(k) = Fx

(

k, α0(k), max
s∈Z[k−h,k]

α0(s)
)

−Gx

(

k, β0(k), max
s∈Z[k−h,k]

β0(s)
)

,

q0(k) = Fy

(

k, α0(k), max
s∈Z[k−h,k]

α0(s)
)

−Gy

(

k, β0(k), max
s∈Z[k−h,k]

β0(s)
)

.

(4.12)

From inequality (4.4), it follows that q0(k) ≥ 0 and from inequalities (4.2), (4.5), we get
Q0(k) + q0(k) < 1 for k ∈ Z[a + 1, T]. According to Lemma 3.1 the IVP (4.10), (4.11) has an
unique solution α1(k), defined on the interval Z[a + 1 − h, T].

Define a function p1 : Z[a + 1 − h, T] → R by the equality p1(k) = α0(k) − α1(k). Then
we get p1(k) = 0 for k ∈ Z[a + 1 − h, a].
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Let k ∈ Z[a + 1, T]. From the choice of the function α0(k) and (4.10) for the function
α1(k), we get

Δp1(k − 1) ≤ Q0(k)p1(k) + q0(k) max
s∈Z[k−h,k]

p1(s). (4.13)

According to Lemma 3.2 for the function p1(k), it follows that p1(k) ≤ 0 for k ∈ Z[a +
1 − h, T]. Therefore, α0(k) ≤ α1(k) for k ∈ Z[a + 1 − h, T].

Consider the linear difference equation with “maxima”

Δx(k − 1) = Q0(k)x(k) + q0(k) max
s∈Z[k−h,k]

x(s) + R0(k), k ∈ Z[a + 1, T], (4.14)

x(k) = ϕ(k), k ∈ Z[a + 1 − h, a], (4.15)

where the functions q0(k) and Q0(k) are defined by equalities (4.12) and

R0(k) = f

(

k, β0(k), max
s∈Z[k−h,k]

β0(s)
)

−Q0(k)β0(k) − q0(k) max
s∈Z[k−h,k]

β0(s). (4.16)

According to Lemma 3.1, the linear initial value problem (4.14), (4.15) has a unique
solution β1(k), defined on the interval Z[a + 1 − h, T].

Define a function p2 : Z[a + 1 − h, T] → R by the equality p2(k) = β1(k) − β0(k). Then
p2(k) = 0 for k ∈ Z[a + 1 − h, a].

Now, let k ∈ Z[a+1, T]. From the choice of the function β0(k) and (4.14) for the function
β1(k), we get

Δp2(k − 1) ≤ Q0(k)
[
β1(k) − β0(k)

]

+ q0(k)
[

max
s∈Z[k−h,k]

β1(s) − max
s∈Z[k−h,k]

β0(s)
]

≤ Q0(k)p2(k) + q0(k) max
s∈Z[k−h,k]

p2(s).

(4.17)

Inequality (4.17) proves the function p2(k) satisfies inequality (3.6). According to
Lemma 3.2, it follows that p2(k) ≤ 0 for k ∈ Z[a + 1 − h, T]. Therefore, β1(k) ≤ β0(k) for
k ∈ Z[a + 1 − h, T].

Define a function p3 : Z[a + 1 − h, T] → R by the equality p3(k) = α1(k) − β1(k). Then
p3(k) ≤ 0 for k ∈ Z[a + 1 − h, a].

Let k ∈ Z[a + 1, T]. Then for the function p3(k), we get

Δp3(k − 1) = f

(

k, α0(k), max
s∈Z[k−h,k]

α0(s)
)

− f

(

k, β0(k), max
s∈Z[k−h,k]

β0(s)
)

+Q0(k)[α1(k) − α0(k)] −Q0(k)
[
β1(k) − β0(k)

]

+ q0(k)
[

max
s∈Z[k−h,k]

α1(s) − max
s∈Z[k−h,k]

α0(s)
]
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− q0(k)
[

max
s∈Z[k−h,k]

β1(s) − max
s∈Z[k−h,k]

β0(s)
]

≤ Q0(k)p3(k) + q0(k) max
s∈Z[k−h,k]

p3(s).

(4.18)

Inequality (4.18) proves the function p3(k) satisfies inequality (3.6). According to
Lemma 3.2, it follows that p3(k) ≤ 0 for k ∈ Z[a + 1 − h, T]. Therefore, α1(k) ≤ β1(k) for
k ∈ Z[a + 1 − h, T].

Furthermore, the functions α1(k) and β1(k) ∈ S(α0, β0).
Now, we will prove that the function α1(k) is a lower solution of (2.1), (2.2) on the

interval Z[a + 1 − h, T].
Let k ∈ Z[a + 1, T]. From the inequalities α0(k) ≤ α1(k) ≤ β0(k) for k ∈ Z[a + 1 − h, T],

maxs∈Z[k−h,k]α0(s) ≤ maxs∈Z[k−h,k]α1(s) ≤ maxs∈Z[k−h,k]β0(s) for k ∈ Z[a + 1, T], inequalities
(4.9), definitions (4.12), and inequalities (4.2) which prove the monotonic property of the
first derivatives of the functions F(k, x, y) and G(k, x, y) we get

Δα1(k − 1) = f

(

k, α0(k), max
s∈Z[k−h,k]

α0(s)
)

+Q0(k)[α1(k) − α0(k)]

+ q0(k)
[

max
s∈Z[k−h,k]

α1(s) − max
s∈Z[k−h,k]

α0(s)
]

= f

(

k, α1(k), max
s∈Z[k−h,k]

α1(s)
)

+Q0(k)[α1(k) − α0(k)]

+
[

f

(

k, α0(k), max
s∈Z[k−h,k]

α0(s)
)

− f

(

k, α1(k), max
s∈Z[k−h,k]

α1(s)
)]

+ q0(k)
[

max
s∈Z[k−h,k]

α1(s) − max
s∈Z[k−h,k]

α0(s)
]

≤ f

(

k, α1(k), max
s∈Z[k−h,k]

α1(s)
)

.

(4.19)

Thus, the function α1(k) is a lower solution of (2.1), (2.2) on Z[a + 1 − h, T].
In a similar way, we can prove that the function β1(k) is an upper solution of (2.1),

(2.2) on the interval Z[a + 1 − h, T].
Analogously, we can construct two sequences of functions {αn(k)}∞n= 1 and {βn(k)}∞n= 1.

If the functions αj(k) and βj(k), j = 1, 2, . . . , n − 1, n, are obtained such that αj , βj ∈ S(α0, β0)
and the claims (a), (b), (c) of Theorem 4.1 are satisfied, then we consider the initial value
problem for the linear difference equation with “maxima”

Δx(k − 1) = Qn(k)x(k) + qn(k) max
s∈Z[k−h,k]

x(s) + Pn(k), k ∈ Z[a + 1, T], (4.20)

x(k) = ϕ(k), k ∈ Z[a + 1 − h, a], (4.21)
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and the initial value problem for the linear difference equation with “maxima”

Δx(k − 1) = Qn(k)x(k) + qn(k) max
s∈Z[k−h,k]

x(s) + Rn(k), k ∈ Z[a + 1, T],

x(k) = ϕ(k), k ∈ Z[a + 1 − h, a],
(4.22)

where

Pn(k) = f

(

k, αn(k), max
s∈Z[k−h,k]

αn(s)
)

−Qn(k)αn(k) − qn(k) max
s∈Z[k−h,k]

αn(s),

Rn(k) = f

(

k, βn(k), max
s∈Z[k−h,k]

βn(s)
)

−Qn(k)βn(k) − qn(k) max
s∈Z[k−h,k]

βn(s),

Qn(k) = Fx

(

k, αn(k), max
s∈Z[k−h,k]

αn(s)
)

−Gx

(

k, βn(k), max
s∈Z[k−h,k]

βn(s)
)

≥ 0,

qn(k) = Fy

(

k, αn(k), max
s∈Z[k−h,k]

αn(s)
)

−Gy

(

k, βn(k), max
s∈Z[k−h,k]

βn(s)
)

≥ 0.

(4.23)

Since αj , βj ∈ S(α0, β0), the first derivatives of the function F(k, x, y) and G(k, x, y) are
nondecreasing in Ω(α0, β0), and inequalities (4.7) hold, we obtain Qn(k) ≤ M(k), qn(k) ≥
q0(k) ≥ 0 and qn(k) ≤ N(k), that is,Qn(k)+qn(k) ≤ M(k)+N(k) < 1. Therefore, according to
Lemma 3.1, the initial value problems (4.20), (4.21), and (4.22) have unique solutions αn+1(k)
and βn+1(k), k ∈ Z[a + 1 − h, T], correspondingly.

The proof that the functions αn+1, βn+1 ∈ S(αn, βn), αn+1(k) ≤ βn+1(k), and they are
lower/upper solutions of (2.1), (2.2) on the interval Z[a + 1 − h, T] is the same as in the case
of n = 1 and we omit it.

For any fixed k ∈ Z[a+1−h, T], the sequences {αn(k)}∞n=0 and {βn(k)}∞n=0 are monotone
nondecreasing and monotone nonincreasing, respectively, and they are bounded by α0(k)
and β0(k). Therefore, they are convergent on Z[a+1−h, T], that is, there exist functions V,W :
Z[a + 1 − h, T] → R such that

lim
n→∞

αn(k) = V (k), lim
n→∞

βn(k) = W(k). (4.24)

From inequalities (4.7), it follows that V,W ∈ S(α0, β0).
Now, we will prove that for any k ∈ Z[a + 1, T] the following equality holds:

lim
n→∞

[

max
ξ∈Z[k−h,k]

αn(ξ)
]

= max
ξ∈Z[k−h,k]

[

lim
n→∞

αn(ξ)
]

. (4.25)

Let k ∈ Z[a + 1, T] be fixed. We denote maxξ∈Z[k−h,k]αn(ξ) = An. From inequalities (4.7)
for every ξ ∈ Z[k − h, k], the inequalities αn−1(ξ) ≤ αn(ξ) ≤ An hold and thus, An−1 ≤ An,
that is, the sequence {An}∞n= 0 is monotone nondecreasing and bounded from above by β0(k).
Therefore, there exists the limit A = limn→∞An.

From the monotonicity of the sequence of the lower solutions αn(k), we get that for ξ ∈
Z[k−h, k] it is fulfilled αn(ξ) ≤ V (ξ). Let η ∈ Z[k−h, k] be such that maxξ∈Z[k−h,k]V (ξ) = V (η).
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From the inequalities αn(η) ≤ An ≤ A for every n = 0, 1, 2, . . . it follows V (η) ≤ A. Assume that
V (η) < A. Then there exists a natural number N such that the inequalities V (η) < AN ≤ A
hold. Therefore, there exists ξ ∈ Z[k − h, k] such that αN(ξ) = maxξ∈Z[k−h,k]αN(ξ) = AN

or V (η) < αN(ξ) ≤ V (ξ). The obtained contradiction proves the validity of the required
inequality (4.25).

Analogously, we can show that the functions βn(k) also satisfy (4.25).
Now, we will prove that the function V (k) is a solution of the IVP (2.1), (2.2) on Z[a +

1 − h, T].
Let k ∈ Z[a + 1 − h, a]. Take a limit as n → ∞ in (4.21) and get V (k) = ϕ(k).
Therefore, the function V (k) satisfies equality (2.2) for k ∈ Z[a + 1 − h, a].
Let k ∈ Z[a + 1, T]. Taking a limit in (4.20) as n → ∞ and applying (4.25), we obtain

the function V (k) satisfies equality (2.1) for k ∈ Z[a + 1, T].
In a similar way, we can prove that W(k) is a solution of the IVP (2.1), (2.2).
Therefore, we obtain two solutions of (2.1), (2.2) in S(α0, β0).
In the case of uniqueness of the solution of (2.1), (2.2) in S(α0, β0), we have V (k) =

W(k) for k ∈ Z[a−h+1, T]. In the case of nonuniqueness, let u ∈ S(α0, β0) be another solution
of (2.1), (2.2). Then it is easy to prove that V (k) ≤ u(k) ≤ W(k), that is, V is the minimal
solution and W is the maximal solution of (2.1), (2.2) in S(α0, β0).

We will prove that the convergence of the sequences {αn(k)}∞n=0, {βn(k)}∞n=0 is quad-
ratic. Let x(k) be a solution of (2.1), (2.2) in S(α0, β0).

Define the functions Ãn+1, B̃n+1 : Z[a + 1 − h, T] → R+, n = 0, 1, . . . by the equalities

Ãn+1(k) = x(k) − αn+1(k), B̃n+1(k) = βn+1(k) − x(k). (4.26)

It is obvious that Ãn+1(k) = 0 for k ∈ Z[a + 1 − h, a].
Let k ∈ [a + 1, T]. According to the definitions of the functions Ãn+1(k), αn+1(k) and

the condition (2) of Theorem 4.1, we get

ΔÃn+1(k − 1) = f

(

k, x(k), max
s∈Z[k−h,k]

x(s)
)

− f

(

k, αn(k), max
s∈Z[k−h,k]

αn(s)
)

+Qn(k)Ãn+1(k) + qn(k)
(

max
s∈Z[k−h,k]

x(s) − max
s∈Z[k−h,k]

αn+1(s)
)

−Qn(k)Ãn(k) − qn(k)
(

max
s∈Z[k−h,k]

x(s) − max
s∈Z[k−h,k]

αn(s)
)

≤ Qn(k)Ãn+1(k) + qn(k) max
s∈Z[k−h,k]

Ãn+1(s)

+
[

Fx

(

k, x(k), max
s∈Z[k−h,k]

x(s)
)

−Gx

(

k, αn(k), max
s∈Z[k−h,k]

αn(s)
)

−Qn(k)
]

Ãn(k)

+
[

Fy

(

k, x(k), max
s∈Z[k−h,k]

x(s)
)

−Gy

(

k, αn(k), max
s∈Z[k−h,k]

αn(s)
)

− qn(k)
]

×
(

max
s∈Z[k−h,k]

x(s) − max
s∈Z[k−h,k]

αn(s)
)

.

(4.27)
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According to the mean value theorem, there exist points ζi and ξj , i = 1, 3, j = 2, 4 such
that

αn(k) ≤ ζi ≤ x(k), max
s∈Z[k−h,k]

αn(s) ≤ ζj ≤ max
s∈Z[k−h,k]

x(s),

αn(k) ≤ ξi ≤ βn(k), max
s∈Z[k−h,k]

αn(s) ≤ ξj ≤ max
s∈Z[k−h,k]

βn(s),
(4.28)

Fx

(

k, x(k), max
s∈Z[k−h,k]

x(s)
)

−Gx

(

k, αn(k), max
s∈Z[k−h,k]

αn(s)
)

−Qn(k)

= Fx

(

k, x(k), max
s∈Z[k−h,k]

x(s)
)

− Fx

(

k, αn(k), max
s∈Z[k−h,k]

x(s)
)

+ Fx

(

k, αn(k), max
s∈Z[k−h,k]

x(s)
)

− Fx

(

k, αn(k), max
s∈Z[k−h,k]

αn(s)
)

+Gx

(

k, βn(k), max
s∈Z[k−h,k]

βn(s)
)

−Gx

(

k, αn(k), max
s∈Z[k−h,k]

βn(s)
)

+Gx

(

k, αn(k), max
s∈Z[k−h,k]

βn(s)
)

−Gx

(

k, αn(k), max
s∈Z[k−h,k]

αn(s)
)

= Fxx

(

k, ζ1, max
s∈Z[k−h,k]

x(s)
)

Ãn(k)

+ Fxy(k, αn(k), ζ2)
(

max
s∈Z[k−h,k]

x(s) − max
s∈Z[k−h,k]

αn(s)
)

+Gxx

(

k, ζ1, max
s∈Z[k−h,k]

βn(s)
)
(
βn(k) − αn(k)

)

+Gxy(k, αn(k), ζ2)
(

max
s∈Z[k−h,k]

βn(s) − max
s∈Z[k−h,k]

αn(s)
)

,

(4.29)

Fy

(

k, x(k), max
s∈Z[k−h,k]

x(s)
)

−Gy

(

k, αn(k), max
s∈Z[k−h,k]

αn(s)
)

− qn(k)

= Fyx

(

k, ξ3, max
s∈Z[k−h,k]

x(s)
)

Ãn(k)

+ Fyy(k, αn(k), ξ4)
(

max
s∈Z[k−h,k]

x(s) − max
s∈Z[k−h,k]

αn(s)
)

+Gyx

(

k, ξ3, max
s∈Z[k−h,k]

βn(s)
)
(
βn(k) − αn(k)

)

+Gyy(k, αn(k), ξ4)
(

max
s∈Z[k−h,k]

βn(s) − max
s∈Z[k−h,k]

αn(s)
)

.

(4.30)
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Then the following inequalities are valid:

Ãn(k)
[
βn(k) − αn(k)

] ≤ Ãn(k)
[
Ãn(k) + B̃n(k)

]
≤ 3

2
Ã2

n(k) +
1
2
B̃2
n(k),

Ãn(k)
[

max
s∈Z[k−h,k]

βn(s) − max
s∈Z[k−h,k]

αn(s)
]

≤ 3
2

∥
∥
∥Ãn

∥
∥
∥
2
+
1
2

∥
∥
∥B̃n

∥
∥
∥
2
,

Ãn(k)
[

max
s∈Z[k−h,k]

βn(s) − max
s∈Z[k−h,k]

αn(s)
]

≤ 3
2

∥
∥
∥Ãn

∥
∥
∥
2
+
1
2

∥
∥
∥B̃n

∥
∥
∥
2
,

max
s∈Z[k−h,k]

Ãn(s)
[
βn(k) − αn(k)

] ≤ 3
2

∥
∥
∥Ãn

∥
∥
∥
2
+
1
2

∥
∥
∥B̃n

∥
∥
∥
2
,

max
s∈Z[k−h,k]

Ãn(s)
[

max
s∈Z[k−h,k]

βn(s) − max
s∈Z[k−h,k]

αn(s)
]

≤ 3
2

∥
∥
∥Ãn

∥
∥
∥
2
+
1
2

∥
∥
∥B̃n

∥
∥
∥
2
.

(4.31)

From inequalities (4.29) and (4.31), we obtain

[

Fx

(

k, x(k), max
s∈Z[k−h,k]

x(s)
)

−Gx

(

k, αn(k), max
s∈Z[k−h,k]

αn(s)
)

−Qn(k)
]

Ãn(k)

≤ Fxx

(

k, ζ1, max
s∈Z[k−h,k]

x(s)
)

Ã2
n(k)

+ Fxy(k, αn(k), ζ2)
(
3
2

∣
∣
∣
∣

∣
∣
∣Ãn

∣
∣
∣|2 + 1

2

∣
∣
∣
∣

∣
∣
∣B̃n

∣
∣
∣|2

)

+Gxx

(

k, ζ1, max
s∈Z[k−h,k]

βn(s)
)(

3
2

∥
∥
∥Ãn

∥
∥
∥
2
+
1
2

∥
∥
∥B̃n

∥
∥
∥
2
)

+Gxy(k, αn(k), ζ2)
(
3
2

∥
∥
∥Ãn

∥
∥
∥
2
+
1
2

∥
∥
∥B̃n

∥
∥
∥
2
)

.

(4.32)

From inequalities (4.30), (4.31), we get

[

Fy

(

k, x(k), max
s∈Z[k−h,k]

x(s)
)

−Gy

(

k, αn(k), max
s∈Z[k−h,k]

αn(s)
)

− qn(k)
]

×
(

max
s∈Z[k−h,k]

x(s) − max
s∈Z[k−h,k]

αn(s)
)

≤ Fyx

(

k, ξ3, max
s∈Z[k−h,k]

x(s)
)

Ã2
n(k)

+ Fyy(k, αn(k), ξ4)
(
3
2

∥
∥
∥Ãn

∥
∥
∥
2
+
1
2

∥
∥
∥B̃n

∥
∥
∥
2
)

+Gyx

(

k, ξ3, max
s∈Z[k−h,k]

βn(s)
)(

3
2

∥
∥
∥Ãn

∥
∥
∥
2
+
1
2

∥
∥
∥B̃n

∥
∥
∥
2
)

+Gyy(k, αn(k), ξ4)
(
3
2

∥
∥
∥Ãn

∥
∥
∥
2
+
1
2

∥
∥
∥B̃n

∥
∥
∥
2
)

.

(4.33)
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Since the second derivatives of the functions F,G are continuous and bounded in
Ω(α0, β0), it follows from inequalities in (4.27), (4.32), and (4.33), there exist positive constants
Lk,Nk such that

ΔÃn+1(k − 1) ≤ Qn(k)Ãn+1(k) + qn(k) max
s∈Z[k−h,k]

Ãn+1(s)

+ Lk

∥
∥
∥Ãn

∥
∥
∥
2
+Nk

∥
∥
∥B̃n

∥
∥
∥
2
.

(4.34)

Therefore,

Ãn+1(k) ≤ Ãn+1(k − 1) +Qn(k)Ãn+1(k) + qn(k) max
s∈Z[k−h,k]

Ãn+1(s)

+ Lk

∥
∥
∥Ãn

∥
∥
∥
2
+Nk

∥
∥
∥B̃n

∥
∥
∥
2
,

. . . . . . . . .

Ãn+1(k − 1) ≤ Ãn+1(k − 2) +Qn(k − 1)Ãn+1(k − 1)

+ qn(k − 1) max
s∈Z[k−h−1,k−1]

Ãn+1(s) + Lk−1
∥
∥
∥Ãn

∥
∥
∥
2
+Nk−1

∥
∥
∥B̃n

∥
∥
∥
2
,

Ãn+1(a + 1) ≤ Ãn+1(a) +Qn(a + 1)Ãn+1(a + 1)

+ qn(a + 1) max
s∈Z[a+1−h,a+1]

Ãn+1(s) + La+1

∥
∥
∥Ãn

∥
∥
∥
2
+Na+1

∥
∥
∥B̃n

∥
∥
∥
2
.

(4.35)

From inequalities in (4.35), we obtain

Ãn+1(k) ≤ L̃n

(∥
∥
∥Ãn

∥
∥
∥
2
+
∥
∥
∥B̃n

∥
∥
∥
2
)

+
k∑

l= a+1

[

Qn(l)Ãn+1(l) + qn(l) max
η∈[l−h,l]

Ãn+1
(
η
)
]

,

k ∈ Z[a + 1, T],

Ãn+1(k) = 0 ≤ L̃n

(∥
∥
∥Ãn

∥
∥
∥
2
+
∥
∥
∥B̃n

∥
∥
∥
2
)

, k ∈ Z[a − h + 1, a],

(4.36)

where L̃n =
∑T

j= a+1(Lj +Nj).
According to Lemma 3.5 from inequalities in (4.36), it follows

Ãn+1(k) ≤
L̃n

(∥
∥
∥Ãn

∥
∥
∥
2
+
∥
∥
∥B̃n

∥
∥
∥
2
)

∏k
l= a+1

(
1 − qn(l) −Qn(l)

) .
(4.37)
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From (4.37) and the condition (2) of Theorem 4.1, it follows that there exist positive
constants λi, where i = 1, 2, such that

Ãn+1(k) ≤ λ1
∥
∥
∥Ãn

∥
∥
∥
2
+ λ2

∥
∥
∥B̃n

∥
∥
∥
2
, k ∈ Z[a + 1, T]. (4.38)

In a similar way, we can prove that there exist positive constants μj , where j = 1, 2,
such that

B̃n+1(k) ≤ μ1

∥
∥
∥B̃n

∥
∥
∥
2
+ μ2

∥
∥
∥Ãn

∥
∥
∥
2
, k ∈ Z[a + 1, T]. (4.39)

Inequalities (4.38), (4.39) and the definitions of the functions Ãn+1(k), B̃n+1(k) imply
the validity of (4.8), that is, the convergence of the monotone sequences {αn(k)}∞n=0 and
{βn(k)}∞n=0 is quadratic.

5. Application

Now, we will give an example to illustrate the suggested above scheme for approximate
obtaining of a solution.

Consider the following nonlinear difference equation with “maxima”:

Δu(k − 1) =
1

2 − 0.5u(k)
− 1
2 + 0.5maxs∈Z[k−2,k]u(s)

− u(k − 1), k ∈ Z[1, 3], (5.1)

with an initial condition

u(k) = 0, k ∈ Z[−1, 0]. (5.2)

The function α0(k) = −1, k ∈ Z[−1, 3], is a lower solution of (5.1), (5.2) because the
inequality 0 < 1/(2 − 0.5(−1)) − 1/(2 + 0.5(−1)) + 1 = −4/15 + 1 = 11/15 holds.

The function β0(k) = 1, k ∈ Z[−1, 3], is an upper solution of (5.1), (5.2) because the
inequality 0 > 1/1.5 − 1/2.5 − 1 = −11/15 holds.

The conditions of Theorem 4.1 are satisfied since Fxx(k, x, y) = 0.5/(2 − 0.5x)3 > 0 and
Gyy(k, x, y) = 0.5/(2+0.5y)3 for −1 ≤ x, y ≤ 1. Also, the inequality (4.5) holds, because in this
case M(k) = 0.5/(1.5)2 = 2/9, N(k) = −(−0.5/(1.5)2) = 2/9 and M(k) +N(k) < 1.

According to Theorem 4.1, the initial value problem (5.1), (5.2) has a solution which
is between α0(k) = −1 and β0(k) = 1. It is obviously the problem (5.1), (5.2) has a zero
solution. This solution also could be obtained by constructing two sequences of successive
approximations.
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Table 1: Values of successive approximations αn(k) and βn(k), n = 1, 2, 3, 4, 5.

k 1 2 3
β1(k) 0.126984126984127 0.126984126984127 0.126984126984127
β2(k) 0.00245312888643079 0.00245312888643079 0.0025469207078195
β3(k) 5.93137225955726E-07 5.93137225955726E-07 9.79796674723704E-07
β4(k) 2.96900520626677E-14 2.96900520626677E-14 9.99338575141566E-14
β5(k) 2.13083324289133E-17 2.13083324289133E-17 1.43434637320051E-16
α5(k) −1.16621056078124E-17 −1.16621056078124E-17 −6.48937233257787E-18
α4(k) −4.08173696273438E-17 −4.08173696273438E-17 −2.74428886272319E-15
α3(k) −7.22563191957548E-09 −7.22563191957548E-09 −2.43398432836776E-07
α2(k) −0.000449855202856569 −0.000449855202856569 −0.00207365792650451
α1(k) −0.115942028985507 −0.115942028985507 −0.126023944549464

The successive approximation αn(k) is a solution of (4.20), (4.21) which is reduced to
the following initial value problem:

Δαn(k − 1) = Qn−1(k)αn(k) + qn−1(k) max
s∈Z[k−2,k]

αn(s)

+
1

2 − 0.5αn−1(k)
− αn(k − 1) − 1

2 + 0.5maxs∈Z[k−2,k]αn−1(s)

−Qn−1(k)αn−1(k) − qn−1(k) max
s∈Z[k−2,k]

αn−1(s), k ∈ Z[1, 3],

αn(k) = 0, k ∈ Z[−1, 0],

(5.3)

and the successive approximation βn(k) is a solution of (4.22) which is reduced to the fol-
lowing initial value problem:

Δβn(k − 1) = Qn−1(k)βn(k) + qn−1(k) max
s∈Z[k−2,k]

βn(s)

+
1

2 − 0.5βn−1(k)
− βn(k − 1) − 1

2 + 0.5maxs∈Z[k−2,k]βn−1(s)

−Qn−1(k)βn−1(k) − qn−1(k)maxs∈Z[k−2,k]βn−1(s), k ∈ Z[1, 3],

βn(k) = 0, k ∈ Z[−1, 0],

(5.4)

where

Qn−1(k) =
0.5

(2 − 0.5αn−1(k))
2
, qn−1(k) =

0.5
(
2 + 0.5maxs∈Z[k−2,k]βn−1(s)

)2 . (5.5)

Initial value problems (5.3) and (5.4) are solved by a computer program, using the algorithm
given in the proof of Lemma 3.1 and the results are written in Table 1.



Journal of Applied Mathematics 17

Table 1 demonstrates both sequences monotonically approach the exact zero solution.
This illustrates the application of the proved above procedure for approximately obtaining of
the solution.
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