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Over the past decade dose-intensified chemo-radiotherapy or molecular targeted therapy has been introduced into the treatments
of head and neck squamous cell carcinoma (HNSCC) to improve the outcomes of this dismal disease. However, these strategies
have revealed only limited efficacy so far. Moreover, the frequent occurrences of second primary tumor further worsen the
prognosis of patients. In this context, early detection and chemoprevention appear to be a realistic and effective method to
improve the prognosis as well as quality of life in patients with HNSCC. In this short paper, we discuss the potential of green tea
extract, (-)-epigallocatechin-3-galate (EGCG) in HNSCC chemoprevention, focusing on two aspects that are provided recently:
(1) evidence of clinical efficacy and (2) unique biological effects on “lipid raft” that emerged as an important platform of numerous
biophysical functions, for example, receptor tyrosin kinases (RTKs) signalings including epidermal growth factor receptor (EGFR),
which play critical roles in HNSCC carcinogenesis.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC), the
sixth most common cancer worldwide, often generates
from critical organs including the larynx, pharynx, oral
cavity, and tongue that play indispensable roles in social,
respiratory, communicative, and nutritional functions [1].
Surgical intervention for these organs often leads to a
considerable impairment of the patient’s quality of life
(QOL), albeit recent remarkable progresses in reconstructive
surgery. Accordingly, the intensity of conventional DNA-
damaging therapies (i.e., irradiation and chemotherapy) has
been strengthened to the upper limit of human tolerance
of acute toxicities during the last decade [2]. Short-term
results of these treatments seem to be promising. However,
it is still under debate whether these dose-intensified types of
protocols would lead to the long-term overall survival as well

as “functional” organ preservation, because these protocols
occasionally cause considerable complications (e.g., require-
ment for feeding tube due to severe laryngeal and pharyngeal
dysfunction) and potential treatment-related death [2–4].
Ongoing molecular targeted therapies in HNSCC revealed
only marginal effects so far [5]. In addition, the frequent
occurrences of second primary tumor further worsen the
prognosis of patients with HNSCC [1, 6]. As a result, the
dishonorable phrase that is routinely used in the Intro-
duction of HNSCC studies: “Despite recent advancements
in treatment modalities, the overall survival and QOL of
patients with HNSCC have not improved significantly over
the past decade” still holds true, especially for patients with
advanced stage. In view of these findings, early detection and
chemoprevention appear to be realistic and effective method
to improve the prognosis as well as QOL of patients with
HNSCC.
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2. Evidence and Perspective of
EGCG in Chemoprevention

As indicated by a recent review, we have witnessed remark-
able progresses in the chemoprevention research in HNSCC
[6]. A variety of natural and synthetic compounds have
been shown to exert chemopreventive effects on HNSCC.
Among them, a major active component of green tea extract,
(-)-epigallocatechin-3-galate (EGCG), seems to be one of the
most promising compounds that displays tumor suppressive
effects on animal carcinogenesis model, mouse xenograft
model, and a variety of cancer cell lines [7]. Figure 1
demonstrates the chemical structure of EGCG. Despite these
substantial experimental data, there has been a longstanding
question about the clinical efficacy of EGCG, because in
a majority of in vitro studies, EGCG exhibits biological
functions at relatively higher concentrations compared to
the peak plasma concentrations obtained in individuals
after administrating an oral dose of EGCG or decaffeinated
green tea extract (<1 μM) [8, 9]. However, recent studies
provided evidence that administration of EGCG indeed has
potential to reverse the process of carcinogenesis in patients
with HNSCC or other human malignancies. In a phase
II trial, Tsao et al. examined the effects of administration
of green tea extract (GTE) capsule that contains 13.2% of
EGCG for 12 weeks, three times a day at the dosage of
0 (placebo), 500, 750, or 1000 mg/m2/day on 41 patients
with high-risk oral premalignant lesion. They found that two
high dose arms (750 and 1000 mg/m2) revealed significantly
(P = .03) higher response rates (58.8%) than 500 mg/m2

(36.4%) or placebo (18.2%) [10]. The group of Shimizu,
who is one of the authors of this paper, demonstrated that
administration of 500 mg of GTE tablet that contain 52.5 mg
of EGCG three times a day (total 1500 mg/day) for 12 months
significantly (P < .05) inhibited the incidence of second
metachronous colon adenoma in patients who underwent
endoscopic polypectomy, thus 31% in control arm versus
15% in the GTE treated arm [11]. Patients with high-grade
prostate intraepithelial neoplasia received either placebo or
200 mg of GTE capsule that contain 51.8% of EGCG three
times a day (total 600 mg/day) for 12 months. The GTE
group displayed significantly (P < .01) lower incidence
(3.0%) of prostate cancer compared to the placebo group
(30.0%) [12]. No serious adverse effects were observed in
any of these trials. Collectively, these studies indicate that
administration of 50–200 mg of EGCG three times a day for
12 months appears to be safe and clinically effective protocol.
Thus, the setting appears to be ideal for validating the clinical
efficacy of EGCG in a larger-scale chemoprevention study.

3. Diverse Molecular Target of EGCG

A rapidly increasing number of mechanistic studies have
revealed that in addition to the antioxidant effect, EGCG
inhibits tumor development and progression by modulating
wide spectrum of molecular targets. Those include RTKs:
epidermal growth factor receptor (EGFR), erbB2/Her2,
erbB3/Her3, erbB4/Her4, vascular endothelial growth factor
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Figure 1: Structure of EGCG.

receptor (VEGFR), platelet derived growth factor receptor
(PDGR), insulin-like growth factor receptor (IRGFR) and
hepatocellular growth factor receptor (HGFR), mitogen
activated protein kinase (MAPK), proteasomes, matrix
metro proteases (MMPs), cyclin-dependent kinases (CDKs),
p53, DNA methyltransferase, Bcl-2, VEGF, reactive oxygen
species (ROS,) 67 kDa laminin receptor (67LR), vimentin,
phosphatidylinositol-3-kinase (PI3K)-Akt, NF-κB, signal
transducers and activators of transcription 3 (Stat3), and AP-
1. These surprisingly diverse interactions between EGCG and
target molecules or pathways are summarized in a recent
comprehensive review [7]. In this short paper, we will mainly
discuss the effects of EGCG on receptor tyrosin kinases
(RTKs), especially EGFR, and their cell surface vessel, “lipid
rafts,” that have emerged as a critical target of EGCG as well
as an essential platform for signal transduction.

4. The Role and Mechanism of EGFR Activation
in HNSCC Carcinogenesis

In 1990s, Grandis et al. demonstrated that EGFR and its
ligand transforming growth factor-α (TGF-α) mRNA were
overexpressed in approximately 90% of HNSCC tumors,
and overexpression of these two proteins was significantly
associated with poor prognosis of patients with HNSCC
[13, 14]. To date, numerous studies have revealed that EGFR
signaling orchestrates tumor development and progression
by activating several downstream signal transduction path-
ways including MAPK, Stat3, PI3K-Akt-mTOR, protein
kinase C (PKC), and NF-κB [15–17]. Several mechanisms
have been postulated to explain aberrant EGFR signaling in
human malignancies [15, 16]. Those include (1) receptor
overexpression, (2) autocrine or paracrine activation by
ligand overexpression or excessive ligand cleavage from
cell surface by ADAM family metalloprotease, (3) gene
amplification, (4) ligand independent activation through
other receptor systems (e.g., erbB2), (5) constitutive active
EGFR mutants: somatic activating mutation or truncated
EGFRvIII, and/or (6) loss of negative regulation (e.g.,
EGFR degradation). Despite EGFR is one of the most
extensively investigated molecules in HNSCC pathogenesis,
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Figure 2: A proposed mechanism of TGF-α/EGFR/ras-MAPK activation loop in HNSCC. TGF-α binding to EGFR leads to dimerization
and phosphorylation on lipid rafts. Phosphorylation of Y1068 and Y1086 is required for Grab2 binding and consequent ras activation.
Activated EGFR dimmer is internalized via clathrin-coated pit. Cbl and CIN85 (overexpressed in 40% of HNSCC samples) are recruited at
pY1045 and facilitate EGFR internalization. Phosphorylation of S1046/1047 is also necessary for EGFR internalization, albeit the precise role
remains elusive. Recent evidence suggests that TGF-α-bound EGFRs signal in the cytosol, activating ras-MAPK cascade. Ras-enriched small
cytosolic nanoparticles, “rasosomes,” might contribute to this signaling. Internalized TGF-α-bound EGFRs are sorted to early endosome.
TGF-α dissociates from EGFR in the acidic environment of endosome. Free EGFR is recycled back via fast recycling back pathway to plasma
membrane and is activated by TGF-α in a autocrine manner, resulting in constitutive activation of TGF-α/EGFR/ras-MAPK.

the predominant mechanism of EGFR activation remains
elusive. The EGFR gene amplification was observed only
in 7 out of 33 patients with HNSCC, and intriguingly this
amplification did not lead to protein overexpression [18].
However a recent study demonstrated that 49 out of 145 oral
premalignant lesions displayed EGFR protein overexpression
which was associated with relatively high incidence (41%)
of EGFR gene copy [19]. Thus, the correlation between
the EGFR gene amplification and protein expression is
still under debate. The possibility of excessive cleavage of
TGF-α and amphiregulin was demonstrated in HNSCC cell
lines [20] but is not confirmed in clinical samples. The
reported rates of somatic mutation of EGFR in HNSCC
range as low as 7-8% [21–23]. Sok et al. found EGFRvIII
expression in 42% of 33 HNSCC samples employing both
immunohistochemical and RT-PCR assays [24]. In contrast,
Yang et al. reported only 15% of EGFRvIII positive rates in 39
Chinese laryngeal cancer [25]. Interestingly, in 82 HNSCC
samples from Japanese population, EGFR vIII was not
detected [23]. Here again, the role of EGFRvIII in HNSCC is
still controversial. The mechanism of EGFR internalization,
degradation and recycling is a quite essential aspect that
is closely associated with EGFR signaling [26]. However,
there were few reports, which investigated this mechanism
in HNSCC. We recently examined the role of multiadaptor

protein c-Cbl interacting protein of 85 kDa (CIN85) [27]
in HNSCC focusing on its role in EGFR signaling pathway
[28]. In this study, we found that (1) CIN85 significantly
facilitates EGFR internalization without apparently altering
the levels of phosphorylated EGFR protein (i.e., EGFR signal
intensity), consistent with the theory that TGF-α bound
EGFRs are mainly sorted to the recycling-back pathway
escaping from degradation, while a majority of EGF-bound
EGFRs are processed via the degradation pathway [26], (2)
TGF-α bound EGFR receptor signals in the cytosol as well
as on plasma membrane, activating ras-MAPK cascade (ras-
enriched small cytosolic nanoparticles, “rasosomes,” might
contribute to this signaling [29]), (3) CIN85 silencing,
therefore, inhibits EGFR internalization and activation of
ras-MAPK cascade, and (4) CIB85 overexpression observed
in 40% of HNSCC tumor samples contributes to the
development of EGFR/ras-MAPK activation loop (Figures
2 and 3(a)). This model, at least in part, accounts for the
reason why not EGFR but TGF-α is prominent mitogen
in HNSCC development and progression. Nevertheless, it
should be emphasized that the mechanism that causes TGF-
α and EGFR overexpression in HNSCC remains elusive,
although almost 20 years have passed since Grandis et al.
[13, 14] first reported the significance of this overexpres-
sion.
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Figure 3: (a) Summary of TGF-α/EGFR/ras-MAPK activation loop in HNSCC (for more detail see Figure 2). (b) Inhibitory effect of EGCG
on EGFR activation. EGCG alters organization of lipid rafts and promotes internalization of nonactivated monomer EGFR into cytosol
through phosphorylation of EGFR at serine 1046/1047 by p38MAPK. As a result, EGCG causes a marked reduction of phosphorylated
EGFR and thereby inhibits EGFR signaling that is prominent in HNSCC.

5. EGCG Inhibits EGFR: The Role of Lipid Raft

Irrespective of the mechanisms which underlie EGFR activa-
tion in HNSCC, it was discovered by Liang et al. that EGCG
can directly inhibit the binding of EGF to EGFR and thereby
inhibits EGFR signaling [30]. Consistent with this finding,
we first provided evidence that EGCG indeed inhibits
EGFR activation in HNSCC cell line that displays autocrine
activation of EGFR by TGF-α [31]. We further examined
the effect of EGCG on erbB2/Her2 employing HNSCC and
breast cancer cell lines, and found that EGCG can inhibit
the erbB2/Her2 activation, demonstrating the first example
of erbB2/Her2 inhibition by EGCG in human malignancies
[32]. Thereafter, we and other investigators confirmed
the inhibitory effects of EGCG on other RTKs including
erbB3/Her3, erbB4/Her4, IGFR, PDGFR, FGFR, and VEGFR
employing a variety of cancer cell lines derived from different
organs [33–38]. These ubiquitous inhibitory effects of EGCG
on a series of RTKs, combined with the fact that the
inhibitory effect of EGCG on EGF/EGFR binding was found
only in a subcellular system [30], raised a question that
EGCG might inhibit RTKs by a more general mechanism.

Due to recent remarkable progresses in methods to
analyze the structure, dynamic assembly, and function of
nanoscale molecules, it is beginning apparent that cell
membranes play critical roles in coordinating a variety of
biochemical reactions including RTKs signal transduction
[39–42]. Nanoscale transient membrane domains, “lipid
rafts,” that are enriched with cholesterol, glycosphingolipids,
glycosylphosphatidylinositol-anchored protein, caveolin-1,
and signaling molecules, function as signaling platforms [39–

41]. Among the RTKs, the interaction of EGFR with lipid
rafts is most well understood [39]. Activation of EGFR by
ligand and consequent signal transduction begins at lipid
rafts, while its internalization occurs at clathrin-coated pit
by further recruiting the E3 ubiquitin ligase Cbl, CIN85, and
endorphins. The role of CIN85 in EGFR signal transduction
in HNSCC was discussed in the previous section. These
observations made us to hypothesize that EGCG might
inhibit the activation of EGFR or other RTKs by altering the
formation of lipid rafts.

So far through a series of three studies [43–45] we
found that (1) EGCG alters lipid organization on the
plasma membrane, (2) EGCG promote the internalization of
nonactivated monomer EGFR into cytosol, thus, inhibiting
the activation of EGFR by EGF, (3) as a result, treatment
with EGCG causes marked reduction of phosphorylated
(activated) EGFRs, that are otherwise preferentially present
in lipid rafts, (4) EGCG-induced EGFR internalization
requires neither the binding of c-Cbl to EGFR nor a
phosphorylation of EGFR at tyrosine residue, suggesting that
this internalization is mediated by a different mechanism that
is observed in EGF-treated cells, and (5) phosphorylation of
EGFR at serine1046/1047 mediated by p38MAPK is essential
for EGCG-induced EGFR internalization (Figure 3(b)).

In parallel with our findings, a Japanese research group
discovered that 67LR, a constituent protein of lipid rafts,
is an important binding target of EGCG [46]. 67LR is a
nonintegrin laminin receptor, which is overexpressed on cell
surface of various types of tumors, and the expression level
of this protein strongly correlates with the aggressive pheno-
types of tumor, albeit its role in HNSCC carcinogenesis is
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not investigated so far [47, 48]. Intriguingly, the predicted
Kd value for the binding of EGFG to 67LR is as low as
40 nM, and physiological concentration of EGCG indeed
inhibits the growth of human lung cancer cell line in a 67LR-
dependent manner [46]. Although it is not clear whether the
above-mentioned inhibition of EGFR by EGCG is relevant to
67LR, this finding also provides evidence that EGCG exerts
antitumor effects through the interaction with lipid rafts
protein.

As mentioned in the “Introduction,” the EGFR tar-
geted therapies, either used alone or in combination with
radiation, have shown only limited efficacy so far, albeit
its significant role in HNSCC carcinogenesis [5]. One of
possible explanations for this insensitivity is that other
growth factors or cytokines can surrogate EGFR signaling
and activate downstream signal cascades including MAPK,
Stat3, and PI3k-Akt. Then, HNSCC can relatively easily
escape from EGFR dependency. However, Zhang et al.
demonstrated that EGCG can synergistically enhance the
growth inhibitory effects of EGFR tyrosine kinase inhibitor,
erlotinib, both in vitro and in animal xenograft models
employing HNSCC cell lines [49]. Consistent with our
findings, treatment of EGCG significantly enhanced EGFR
internalization that was not observed with treatment of
erlotinib alone. Thus, they speculate that this internalization
and consequent degradation of EGFR might be a major
mechanism that accounts for this synergistic interaction.
However, given the fact that a majority of growth factors or
cytokines, which can surrogate EGFR signaling, utilize lipid
rafts as signaling platforms [48], this synergistic interaction
might be caused through the general inhibitory effects of
EGCG on these growth factors or cytokines in lipid rafts.
Thus, the addition of EGCG to RTKs targeting therapies
might be an attractive strategy, which leads to the prevention
of drug-tolerance, as is frequently observed in several clinical
settings.

6. Conclusions

Considering the tantalizingly marginal improvement in
the treatment outcomes of patients with HNSCC, it is
urgent and critical to develop novel strategy based on early
detection and chemoprevention. Among numerous putative
chemopreventive agents, EGCG appears to be one of the
most promising natural compounds based on accumulated
data and, in particular, two novel findings provided recently:
(1) clinical efficacy and (2) unique biological effects on lipid
rafts that are an important platform of numerous biophysical
functions including RTKs signalings. A larger-scale clinical
study of EGCG is highly recommended.
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