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This paper presents a 2D numerical technique based on the boundary element method (BEM) for the analysis of linear elastic frac-
ture mechanics (LEFM) problems on stress intensity factors (SIFs) involving anisotropic bimaterials. The most outstanding feature
of this analysis is that it is a singledomain method, yet it is very accurate, efficient, and versatile (i.e., the material properties of the
medium can be anisotropic as well as isotropic). A computer program using the BEM formula translation (FORTRAN 90) code
was developed to effectively calculate the stress intensity factors (SIFs) in an anisotropic bi-material. This BEM program has been
verified and showed good accuracy compared with the previous studies. Numerical examples of stress intensity factor calculation
for a straight crack with various locations in both finite and infinite bimaterials are presented. It was found that very accurate results
can be obtained using the proposed method, even with relatively simple discretization. The results of the numerical analysis also
show that material anisotropy can greatly affect the stress intensity factor.

1. Introduction

The problem of cracks between two dissimilar materials has
been widely studied over the past several decades, stemming
mainly from the desire to understand the failure modes
of composites, including structures, rocks, and concrete.
Williams [1] presented the first study of the plane problem
of cracks between dissimilar isotropic materials. Williams
showed that stresses possess the singularity of 𝑟−1/2±𝑖𝜀, where
𝑟 is the radius distance from the crack tip and 𝜀 is a bi-material
constant. England [2] investigated the problem of finite
cracks between dissimilar isotropicmaterials. Rice and Sih [3]
studied similar problems and derived the expressions of the
stress fields near crack tips. Rice [4] reexamined the elastic
fracture mechanics concepts of the isotropic interfacial crack
and introduced an intrinsic material length scale so that the
definition of the stress intensity factors (SIFs) possessed the
same physical significance as those for homogeneous cracks.

Clements [5] and Willis [6] extended the problem studied
by England [2] for dissimilar anisotropic materials. They also
showed the oscillatory behavior of the stresses and the phe-
nomenon of interpenetration of the crack face near the crack
tip in anisotropic interface cracks. Wu [7] extended the prob-
lem studied by Rice [4] for anisotropic bi-material cracks.
Recently, many authors [7–10] have conducted studies on
interfacial cracks in anisotropic materials and different def-
initions for the stress intensity factor existence. However, the
data on different crack locations, crack lengths, and degree of
material anisotropy are scarce in the literature.

Recently, several BEMs have been proposed for the study
of cracked media [11–13]. It involves two sets of boundary
integral equations and is, in general, superior to the afore-
mentioned BEMs. Consequently, general mixed mode crack
problems can be solved in a BEM formulation. The single-
domain analysis can eliminate remeshing problems, which
are typical of the FEM and the subregional BEM.
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In this paper, we develop a technique for single-domain
BEM formulation in which neither the artificial boundary
nor the discretization along the uncracked interface is nec-
essary. Chen et al. [14] presented this single-domain BEM
formulation for homogeneous materials. We combined it
with Green’s functions of bi-materials [15] to extend it to
anisotropic bi-materials. The BEM formulation is such that
the displacement integral equation is applied only to the outer
boundary, and the traction integral equation is applied only to
one side of the cracked surface. A decoupling technique can
be used to determine mixed mode SIFs based on the relative
displacement at the crack tip. Numerical cases for mixed
mode SIFs for anisotropic bi-materials with different crack
locations and degrees of material anisotropy are presented.
The numerical results obtained using the BEM formulation
are verified by several previous studies [8, 16–18].

2. Methodology

2.1. Basic Equations for Anisotropic Elasticity. For linear
elastic, homogeneous, and anisotropic material, the stress
and displacement fields can be formulated in terms of two
analytical functions, 𝜙
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where the coefficient 𝑎
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is the compliance component cal-
culated using the 𝑥-𝑦 coordinate system. The detailed rela-
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The traction components in the 𝑥 and 𝑦 directions are
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Here, the complex analytical functions 𝜙
𝑖
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) can in general
express (2) and (4) as follows [19–21]:
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where 𝑧
𝑗

= 𝑥 + 𝜇
𝑗

𝑦; Re denotes the real part of a complex
variable or function; a prime denotes the derivative; the com-
plex number 𝜇

𝑗

(𝑗 = 1, 2); the elements of complex matrices
𝐴 are defined in (3); and the elements of complex matrices 𝐵
can be defined as
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Assume that the medium is composed of two joined dis-
similar anisotropic and elastic half-planes. Let the interface be
along the 𝑥-axis and let the upper (𝑦 > 0) and lower (𝑦 < 0)
half-planes be occupied by materials #1 and #2, respectively
(as shown in Figure 1).

Considering a concentrated force acting at the source
point (𝑥0, 𝑦0) in material #2(𝑦0 < 0), we express the complex
vector function as [20]
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where the argument has the generic form 𝑧 = 𝑥 + 𝜇𝑦.
In (7), 𝜙0#2 is a singular solution corresponding to a point

force acting at the point (𝑥0, 𝑦0) on an anisotropic infinite
plane with the elastic properties of material #2. This singular
solution can be expressed as [20, 21]
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is the magnitude of the point force
in the 𝑘-direction, and
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where 𝑖 = √−1, the overbar indicates the complex conju-
gate, and superscript −1 indicates the matrix inverse. Two
unknown vector functions, 𝜙#1(𝑧) and 𝜙#2(𝑧), are solved in
(7).The former is analytic inmaterial #1, and the latter is ana-
lytic inmaterial #2.These expressions can be found by requir-
ing the continuity of the resultant traction and displacement
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Figure 1: Definition of the coordinate systems in an anisotropic bi-
material.

across the interface in addition to the standard analytic
continuation arguments. Substituting (9) for (7), we obtain
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In (12), subscripts #1 and #2 are used to denote that the
correspondingmatrix or vector is for material #1 (𝑦 > 0) and
material #2 (𝑦 < 0), respectively.

Similarly, for a point force in material #1 (𝑦0 > 0), the
complex vector functions can be expressed as
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where vector function 𝜙0#1 is the infinite-plane solution given
in (9), but with the elastic properties of material #1.

The Green’s functions of the displacement and traction
can be obtained by substituting the complex vector functions
in (12) and (13) for (5). Here, 𝑈∗

𝑘𝑙

is the Green’s function for
displacement and 𝑇

∗

𝑘𝑙

is the Green’s function for traction.
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(i) For source point (𝑠) and field point (𝑧) on material
#1 (𝑦 > 0),

𝑈
∗

𝑘𝑙

=

−1

𝜋

Re
{

{

{

2

∑

𝑗=1

𝐴
#1
𝑙𝑗

[ ln (𝑧#1
𝑗

− 𝑠
#1
𝑗

)𝐻
#1
𝑗𝑘

+

2

∑

𝑖=1

𝑊
11

𝑗𝑖

ln (𝑧#1
𝑗

− 𝑠
#1
𝑖

)𝐻

#1
𝑖𝑘

]

]

}

}

}

,

𝑇
∗

𝑘𝑙

=

1

𝜋

Re
{

{

{

2

∑

𝑗=1

𝐵
#1
𝑙𝑗

[

𝜇
#1
𝑗

𝑛
𝑥

− 𝑛
𝑦

𝑧
#1
𝑗

− 𝑠
#1
𝑗

𝐻
#1
𝑗𝑘

+

2

∑

𝑖=1

𝑊
11

𝑗𝑖

𝜇
#1
𝑗

𝑛
𝑥

− 𝑛
𝑦

𝑧
#1
𝑗

− 𝑠
#1
𝑖

𝐻

#1
𝑖𝑘

]

}

}

}

,

(14)

where the matrix𝐻 is defined in (10) with the aniso-
tropic elastic properties of material #1, and
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wherematrix𝐻 is defined in (10) with the anisotropic
elastic properties of material #2, and
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(iv) For source point (𝑠) and field point (𝑧) on materials
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It should be noted that these Green’s functions can be
used to solve both plane stress and plane strain problems
for anisotropic bi-materials. Although the isotropic solution
cannot be analytically reduced from these Green’s functions,
one can numerically approximate it by selecting a very weak
anisotropic (or nearly isotropic) medium [22, 23].

2.2. Single-Domain Boundary Integral Equations. In this sec-
tion, we present single-domain boundary integral equations
in which neither the artificial boundary nor the discretization
along the uncracked interface is necessary. This single-
domain boundary integral equation was used recently by
Chen et al. [14] for homogeneous materials, and it is now
extended to anisotropic bi-materials.
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and 𝑧

𝑘

and 𝑠
0

𝑘,𝐵

are the field points and the source points
on boundary Γ of the domain, respectively. Γ

𝐶

has the same
outwardnormal asΓ

𝐶+

. 𝑏
𝑖𝑗

are coefficients that dependonly on
the local geometry of the uncracked boundary at point 𝑠0

𝑘,𝐵

and are equal to 𝛿
𝑖𝑗

/2 for a smooth boundary.Here, subscripts
𝐵 and 𝐶 denote the outer boundary and the cracked surface,
respectively. In deriving (22), we have assumed that the trac-
tions on the two faces of a crack are equal and opposite. We
emphasize here that since the bi-material Green’s functions
are included in (22), discretization along the interface can

be avoided, with the exception of the interfacial crack part,
which is treated by the traction integral equation presented
in the following.

It should be noted that all the terms on the right-hand
side of (22) have weak singularities and thus are integrable.
Although the second term on the left-hand side of (22) has
a strong singularity, it can be treated using the rigid-body
motion method.

The traction integral equation (for 𝑠0
𝑘

being a smooth
point on the crack) applied to one side of the cracked surface
is (𝑠0
𝑘,𝐶

∈ Γ
𝐶+

only)

0.5𝑡
𝑗

(𝑠
0

𝑘,𝐶

) + 𝑛
𝑚

(𝑠
0

𝑘,𝐶

) ∫

ΓΒ

𝐶lim 𝑘𝑇
∗

𝑖𝑗,𝑘

(𝑠
0

𝑘,𝐶

, 𝑧
𝑘,𝐵

)

× 𝑢
𝑗

(𝑧
𝑘,𝐵

) 𝑑Γ (𝑧
𝑘,𝐵

)

+ 𝑛
𝑚

(𝑠
0

𝑘,𝐶

)∫

Γ𝐶

𝐶lim 𝑘𝑇
∗

𝑖𝑗,𝑘

(𝑠
0

𝑘,𝐶

, 𝑧
𝑘,𝐶

)

× [𝑢
𝑗

(𝑧
𝑘,𝐶+

) − 𝑢
𝑗

(𝑧
𝑘,𝐶−

)] 𝑑Γ (𝑧
𝑘,𝐶

)

= 𝑛
𝑚

(𝑠
0

𝑘,𝐶

)∫

Γ𝐵

𝐶lim 𝑘𝑈
∗

𝑖𝑗,𝑘

(𝑠
0

𝑘,𝐶

, 𝑧
𝑘,𝐵

) 𝑡
𝑗

(𝑧
𝑘,𝐵

) 𝑑Γ (𝑧
𝑘,𝐵

) ,

(23)

where 𝑛
𝑚

is the unit outward normal at cracked surface 𝑠0
𝑘,𝐶

and 𝐶lim 𝑘 is the fourth-order stiffness tensor.
Equations (22) and (23) form a pair of boundary integral

equations [14, 21, 24] and can be used to calculate SIFs in
anisotropic bi-materials.Themain feature of the BEM formu-
lation is that it is a single-domain formulation, with the dis-
placement integral equation (22) being collocated only on the
uncracked boundary and the traction integral equation (23)
only on one side of the crack surface. For problems without
cracks, one only needs (22), with the integral on the cracked
surface being discarded. Equation (22) then reduces to the
well-known displacement integral on the uncracked bound-
ary.

The internal stresses 𝜎(𝑧
𝑘

) are determined using the fol-
lowing expression:

𝜎lm (𝑧𝑘) + ∫
ΓΒ

𝐶lim 𝑘𝑇
∗

𝑖𝑗,𝑘

(𝑠
0

𝑘,𝐶

, 𝑧
𝑘,𝐵

) 𝑢
𝑗

(𝑧
𝑘,𝐵

) 𝑑Γ (𝑧
𝑘,𝐵

)

+ ∫

Γ𝐶

𝐶lim 𝑘𝑇
∗

𝑖𝑗,𝑘

(𝑠
0

𝑘,𝐶

, 𝑧
𝑘,𝐶

)

× [𝑢
𝑗

(𝑧
𝑘,𝐶+

) − 𝑢
𝑗

(𝑧
𝑘,𝐶−

)] 𝑑Γ (𝑧
𝑘,𝐶

)

= ∫

Γ𝐵

𝐶lim 𝑘𝑈
∗

𝑖𝑗,𝑘

(𝑠
0

𝑘,𝐶

, 𝑧
𝑘,𝐵

) 𝑡
𝑗

(𝑧
𝑘,𝐵

) 𝑑Γ (𝑧
𝑘,𝐵

) .

(24)

For given solutions (related to the body force of gravity,
rotational forces, and the far-field stresses), the boundary
integral equations (22) and (23) can be discretized and
solved numerically for the unknownboundary displacements
(or displacement discontinuities on the cracked surface)
and tractions. In solving these equations, the hypersingular
integral term in (23) can be handled using an accurate and
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efficient Gauss quadrature formula, which is similar to the
traditional weighted Gauss quadrature but has a different
weight [25].

2.3. Evaluation of Stress Intensity Factor. In fracture mechan-
ics analysis, especially in the calculation of SIFs, one needs
to know the asymptotic behavior of the displacements and
stresses near the crack tip. In our BEM analysis of SIFs,
we propose to use the extrapolation method of crack-
tip displacement. We, therefore, need to know the exact
asymptotic behavior of the relative crack displacement (RCD)
behind the crack tip. The form of the asymptotic expression
depends on the location of the crack tip. In this study, two
cases are discussed: a crack tip in homogeneous material and
an interfacial crack tip.

(i) Crack Tip in Homogeneous Material. Assume that the
crack tip is in material #1. The asymptotic behavior of the
relative displacement at a distance 𝑟 behind the crack tip can
be expressed in terms of the three SIFs as [17]

Δ𝑢 (𝑟) = 2√
2𝑟

𝜋

Re (𝑌#1)𝐾, (25)

where 𝐾 = [𝐾II, 𝐾I, 𝐾III]
𝑇 is the SIF vector and 𝑌 is a matrix

with elements related to the anisotropic properties inmaterial
#1, as defined in (10).

In order to calculate the square-root characteristic of the
RCD near the crack tip, we constructed the following new
crack tip element with the tip at 𝜉 = −1 (as shown in
Figure 2(e)):

Δ𝑢
𝑖

=

3

∑

𝑘=1

𝑓
𝑘

Δ𝑢
𝑘

𝑖

, (26)

where subscript 𝑖 denotes the RCD component and super-
script 𝑘 (1, 2, 3) denotes the RCDs at nodes 𝜉 = −2/3, 0, 2/3

(as shown in Figure 2(b)), respectively. The shape functions
𝑓
𝑘

are those introduced by [25]

𝑓
1

=

3√3

8

√𝜉 + 1 [5 − 8 (𝜉 + 1) + 3(𝜉 + 1)
2

] ,

𝑓
2

=

1

4

√𝜉 + 1 [−5 + 18 (𝜉 + 1) + 9(𝜉 + 1)
2

] ,

𝑓
3

=

3√3

8√5

√𝜉 + 1 [1 − 4 (𝜉 + 1) + 3(𝜉 + 1)
2

] .

(27)

In this case, the relation of the RCDs at a distance 𝑟 behind
the crack tip and the SIFs can be found as [26–28]

Δ𝑢
1

= 2√
2𝑟

𝜋

(𝐻
11

𝐾I + 𝐻12𝐾II) ,

Δ𝑢
2

= 2√
2𝑟

𝜋

(𝐻
21

𝐾I + 𝐻22𝐾II) ,

(28)

where

𝐻
11

= Im(

𝜇
2

𝑃
11

− 𝜇
2

𝑃
12

𝜇
1

− 𝜇
2

) ,

𝐻
12

= Im(

𝑃
11

− 𝑃
12

𝜇
1

− 𝜇
2

) ,

𝐻
21

= Im(

𝜇
2

𝑃
21

− 𝜇
2

𝑃
22

𝜇
1

− 𝜇
2

) ,

𝐻
22

= Im(

𝑃
21

− 𝑃
22

𝜇
1

− 𝜇
2

) .

(29)

Substituting the RCDs into (26) and (28), we may obtain
a set of algebraic equations with which the SIFs 𝐾I and 𝐾II
can be solved.

(ii) Interfacial Crack Tip. In this case, the relative crack
displacements at a distance 𝑟 behind the interfacial crack tip
can be expressed in terms of the three SIFs as [29]

Δ𝑢 (𝑟) = (

3

∑

𝑗=1

𝑐
𝑗

𝐷𝑄
𝑗

𝑒
−𝜋𝛿𝑗

𝑟
(1/2)+𝛿𝑗

)𝐾, (30)

where 𝑐
𝑗

, 𝛿
𝑗

,𝑄
𝑗

, and𝐷 are the relative parameters inmaterials
#1 and #2. Utilizing (10), we defined the matrix of a material
as

𝑌#1 + 𝑌#2 = 𝐷 − 𝑖𝑉, (31)

where𝐷 and 𝑉 are two real matrices. These two matrices are
used to define matrix 𝑃 as

𝑃 = −𝐷
−1

𝑉. (32)

The characteristic 𝛽 relative to material is as follows:

𝛽 = √−

1

2

tr (𝑃2). (33)

We use the characteristic 𝛽 to define oscillation index 𝜀 as

𝜀 =

1

2𝜋

ln
1 + 𝛽

1 − 𝛽

=

1

𝜋

tanh−1𝛽,

𝛿
1

= 0, 𝛿
2

= 𝜀, 𝛿
3

= −𝜀,

𝑄
1

= 𝑃
2

+ 𝛽
2

𝐼, 𝑄
2

= 𝑃 (𝑃 − 𝑖𝛽𝐼) ,

𝑄
3

= 𝑃 (𝑃 + 𝑖𝛽𝐼) ,

(34)

where 𝐼 is a 3 × 3 identity matrix.
The relationship between characteristic 𝛽 and oscillation

index 𝜀 is used to define constant 𝑐
𝑗

as

𝑐
1

=

2

√2𝜋𝛽
2

,

𝑐
2

=

−𝑒
−𝜋𝜀

𝑑
𝑖𝜀

√2𝜋 (1 + 2𝑖𝜀) 𝛽
2 cosh (𝜋𝜀)

,

𝑐
3

=

−𝑒
−𝜋𝜀

𝑑
𝑖𝜀

√2𝜋 (1 − 2𝑖𝜀) 𝛽
2 cosh (𝜋𝜀)

,

(35)

where 𝑑 is the characteristic distance along thematerial inter-
face to the crack tip.
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1

2

3

31 2
ξ

𝜉 = −2/3 𝜉 = 0 𝜉 = 1

𝑥

𝑦

(a) Discontinuous quadratic element of Type I

1

2

3

31 2

𝜉 = −2/3 𝜉 = 0 𝜉 = 2/3

𝑥

𝑦

𝜉

(b) Crack surface quadratic element of Type II

1

2

3

31 2

𝜉 = −1 𝜉 = 0 𝜉 = 2/3

𝜉

𝑥

𝑦

(c) Discontinuous quadratic element of Type III

1

2

3

31 2
𝑥

𝑦

𝜉

𝜉 = −1 𝜉 = 0 𝜉 = 1

(d) Discontinuous quadratic element of Type IV

Crack tip position
1

2

3

31 2

𝜉 = −1 𝜉 = −2/3 𝜉 = 0 𝜉 = 2/3

𝜉

𝑥

𝑦

(e) Crack tip quadratic element of Type V

Figure 2: Three-geometric-node quadratic elements used to approximate the uncracked boundary and the crack for two-dimensional
problems.
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Comparing (25) with (30), we noticed that while the
relative crack displacement behaves as a square root for a
crack tip in a homogeneousmedium, an interfacial crack-tip’s
behavior is 𝑟(1/2)+𝑖𝛿, a square root featuremultiplied by a weak
oscillation.

Equation (30) can be written in the following form, which
is more convenient for the current numerical applications:

Δ𝑢 (𝑟) = √
2𝑟

𝜋

𝑀(

𝑟

𝑑

)𝐾, (36)

where𝑑 is the characteristic length and𝑀 is amatrix function
expressed as

𝑀(𝑥) =

𝐷

𝛽
2

{ (𝑃
2

+ 𝛽
2

𝐼)

− ([cos (𝜀 ln𝑥) + 2𝜀 sin (𝜀 ln𝑥)] 𝑃2

+𝛽 [sin (𝜀 ln𝑥) − 2𝜀 cos (𝜀 ln𝑥)] 𝑃)

× ((1 + 4𝜀
2

) cosh (𝜋𝜀))
−1

} .

(37)

Again, in order to capture the square root and weak
oscillatory behavior, we constructed a crack-tip element with
the tip at 𝜉 = −1 (as shown in Figure 2(e)) in terms of which
the relative crack displacement is expressed as

Δ𝑢 (𝑟) = 𝑀(

𝑟

𝑑

)

[

[

[

[

[

[

𝑓
1

Δ𝑢
1

1

𝑓
2

Δ𝑢
2

1

𝑓
3

Δ𝑢
3

1

𝑓
1

Δ𝑢
1

2

𝑓
2

Δ𝑢
2

2

𝑓
3

Δ𝑢
3

2

𝑓
1

Δ𝑢
1

3

𝑓
2

Δ𝑢
1

3

𝑓
3

Δ𝑢
3

3

]

]

]

]

]

]

. (38)

2.4. Construction of the Numerical Model. Quadratic ele-
ments are often used to model problems with curvilinear
geometry. Three-geometric-node quadratic elements can be
subdivided into five types, as shown in Figure 2, during anal-
ysis. For these elements, both the geometry and the boundary
quantities are approximated by intrinsic coordinate 𝜉, and
shape function 𝑓

𝑘

is obtained from (27). Generally, the three
geometric nodes of an element are used as collocation points.
Such an element is referred to as a continuous quadratic
element of Type IV (as shown in Figure 2(d)). To model
the corner points or the points where there is a change in
the boundary conditions, one-sided discontinuous quadratic
elements (commonly referred to as partially discontinuous
elements) are used. These elements can be one of four types
depending on which extreme collocation point has been
shifted inside the element to model the geometric or physical
singularity. If the third collocation node is shifted inside, then
the resulting element is referred to as a partially discontin-
uous quadratic element of Type I (as shown in Figure 2(a)).
If the first node is shifted inside, then the element is called
a partially discontinuous quadratic element of Type III (as
shown in Figure 2(c)). Onemay opt for moving both extreme
nodes inside, which results in discontinuous elements ofType
II and Type V (to model the cracked surface or the points

where there is in the crack tip positions) as shown in Figures
2(b) and 2(e), respectively. In the graphical representation of
these elements, we use an “×” for a geometric node, a “ ⃝” for
a collocation node, and a “◊” for the crack tip position.

3. Verification of the BEM Program

The Green’s functions and the particular crack-tip elements
were incorporated into the boundary integral equations, and
the results were programmed using FORTRAN code. In
this section, the following numerical examples are presented
to verify the formulation and to show the efficiency and
versatility of the present BEM method for problems related
to fractures in bi-material.

3.1. Horizontal Crack in Material #1. A horizontal crack
under uniform pressure 𝑃 is shown in Figure 3. The crack,
whose length is 2𝑎, is located distance 𝑑 from the interface.
The Poisson’s ratios for materials #1 and #2 are ]#1 = ]#2 =
0.3, and the ratio of the shear modulus 𝐺#2/𝐺#1 varies. A
plane stress condition is assumed. In order to calculate the
SIFs at crack tip A or B, 20 quadratic elements were used to
discretize the crack surface.The results are given in Table 1 for
various values of the shear modulus ratio.They are compared
to the results of Isida andNoguchi [16], who used a body force
integral equation method, and those of Ryoji and Sang-Bong
[17], who used a multidomain BEM formulation. It can be
seen in this table that the results are in agreement.

3.2. Interfacial Crack in an Anisotropic Bi-Material Plate. The
following example is used for comparison with results from
the literature in order to demonstrate the accuracy of the
BEM approach for an interfacial crack in an anisotropic bi-
material plate. The geometry is that of a rectangular plate, as
shown in Figure 4. For the comparison, the crack length is
2𝑎, ℎ = 2𝑤, 𝑎/𝑤 = 0.4, and static tensile loading 𝜎 is applied
to the upper and the lower boundaries of the plate.

A plane stress condition is assumed. The anisotropic
elastic properties for materials #1 and #2 are given in
Table 2. The normalized complex stress intensity factors at
crack tips A and B are listed in Table 3 together with those
from Sang-Bong et al. [18], who used a multidomain BEM
formulation, and the results from Wünsche et al. [8] for a
finite body. The outer boundary and interfacial crack surface
were discretized with 20 continuous and 20 discontinuous
quadratic elements, respectively. Table 3 shows that the BEM
approach produces results that agree well with those obtained
by other researchers.

4. Numerical Analysis

After its accuracywas checked, the BEMprogramwas applied
to more challenging problems involving an anisotropic bi-
material to determine the SIFs of crack tips. A generalized
plane stress condition was assumed in all the problems. In
the analysis, zero traction on the crack surface was assumed.
Here,𝐹I and𝐹II are the normalized SIFs; for𝐹I > 0, the failure
mechanism is tensile fracture, and for 𝐹II > 0, the crack is



8 Mathematical Problems in Engineering

Table 1: Comparison of SIFs (horizontal crack).

𝐺
(2)

/𝐺
(1)

𝑑/2𝑎 Proposed approach Isida and Noguchi [16] Diff. (%) Ryoji and Sang-Bong [17] Diff. (%)
𝐾I/ (𝑝√𝜋𝑎) of tip A (or B)

0.25 0.05 1.476 1.468 −0.57 1.468 −0.54
0.25 0.5 1.198 1.197 −0.09 1.197 −0.12
2.0 0.05 0.871 0.872 0.14 0.869 −0.17
2.0 0.5 0.936 0.935 −0.06 0.934 −0.16

𝐾II/ (𝑝√𝜋𝑎) of tip A (or B)

0.25 0.05 0.285 0.286 0.35 0.292 2.50
0.25 0.5 0.071 0.071 0.70 0.072 1.67
2.0 0.05 −0.088 −0.087 −1.38 −0.085 −4.01
2.0 0.5 −0.023 −0.024 2.50 −0.023 −3.54

Table 2: Elastic properties for materials #1 and #2.

Material 𝐸 (MPa) 𝐸
 (MPa) ] 𝐺



Material #1 100 50 0.3 10.009
Material #2
(i) 100 45 0.3 9.525
(ii) 100 40 0.3 9.010
(iii) 100 30 0.3 7.860
(iv) 100 10 0.3 4.630

subjected to an anticlockwise shear force. For a 2D problem
under mixed mode loading, the failure mechanism may be
defined by the SIFs of crack tips (tensile fracture, 𝐹I/𝐹II > 1,
and shear fracture, 𝐹I/𝐹II < 1, resp.).

4.1. Effect of the Degree of Anisotropy on the Stress Intensity
Factor. In this chapter, we analyze the SIFs for an aniso-
tropic bi-material with various anisotropic directions, 𝜓, and
degrees of material anisotropy using the BEM program. The
normalized SIFs, defined as 𝐹I and 𝐹II, are equal to

𝐹I =
𝐾I
𝐾
0

, 𝐹II =
𝐾II
𝐾
0

, (39)

with

𝐾
0

= 𝜎√𝜋𝑎. (40)

In order to evaluate the influence of bi-material aniso-
tropy on the SIFs, we considered the following three cases:
(i) a horizontal crack within material #1, (ii) a horizontal
crack within material #2, and (iii) a crack at the interface of
the materials. The infinite bi-material was subjected to far-
field vertical tensile stresses, as shown in Figure 5. The crack,
which had a length of 2𝑎, was located at distances 𝑑/𝑎 = 1

(material #1),−1 (material #2), and 𝑑/𝑎 = 0 (interfacial crack)
from the interface, respectively. Material #1 was transversely
isotropic with the plane of transverse isotropy inclined at
angle 𝜓#1 with respect to the 𝑥-axis. Material #1 had five
independent elastic constants (𝐸#1, 𝐸



#1, ]#1, ]


#1, and 𝐺#1) in
the local coordinate system; 𝐸#𝑖 and 𝐸



#𝑖 are the Young’s
moduli in the plane of transverse isotropy and in a direction

InterfaceMaterial #1
Material #2

2𝑎

𝑃

𝑃

𝑑

𝑥

𝑦

A B

Figure 3: Horizontal crack under uniform pressure in material #1
of an infinite bi-material.

Interface

𝑤 𝑤

ℎ

ℎ

𝑦

𝑥

2𝑎

𝐸#2

𝐸#1

𝐸#2

𝐸#1

Material #1
Material #2

𝜎

𝜎

𝐴 B

Figure 4: Interfacial crack within a finite rectangular plate of a bi-
material.

normal to it, respectively; ]#𝑖 and ]#𝑖 are the Poisson’s ratios
that characterize the lateral strain response in the plane of
transverse isotropy to a stress acting parallel and normal to
it, respectively; and 𝐺#𝑖 is the shear modulus in the planes
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Table 3: Comparison of the normalized complex SIFs for finite anisotropic problem (interfacial crack).

Material #2
𝐸


#2/𝐸#2

|𝐾|/(𝜎√𝜋𝑎) of tip A (or B)
Sang-Bong et al. [18] Wünsche et al. [8] Diff. (%) Proposed approach Diff. (%)

(i) 0.45 1.317 1.312 0.38 1.3132 0.29
(ii) 0.40 1.337 1.333 0.30 1.3351 0.14
(iii) 0.30 1.392 1.386 0.43 1.3922 −0.01
(iv) 0.10 1.697 1.689 0.47 1.6968 −0.06
∗

|𝐾| =
√
𝐾

2

I + 𝐾
2

II .

Far-field stresses

Isotropic material

Case I

Interface
Material #1
Material #2

2𝑎

𝑥

𝑦

𝐸#1 𝐸#1

𝜓#1

𝑑

(a) Horizontal crack within material #1

Far-field stresses

Isotropic material

Interface
Material #1
Material #2

Case II

𝑥

𝑦

𝐸#1

𝜓#1

𝑑

2𝑎

(b) Horizontal crack within material #2

Far-field stresses

Isotropic material

Case III

Interface
Material #1
Material #2

𝑥

𝑦

𝜓#1

𝐸#1 𝐸#1

2𝑎

(c) Interfacial crack within bi-material

Figure 5: Horizontal cracks in an infinite bi-material under far-field stresses.

normal to the plane of transverse isotropy. For material #2,
𝐸#2/𝐸



#2 = 1, 𝐸#2/𝐺


#2 = 2.5, and ]#2 = ]#2 = 0.25. In
this problem, the anisotropic direction (𝜓)withinmaterial #1
varies from 0

∘ to 180∘.
For all cases, three sets of dimensionless elastic constants

are considered. They are defined in Table 4. Here, 𝐸#1/𝐸#2,
which is the ratio of the Young’s modulus of material #1 to
the Young’s modulus of material #2, equals one. In order to
calculate the SIFs at the crack tip, 20 quadratic elements were
used to discretize the crack surface.The numerical results are
plotted in Figures 7 to 9 for cases I, II, and III, respectively.
The results for the isotropic case (𝐸#1/𝐸



#1 = 1, 𝐸#1/𝐺


#1 = 2.5,

Table 4: Sets of dimensionless elastic constants (]#1 = 0.25).

𝐸#1/𝐸


#1 𝐸#1/𝐺


#1 ]#1
1/3, 1/2, 1, 2, 3 2.5 0.25
∗

Subscript #1 is applied in material #1.

and ]#1 = 0.25) are shown as solid lines in the figures for
comparison.

4.2. An Inclined Crack Situated Near the Interfacial Crack.
This case treats interaction between the interfacial crack
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Figure 6: A crack situated near the interfacial crack within infinite bi-materials.
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Figure 7: Variation of normalized SIFs of the crack tip in material #1 with the anisotropic directions 𝜓#1 for case I (𝐸#1/𝐺


#1 = 2.5, V#1 =

0.25, 𝐸#1/𝐸#2 = 1).

and an inclined crack with an angle 𝛽. The ratio 𝑑
𝑡

/𝑎 =

0.25, respectively. The same consider an infinite plate of bi-
materials, having the elastic constants ratio 𝐸#1/𝐸



#1 = 1,

𝐸#1/𝐺


#1 = 0.4, and ]#1 = 0.2499 for material #1 and
𝐸#2/𝐸



#2 = 1/3, 𝐸#2/𝐺


#2 = 0.4, and ]#2 = 0.2499 for material
#2. The Poisson ratios are ]#1 = ]#2 = 0.25, material orienta-
tion 𝜓#1 = 𝜓#2 = 0

∘, and the Young modulus ratio 𝐸#1/𝐸#2 =
1/5. One considers an interfacial crack of length 2𝑎 and a
horizontal crack situated near the interfacial crack with ah.
The ratio 𝑎/𝑎

ℎ

is equal to 1.The longitudinal distance𝑑
𝑙

/𝑎 = 1,
and the plate is subjected to a far-field vertical tensile stresses
as shown in Figure 6. For each crack, surface is meshed
by 20 quadratic elements. The plane stress conditions were
supposed. Calculations were carried out by our BEM code.

Figures 10 and 11 represent the variations of normalized SIFs
(𝐹I and 𝐹II) of interfacial crack and inclined crack according
to the inclined angle 𝛽, respectively.

4.3. Discussion. An analysis of Figures 7 to 9 reveals the
following major trends.

(i) For the SIFs in mode I, the orientation of the planes
of material anisotropy with respect to the horizontal
plane has a strong influence on the value of the SIFs
for case I and case II. The influence is small for case
III. This means that the effects of mode I on the crack
in the homogeneous material are greater than those
of the interface.
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Figure 9: Variation of normalized SIFs of interfacial crack tip with the anisotropic directions 𝜓#1 for case III (𝐸#1/𝐺


#1 = 2.5, ]#1 =

0.25, 𝐸#1/𝐸#2 = 1).

(ii) For all cases, the variation of the SIFs with the aniso-
tropic direction 𝜓#1 is symmetric with respect to
𝜓#1 = 90

∘. However, this type of symmetry was not
observed for the SIFs (mode II) in case 1 and case 2
(Figures 7(b) and 8(b)).

(iii) For the interfacial crack (case III), the anisotropic
direction 𝜓#1 has a strong influence on the value of
the SIFs for mode II (Figure 9(b)). The influence is
small for mode I. It should be noted that the effects of
𝐸#1/𝐸



#1 on the SIFs of mode II are greater than those
of mode I.

(iv) There is a greater variation in the SIFs with the
anisotropic direction 𝜓#1 for bi-materials with a high
degree of anisotropy (𝐸#1/𝐸



#1 = 3 or 1/3).

(v) Figure 7(a) (𝐸#1/𝐸


#1 = 1/3) indicates that the max-
imum values of the SIFs (mode I) occur when the
far-field stresses are perpendicular to the plane of
transverse isotropy (i.e., 𝜓#1 = 0

∘ or 180∘) for case
1 (crack within material #1). Figure 9(b) (𝐸#1/𝐸



#1 =
1/3) shows that the minimum values of the SIFs
(mode II) occur when the anisotropic direction angle
is about 90∘ for case 3 (interfacial crack).
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Figure 10: Variation of normalized SIFs of an interfacial crack with an inclined crack angle 𝛽.
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Figure 11: Variation of normalized SIFs of an inclined crack with the inclined angle 𝛽.

Analysis of Figures 10 and 11 reveals that severalmajor
trends can be underlined as follows.

(vi) Figure 10(a) presents the SIFs (mode I) variation as
an inclined angle 𝛽 of the inclined crack for different
values of the interfacial crack. It is shown that the
increase in the inclined angle𝛽 causes a slight increase
in SIFs (mode I) until reaching a value at 𝛽 = 90

∘.
From these angles, the tip D meets at the interface
of bi-materials and the normalized SIFs start an
immediate sharp increasing. The rise continued until
it reached 𝛽 = 105

∘. The maximum of SIFs (mode
I) is reached for this last angle. In this position,
the distance between tip D and the interfacial crack
is minimal which increases the stress interaction
between the two crack tips. For 𝛽 > 120

∘, the SIFs
start decreasing and stabilizing when approaching
180
∘.

(vii) The same phenomenon was observed in Figure 10(b).
It is shown that the increase in the inclined angle 𝛽
causes the reduction in SIFs (mode II) until reaching
a value at 𝛽 = 100

∘, and starts an immediate sharp
increasing.Themaximumof SIFs (mode II) is reached
for𝛽 = 110∘. In this position, the distance between tip
D and the interfacial crack isminimal which increases
the stress interaction between the two crack tips. For
𝛽 > 120

∘, the SIFs start a slight increasing and
stabilizing when approaching 180∘.

(viii) Figure 11 illustrates, respectively, the variations of the
normalized SIFs of tip C and D according to inclined
angle 𝛽. For Figure 11(a), between 0

∘ and 90
∘, one

observes thatmode I of the normalized SIFs decreases
with 𝛽.Theminimal value is reached at𝛽 = 90∘. From
90
∘, the two normalized SIFs increase until 138∘, and

the normalized SIFs at the tip D reaches a maximum
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Figure 12: Variation of the ratio of 𝐹I/𝐹II of an inclined crack with
the inclined angle 𝛽.

value. In the interval of 90∘ at 138∘, the normalized
SIFs of tip D are higher than those of tip C, because
the tip D approaches the tip of the interfacial crack.
Between 138∘ and 180∘, tip D moves away from the
tip A of interfacial crack.

(ix) For Figure 11(b), the normalized SIFs (mode II) of
the two tips grow in interval of the angles ranging
between 0

∘ and 35
∘ and decrease between 35

∘ and
80
∘. In the interval of 0∘ at 32∘ the normalized SIFs

of tip C are slightly higher than those of tip D, and
the inverse phenomenon is noted for angles ranging
between 32∘, and 100∘.These results permit to note on
one hand that the orientation of the inclined crack has
influence on the variations of 𝐹I and a weak influence
on the variations of 𝐹II, and in another hand, when
the angle of this orientation increases, the normalized
SIFs of mode I increase and automatically generate
the reduction in mode II SIFs. For homogeneous and
isotropic materials, the two SIFs for inclined crack
are nulls at 𝛽 = 90

∘. The presence of the bi-material
interface gives 𝐹I different of zero whatever the value
of 𝛽 and 𝐹II = 0 at 𝛽 = 80

∘.

(x) The ratio of the normalized SIFs (𝐹I/𝐹II) is concerned;
Figure 12 shows that the fracture of shear mode
(𝐹I/𝐹II < 1) occurs to the inclined crack angle is
between 30

∘ and 150
∘ (tip C). For tip D, the shear

mode (𝐹I/𝐹II < 1) occurs to the 𝛽 is between 50∘ and
95
∘, and between 105∘ and 120∘, respectively. And the

openingmode (𝐹I/𝐹II > 1) occurs to the𝛽 is between
95
∘ and 105∘. In this position, the distance between tip

D and tip A of the interfacial crack is minimal which
increases the stress interaction between the two crack
tips.

5. Conclusions

In this study, we developed a single-domain BEM for-
mulation in which neither the artificial boundary nor the
discretization along the uncracked interface is necessary.
Fedeliński [11] presented the single-domain BEM formula-
tion for homogeneous materials. We combined Chen’s for-
mulation with the Green’s functions of bi-materials derived
by Ke et al. [12] to extend it to anisotropic bi-materials. The
major achievements of the research work are summarized in
the following.

(i) A decoupling technique was used to determine the
SIFs of the mixed mode and the oscillation on the
interfacial crack based on the relative displacements
at the crack tip. Five types of three-node quadratic
elements were utilized to approximate the crack tip
and the outer boundary. A crack surface and an
interfacial crack surface were evaluated using the
asymptotical relation between the SIFs. Since the
interfacial crack has an oscillation singular behavior,
we used a special crack-tip element [26] to capture
this behavior.

(ii) Calculation of the SIFs was conducted for several
situations, including cracks along and away from the
interface. Numerical results show that the proposed
method is very accurate, even with relatively coarse
mesh discretization. In addition, the use of proposed
BEM program is also very fast. The calculation time
for each samplewas typically 10 s on a PCwith an Intel
Core i7-2600 CPU at 3.4GHz and 4GB of RAM.

(iii) The study of the fracture behavior of a crack is of
practical importance due to the increasing application
of anisotropic bi-material. Therefore, the fracture
mechanisms for anisotropic bi-material need to be
investigated.
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