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The explicit finite difference scheme for solving an intermediate coupled ocean-atmosphere equations has been proposed
and discussed. The discrete Fourier analysis within Gerschgorin circle theorem is applied to the stability analysis of this
numerical model. The stability criterion that we obtained includes advection, rotation, dissipation, and friction terms, without
any assumptions, which is also including the Courant-Friedrichs-Lewy (CFL) condition as a special case. Numerical sensitivity
experiments are also carried out by varying the model parameters.

1. Introduction

The geophysical motions in both the atmosphere and ocean
can be described by partial differential equations (PDEs), in
recent years, which have become the very popular and impor-
tant tools in the study of climate change, weather forecasting,
and climate prediction. However, both the coupling process
of the atmosphere to the ocean and the corresponding PDEs
are very complicated; it is almost impossible to find the exact
solution of coupled ocean-atmosphere equations. Research
on numerical simulation of the ocean-atmosphere system
has aroused many scientists and engineers’ interest; a great
variety of numerical methods (especially for finite difference
method) have been developed to solve this PDEs system [1–
23]. Nevertheless, as we know, there are few people who gives
the stability analysis of these complicated numerical models
from the mathematical point of view.

The main purpose of this study is to introduce and
solve an intermediate coupled ocean-atmosphere PDEs. The
stability analysis of numerical method has been taken into
consideration by the discrete Fourier analysis combined with
Gerschgorin circle theorem. Compared with the time step
allowed by the CFL stability criterion, our stability bounds

are more accurate and effective. Numerical examples are
also presented to test the sensitivity of model. This paper is
organized as follows. In the next section, the brief description
of an intermediate coupled ocean-atmosphere mathematical
model has been introduced. In Section 3, the explicit finite
difference scheme is used to solve the PDEs. The stability
conditions are given by the numerical analysis in Section 4.
Then the results of experiments are presented and discussed
in Section 5. Finally, conclusions are drawn in Section 6.

2. The Mathematical Model

The intermediate coupled ocean-atmosphere model used
here includes the model of ocean fluid dynamics, the
mixed-layer thermodynamics, and the empirical atmospheric
model. This coupled ocean-atmosphere model is a modified
version of the intermediate coupled model (ICM) developed
by Chang [24] and Wang et al. [25], which is an extension of
1.5-layer reduced gravity system that includes the physics of
the surface mixed layer and allows the prediction of the sea
surface temperature. ICM had been successfully used to the
study of El Niño-Southern Oscillation (ENSO), to simulate
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the seasonal cycle of sea surface temperature in the tropical
Pacific Ocean [24–28]. The main purpose of present study is
to investigate the stability analysis of numerical model from
the mathematical analysis point of view.

The upper-ocean flow u = (𝑢, V) is governed by reduced-
gravity shallow-water equations:
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in which 𝑢, V are the horizontal velocities; 𝑓 = 𝑓
0

+

𝛽𝑦 is the Coriolis parameter of the equatorial betaplane
approximation, where 𝑓

0
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stress over the sea surface; 𝐻 = 𝐷 + ℎ is the upper layer
thickness, where 𝐷 is the undisturbed layer thickness, ℎ is
the interface displacement; 𝐾 is the lateral eddy viscosity
coefficient; 𝛾 is the interfacial friction coefficient.

Assuming that the effects of compressibility and salinity
are of secondary importance in the mixed-layer, the thermo-
dynamics equation can be expressed by

𝜕𝑇

𝜕𝑡

+ 𝑢
𝑠

𝜕𝑇

𝜕𝑥

+ V
𝑠

𝜕𝑇

𝜕𝑦

= ](
𝜕

2
𝑇

𝜕𝑥

2
+

𝜕

2
𝑇

𝜕𝑦

2
) − 𝜆 (𝑇 − 𝑇

0
)

+

𝑄

𝜌
0
𝐶
𝑝
𝐻
0

−

1

𝐻
0

𝑤
𝑒
𝐻(𝑤
𝑒
) (𝑇 − 𝑇

𝑒
) ,

(4)

where 𝑇 is sea surface temperature (SST), 𝑢
𝑠
, V
𝑠
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horizontal velocities in the mixed layer, 𝑇
0
is average SST,

] is horizontal heat diffusion coefficient, 𝜆 is adjustable
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where 𝑟
𝑠
is the Rayleigh friction coefficient.

The entrainment velocity 𝑤
𝑒
is determined as divergence

of surface flow𝑤
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0
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𝑠
and the temperature of entrained
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where 𝑇
50
is the observed mean temperature, 𝜕𝑇

50
/𝜕𝑧 is the

vertical gradient of 𝑇 at 50m depth, and ℎ

 is the fluctuation
of thermocline.

The atmospheric part of the model is written as the sum
of the annual mean wind field (or climatology of the monthly
mean when the seasonal cycle is involved), coupled feedback,
and atmosphere internal variability (see [29]):
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where 𝜏 and 𝑄 are usually prescribed from observations;
A and B represent coupling between the atmosphere and
ocean,which are empirical functions of SST anomaly;𝜇 and𝜔

are the coupling strength.The SST-forced surface wind stress
and heat flux are determined by A and B, which can be
written as linear integral operators over the entire domainΩ,
that is,
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where 𝜓 and 𝜙 are given by a simple dynamical model of
atmosphere.

3. The Explicit Finite Difference Scheme

The domain is discretized with a spacing of Δ𝑥 in the 𝑥-
direction, Δ𝑦 in the 𝑦-direction, and Δ𝑡 in the 𝑡-direction,
and we define 𝑢
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= 𝑛Δ𝑡 for 𝑖, 𝑗 = 0, 1, . . ., 𝑛 = 0, 1, . . .. The

governing equations will be solved on a staggered (Arakawa
C-) grid. That is, the 𝑢, V are evaluated at the cell boundaries
and the ℎ and 𝑇 points are in the center grids.

The forward difference approximation is used for the time
derivative, and the central difference approximation for the
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spatial derivatives. The finite difference operators are defined
as
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Therefore, the difference approximation of the partial
differential equations (1)–(4) is given by
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Equations (12) are finite difference equations which rep-
resent the original partial differential equations expressed in
(1)–(4).

4. Stability Criterion

In this section, the stability analysis of numerical schemes
will be investigated by the discrete Fourier analysis within
Gerschgorin circle theorem. A series of necessary conditions
are also obtained. The details are given as follows.
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𝐺 (𝜉, 𝜃) = 𝐴 exp (𝑖𝜉) + 𝐶 exp (−𝑖𝜉) + 𝐵

+ 𝐷 exp (𝑖𝜃) + 𝐸 exp (−𝑖𝜃)

= (

𝑎
11

𝑎
12

𝑎
13

𝑎
14

𝑎
21

𝑎
22

𝑎
23

𝑎
24

𝑎
31

𝑎
32

𝑎
33

𝑎
34

𝑎
41

𝑎
42

𝑎
43

𝑎
44

),

(19)

in which

𝑎
11

= 𝑎
22

= 1 − Δ𝑡𝛾 − 2Δ𝑡𝐾(

1

Δ𝑥

2
+

1

Δ𝑦

2
)

+ 2Δ𝑡𝐾(

cos 𝜉
Δ𝑥

2
+

cos 𝜃
Δ𝑦

2
) − 𝑖Δ𝑡 (

𝑢

∗ sin 𝜉

Δ𝑥

+

V∗ sin 𝜃

Δ𝑦

) ,

𝑎
12

= Δ𝑡𝑓

∗
, 𝑎

13
=

−𝑖Δ𝑡𝑔

 sin 𝜉

Δ𝑥

,

𝑎
21

= −Δ𝑡𝑓

∗
, 𝑎

23
=

−𝑖Δ𝑡𝑔

 sin 𝜃

Δ𝑦

,

𝑎
14

= 𝑎
24

= 𝑎
34

= 𝑎
43

= 0,

𝑎
31

=

−𝑖Δ𝑡𝐻

∗ sin 𝜉

Δ𝑥

, 𝑎
32

=

−𝑖Δ𝑡𝐻

∗ sin 𝜃

Δ𝑦

,

𝑎
33

= 1 − 𝑖Δ𝑡 (

𝑢

∗ sin 𝜉

Δ𝑥

+

V∗ sin 𝜃

Δ𝑦

) ,

𝑎
41

=

−𝑖Δ𝑡𝑇

∗ sin 𝜉

Δ𝑥

, 𝑎
42

=

−𝑖Δ𝑡𝑇

∗ sin 𝜃

Δ𝑦

,

𝑎
44

= 1 − Δ𝑡𝜆 − 2Δ𝑡](
1

Δ𝑥

2
+

1

Δ𝑦

2
)

+ 2Δ𝑡](
cos 𝜉
Δ𝑥

2
+

cos 𝜃
Δ𝑦

2
) − 𝑖Δ𝑡(

𝑢

∗

𝑠
sin 𝜉

Δ𝑥

+

V∗
𝑠
sin 𝜃

Δ𝑦

) .

(20)

Theorem 2. Let 𝜌(𝐺) be the spectral radius of the matrix 𝐺. If
there exist constants Δ𝑥

0
, Δ𝑦
0
, Δ𝑡
0
, and C, independent of Δ𝑥,

Δ𝑦, Δ𝑡, and 𝜉, 𝜃, such that





𝜌 (𝐺)






≤ 1 + 𝐶Δ𝑡 (21)

for 0 < Δ𝑡 ≤ Δ𝑡
0
, 0 < Δ𝑥 ≤ Δ𝑥

0
, and 0 < Δ𝑦 ≤ Δ𝑦

0
, and for

all 𝜉, 𝜃 ∈ [−𝜋, 𝜋], then the scheme (18) is stable in the ℓ
2
norm.

Theorem 3 (Gerschgorin Circle Theorem, see [31]). Let 𝐴 be
a complex 𝑛 × 𝑛matrix, 𝑎

𝑖𝑗
are elements of matrix 𝐴. For each

eigenvalue 𝜆 of 𝐴, there exists an 𝑠 such that





𝜆 − 𝑎
𝑠𝑠






≤ 𝜌
𝑠
, 𝑠 = 1, 2, . . . , 𝑛, (22)

where 𝜌
𝑠
= ∑

𝑛

𝑗=1,𝑗 ̸= 𝑠
|𝑎
𝑠𝑗
| are the sum of the absolute values of

the elements in the 𝑠th row except for the diagonal element.
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By Gerschgorin Circle Theorem, if 𝜆 is an eigenvalue of
𝐺, we have






𝜆 − 𝑎
11






≤






𝑎
12






+






𝑎
13






=






Δ𝑡𝑓

∗




+











−𝑖Δ𝑡𝑔

 sin 𝜉

Δ𝑥











,






𝜆 − 𝑎
22






≤






𝑎
21






+






𝑎
23






=






−Δ𝑡𝑓

∗




+











−𝑖Δ𝑡𝑔

 sin 𝜃

Δ𝑦











,






𝜆 − 𝑎
33






≤






𝑎
31






+






𝑎
32






=










−𝑖Δ𝑡𝐻

∗ sin 𝜉

Δ𝑥










+










−𝑖Δ𝑡𝐻

∗ sin 𝜃

Δ𝑦










,






𝜆 − 𝑎
44






≤






𝑎
41






+






𝑎
42






=










−𝑖Δ𝑡𝑇

∗ sin 𝜉

Δ𝑥










+










−𝑖Δ𝑡𝑇

∗ sin 𝜃

Δ𝑦










.

(23)

Using the backwards triangular inequality, we take 𝐶 <

1/Δ𝑡, if the time-space steps and model parameters yield the
following conditions:

Δ𝑡

Δ𝑥

(






𝑢

∗




+ 𝑔


) +

Δ𝑡






V∗


Δ𝑦

+ Δ𝑡 (






𝑓

∗




+






𝛾






)

+ 4Δ𝑡𝐾(

1

Δ𝑥

2
+

1

Δ𝑦

2
) < 1,

Δ𝑡

Δ𝑦

(






V∗


+ 𝑔


) +

Δ𝑡






𝑢

∗




Δ𝑥

+ Δ𝑡 (






𝑓

∗




+






𝛾






)

+ 4Δ𝑡𝐾(

1

Δ𝑥

2
+

1

Δ𝑦

2
) < 1,

Δ𝑡

Δ𝑥

(






𝑢

∗




+






𝐻

∗




) +

Δ𝑡

Δ𝑦

(






V∗


+






𝐻

∗




) < 1,

Δ𝑡

Δ𝑥

(






𝑢

∗

𝑠






+






𝑇

∗




) +

Δ𝑡

Δ𝑦

(






V∗
𝑠






+






𝑇

∗




) + Δ𝑡 |𝜆|

+ 4Δ𝑡](
1

Δ𝑥

2
+

1

Δ𝑦

2
) < 1.

(24)

Thenwe have |𝜆| ≤ 1+𝐶Δ𝑡, so the explicit finite difference
scheme (13) is conditionally stable. Consequently, the time-
step size satisfies the following inequality:

Δ𝑡 < min {

1

𝑎

,

1

𝑏

,

1

𝑐

,

1

𝑑

} . (25)

In which 𝑎 = (1/Δ𝑥)(max |𝑢∗| + 𝑔


) + (max |V∗|/Δ𝑦) +

(|𝑓

∗
| + |𝛾|) + 4𝐾((1/Δ𝑥

2
) + (1/Δ𝑦

2
)), 𝑏 = (1/Δ𝑦)(max |V∗| +

𝑔


) + (max |𝑢∗|/Δ𝑥) + (|𝑓

∗
| + |𝛾|) + 4𝐾((1/Δ𝑥

2
) + (1/Δ𝑦

2
)),

𝑐 = (1/Δ𝑥)(max |𝑢∗| + |𝐻

∗
|) + (1/Δ𝑦)(max |V∗| + |𝐻

∗
|), 𝑑 =

(1/Δ𝑥)(max |𝑢∗
𝑠
| +max |𝑇∗|)+ (1/Δ𝑦)(max |V∗

𝑠
| +max |𝑇∗|)+

|𝜆| + 4]((1/Δ𝑥2) + (1/Δ𝑦

2
)).

Table 1: The values of parameters in the model.

Parameter Value
Ω 7.29 × 10

−5 s−1

𝐷 100m
𝐾 2.5 × 10

−4m2 s−1

] 2.5 × 10

−4m2 s−1

𝐻
0

50m
𝑔

 4.17 cm s−2

𝜌
0

1000 kgm−3

𝛾 2.5 × 10

−3 day−1

𝜆 5 × 10

−3 day−1

𝐶
𝑝

4.2 × 10

3 J Kg−1 K−1

When the rotation, dissipation, and friction terms are
neglected, we have

Δ𝑡 < min{(

Δ𝑥

max 


𝑢

∗




+

Δ𝑦

max 


V∗


) ,

(

Δ𝑥

max 


𝑢

∗

𝑠






+

Δ𝑦

max 


V∗
𝑠






)} .

(26)

This is Courant-Friedrichs-Lewy (CFL) condition [32–
34]; obviously, it is only a special case in our results.

5. Numerical Results

Sensitivity studies are a necessary and important part of the
developments of mathematical models of geophysical fluid
systems. They can help to reveal aspects of the model that
will most profitably benefit from further refinement, as well
as providing insights into the fundamental dynamics of these
complicated fluid systems [18]. In this study, we consider
the sensitivity of an intermediate coupled ocean-atmosphere
model to change in the Coriolis parameters 𝑓, the interfacial
friction coefficient 𝛾, the lateral eddy viscosity coefficient 𝐾,
and the adjustable coefficient 𝜆. Parameter values are shown
in Table 1.

Themodel domain extends form 30

∘ S to 30

∘N in latitude
and from 120

∘ E to 80

∘W in longitude. The model resolution
is 2∘ in 𝑥 direction and 1

∘ in 𝑦 direction. Free-slip boundary
conditions in velocity and no-flux boundary conditions in
temperature are used in the ocean model.

5.1. Example 1. According to the stability criterion (25), we
obtain Δ𝑡 < 14306 s; from the CFL condition, we have Δ𝑡 <

189031 s.
Running the model for one year, Figure 1 gives the results

of zonal velocity 𝑢 and meridional velocity V (at the latitude
0

∘N) by changing with time-step Δ𝑡(dt).
When we take Δ𝑡 = 14306 s, Figure 2 shows the results of

zonal velocity 𝑢 at the latitude 0∘N and the longitude 180∘ E,
respectively, and the maximum speed is 3.5m/s, which is not
in accordance with the actual condition. When we take Δ𝑡 >
14306 s, the results overflow. The range of the CFL condition
is too big; that is to say, the CFL condition is less strict and
accurate than our results.
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Figure 1: The figures show the values of the zonal velocity 𝑢 and the meridional velocity V at the latitude 0∘N, with dt1 = 600 s; dt2 = 1200 s;
dt3 = 3600 s; dt4 = 7200 s; dt5 = 10800 s; dt6 = 12000 s.
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Figure 2: (a) shows the values of the zonal velocity 𝑢 at the latitude 0∘ N, and (b) at the longitude 180∘ E.

5.2. Example 2. In this numerical tests, we will discuss the
sensitivity of model parameters. The model has been run for
one year, and we take the time-step size Δ𝑡 = 10800 s. The
variable changes that result from the variation of coefficients
are only given one (as well as the others) in each experiments
on the model simulation.

Figure 3 gives the results of sea surface temperature (SST)
with the variation of Coriolis parameters (the variation of
the angle 𝜃 (theta)) at the latitude 0

∘N and the longitude
180

∘ E, respectively. Figure 4 displays the sea surface height

(SSH) with the variation of the interfacial friction coefficient
𝛾 (gamma). Figure 5 shows the meridional velocity 𝑢 with
the variation of lateral eddy viscosity coefficient 𝐾. Figure 6
exhibits themeridional velocity V (cm/s) with the variation of
adjustable coefficient 𝜆 (lambda).

We find that Coriolis parameters, lateral eddy viscosity
coefficient, interfacial friction coefficient, and adjustable
coefficient have an impact on the model evolutions. There-
fore, taking the CFL condition as the stability criterion alone
is not reasonable. On the other hand, it is also important
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Figure 4: The figure gives the results of SSH with the variation of 𝛾 (gamma), in which 𝛾1 = 1.5 × 10
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−3 day−1; 𝛾6 = 6.5 × 10

−3 day−1.

to derive future model developments and test the numerical
model.

6. Conclusion

The present study provides an intermediate coupled ocean-
atmosphere model, and the stability criterion are also
obtained for the choice of time and space steps size, in order
to ensure the errors made at one time step of the calculation

do not cause the errors to increase as the computations are
continued. Our results are effective and reasonable, which are
including CFL condition. Numerical sensitivity experiments
show that the Coriolis parameters, lateral eddy viscosity
coefficient, interfacial friction coefficient, and adjustable
coefficient are important to the stability of model. How-
ever, external forcing also plays a dominant role in ocean-
atmosphere system, for example, wind stress curl, heat flux,
and so forth [18, 35, 36]; are not reported in this study.
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Figure 5: The figure gives the results of meridional velocity 𝑢 with the variation of 𝐾, in which 𝐾1 = 2 × 10
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Figure 6: The figure shows the results of meridional velocity V (cm/s) with the variation of 𝜆 (lambda), where 𝜆1 = 3 × 10

−3 day−1; 𝜆2 =
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Based on the parameters sensitivity studies, the present study
allows understanding the physical mechanism of the ocean-
atmosphere system more clearly. This intermediate coupled
ocean-atmosphere model will be used for further study, and
the method of stability analysis in present work can also be
used to the stability study of earth system numerical model.
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