
Research Article
A Distributed Tactile Sensor for Intuitive
Human-Robot Interfacing

Andrea Cirillo, Pasquale Cirillo, Giuseppe DeMaria, Ciro Natale, and Salvatore Pirozzi

Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi della Campania “Luigi Vanvitelli”,
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Safety of human-robot physical interaction is enabled not only by suitable robot control strategies but also by suitable sensing
technologies. For example, if distributed tactile sensors were available on the robot, they could be used not only to detect
unintentional collisions, but also as human-machine interface by enabling a new mode of social interaction with the machine.
Starting from their previous works, the authors developed a conformable distributed tactile sensor that can be easily conformed to
the different parts of the robot body. Its ability to estimate contact force components and to provide a tactile map with an accurate
spatial resolution enables the robot to handle both unintentional collisions in safe human-robot collaboration tasks and intentional
toucheswhere the sensor is used as human-machine interface. In this paper, the authors present the characterization of the proposed
tactile sensor and they show how it can be also exploited to recognize haptic tactile gestures, by tailoring recognition algorithms,
well known in the image processing field, to the case of tactile images. In particular, a set of haptic gestures has been defined to test
three recognition algorithms on a group of 20 users. The paper demonstrates how the same sensor originally designed to manage
unintentional collisions can be successfully used also as human-machine interface.

1. Introduction

How users will interact with robots of the future which
came out of the factories? This is still an open question,
certainly not through a keyboard and a mouse or through a
heavy teach pendant. Someone says that speech will be the
preferred interaction modality, but some decades ago this
was envisioned for the personal computers too, and this did
not happen, while nowadays touchpads are by far the most
widespread interface of both PCs and other digital devices,
from smartphones and tablets to car on-board computers.
Tactile interaction is becoming the preferred way to provide
commands to our digital assistants and ask them to do
something for us. Imagine that such a modality was available
also for interacting with robots, then it would be quite natural
to command robots by simply touching them. Robots are 6-
dimensional machines able to execute complex tasks, so a
limited number of simplified touches could not be enough to
exploit all robot abilities. The use of complex haptic gestures
could be the solution to communicate in a more intuitive
modality with robots.

Nowadays, the use of human-machine interfaces (HMI)
is exploited to allow robust interaction between the human
and the robot. HMI enable the robot to perceive the users
and in particular their important communication cues, such
as speech, gestures, and head orientation.

A huge number of HMI solutions exist and most of
them exploit more than one perception system (multimodal
perception). A large portion is constituted by classical vision-
based systems [1–3] in which the main drawbacks are the
background variability, the bad lighting conditions, and
the computational time. Another kind of visual interaction
system is the Microsoft Kinect [4], an RGB-D camera that
is used to detect human motions, that is, face and hand
gestures, head orientation, and arm posture. Such technology
is currently used as HMI only in computer games, but Intel
has recently launched a similar technology [5], intended
to interact with laptops as a complement to the touchpad.
Another smaller part is constituted bymore complex systems
in which different perceptional and communicative cues are
fused together in order to implement multimodal dialogue
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components for the human-robot interaction. They include
systems for spontaneous speech recognition, multimodal
dialogue processing, and visual perception of a user, for
example, localization, tracking and identification of the
face and hand, and recognition of pointing gestures [6–9].
However, all the mentioned approaches use different sensors,
that is, camera or Kinect, microphone, and IMUs, and they
use computationally expensive frameworks to fuse the data
acquired from all the sensors and then take a decision. Hence,
integrating such systems in a real-time task in which there is a
physical collaboration between the human and the machine,
represents, by now, an important challenge.

Alternatively, the tactile interaction offers an intuitive and
very fast modality for human-robot interaction. Haptic cues
can usually be interpreted very quickly as demonstrated in
[10, 11] and tactile sensors can be used to classify different
types of touch [12, 13]. The KUKA LWR 4+ has been
used in [14] for executing complex tasks in collaboration
with humans; switching between task segments and control
modalities has been implemented through simple haptic
gestures that the user had to apply to the last robot link, for
example, pushing or pulling in a certain Cartesian direction.
Such approach has only a limited number of gestures due
to the limited accuracy in the estimation of contact force
vector. The use of a distributed tactile map enlarges the
number of recognizable haptic gestures while maintaining a
fast response.

Actually, as shown inDahiya et al. [15], it is not unusual to
cover the whole body of the robot or some of its parts with an
array or patches of tactile/force sensors to improve the safety
in tasks that require humans and robots to collaborate. In
fact, in literature several tactile sensors have been presented
[16–21] and, as shown in [22], microfabricated devices based
on piezoresistive, piezoelectric, and capacitive technology
found a large diffusion also in prosthetics and in medicine
applications. Actually, most of them have limited reliability,
flexibility, and robustness or need a complex circuitry for
signal conditioning and acquisition, that is, resistive and
piezoresistive technology. Additionally, the use of absorbing
and stretchable materials could introduce hysteretic effects.
Moreover, a higher spatial resolution is necessary when the
users want to communicate with the robots through haptic
gestures traced simply by a finger, for example, letters or
numbers, instead of more rough gestures such as punches or
pats as presented by Kaboli et al. [23].

Starting from the rigid sensor prototype described in
[24], the authors of the present paper propose a conformable
tactile sensor prototype able to measure a distributed tactile
map provided by several interconnected sensing modules
constituted by a 2 × 2matrix of taxels. The design of the con-
formable sensor prototype affects the maximum achievable
flexibility and wiring of the sensor, so an innovative scanning
strategy has been used to reduce the number of components,
wires, and PCB layers achieving a more flexible solution.
In order to analyze the conformability of the developed
sensor, it has been installed on a KUKA LWR 4+ that, by
now, is one of the most used robotic arms in the human-
robot interaction (HRI) research field. The presented sensor
exploits low power consumption optoelectronic devices.

These components made the design of a distributed sensor
that needs a very low power to properly work easy, differently
frommost of the existing optoelectronic solutions.The sensor
can be used to reconstruct the 3D contact forces, a tactile
map, and the contact point location in which the contact
occurs, at the same time. In [25], the authors presented how
the proposed sensing solution can be used as distributed force
sensor for robot control and collision detection, for example,
to handle the interaction between humans and robots. This
paper demonstrates how the same sensor can be used to
intentionally interact with the robot by exploiting the tactile
map.

Inspired to existing solutions, different recognition algo-
rithms have been suitably redesigned for the sensor to
optimize the recognition of a set of touch gesture with
increasing complexity. The recognition algorithms have been
validated through several experimental results, showing how
the tactile sensor can be used to communicate with the
robot in a natural way. Moreover, this paper discusses the
design procedure, which allowed the realization of the flexible
version of the sensor. The generalization of this procedure
allowsmaintaining high conformability also for realization of
future prototypes with a different design.

The paper is structured as follows: Section 2 describes
the design procedure and the technology of the distributed
sensor; Section 3 describes how the tactile sensor is used as
HMI and it details different recognition algorithms of haptic
gestures; Section 4 discusses the conclusions and possible
future works.

2. The Distributed Tactile Sensor

This section briefly recalls for completeness the working
principle of the tactile sensor and discusses the generalization
of the design procedure, partially presented by the authors in
[26], which allows obtaining an optimal design of distributed
sensors with high conformability.

2.1. The Working Principle. The working principle of the
distributed tactile sensor is based on a well-assessed concept,
originally used for the development of the force/tactile sensor
described in [27], that is, the use of a PCB (Printed Circuit
Board) constituted by couples (emitter/detector) of optoelec-
tronic devices to detect the local deformations, generated by
an external contact force applied to a deformable layer that
covers the optoelectronic layer. For the distributed version,
presented in [24], the electronic layer is constituted by an
interconnection of a number of identical sensing modules,
each being capable of measuring the three components of
the contact force applied to it. In particular, each sensing
module is constituted by four taxels organized in a 2 × 2
matrix. Each taxel consists of an optical LED/PT (Light
Emitting Diode/PhotoTransistor) couple spectrally matched.
A deformable elastic layer is positioned above the 4 opto-
electronic couples.This deformable layer has a hemispherical
shape on the top side, while on the bottom side it presents four
empty cells, vertically aligned with the four optoelectronic
couples. At rest, part of the light, emitted by the LEDs
and reflected by the four cells, is captured by the PTs.
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When an external force is applied to the deformable layer,
it produces deformations for all the four taxels constituting
the sensing module. These deformations produce variations
of the reflected light and, accordingly, of the photocurrents
generated by the PTs.The interested reader can find in [24] all
the details concerning the realization of both optoelectronic
and deformable layers, with illustrative pictures, for the rigid
prototype of the distributed sensor.

2.2. The Conformable Distributed Tactile Sensor. The design
of the conformable sensor patch, based on flexible PCB
technology, is an evolution of the rigid prototype design
made possible by two main characteristics of the proposed
sensor: the smart scanning control strategy and the lowpower
consumption of a sensing module.

The scanning strategy allows a substantial reduction of
the number of wires with respect to the taxel number, which
makes the use of a flexible PCB with a limited number
of layers corresponding to a reduced thickness possible,
thus guaranteeing high conformability of the optoelectronic
board and low production cost. The basic idea, inspired by
the concept in [28], is to connect the sensing modules in
groups sharing 4 A/D channels (4 is the number of taxels
of one sensing module), and to switch on and off, with a
cyclic pattern, the sensing modules, by ensuring that in each
time instant, for each group, only one module is turned on,
while all the others that share the same A/D channels are
turned off so that the PTs operate as open circuits. This
characteristic allows reducing the number of A/D channels
necessary to interrogate a sensor patch. Differently from [28],
here multiple sensing modules can be directly driven by
the same Microcontroller Unit (MCU) digital I/O, without
using an external power supply, since each LED works with
a forward current of about 1mA and the voltage supply for
all components is the 3.3V, available from the MCU pins.
Hence, since different groups use different A/D channels,
sensing modules belonging to different groups can share
the same digital I/O as power supply, by reducing also the
number of digital I/O necessary to switch on and off the
sensing modules during the interrogation. In summary, this
scanning strategy allows the reduction of the whole sensor
power consumption and of the number of A/D channels and
digital I/O required to interrogate the sensor patch, with a
consequent simplification of the wiring.

The design of the flexible PCB affects the maximum
achievable conformability of the sensor patch; hence some
observations are in order. Firstly, the installation of the elec-
tronic components on the flexible PCB reduces the flexibility
property, depending on both the number and the dimensions
of the components. Secondly, the flexibility depends also on
the number of layers necessary for the wiring; thus a proper
routing of the PCB should be carried out. This requires a
suitable redesign of the optoelectronic layer of the original
rigid prototype tomaximize conformability of the new tactile
sensor version.

First of all, note that the sensing modules are only
constituted by the optoelectronic components (SFH4080
and SFH3010) that have a SmartLED package 0603 (with

dimensions 1.3 × 0.8 × 0.65mm3) and additional resistors to
drive the LEDs (a resistor for each LED), with package 0402
(with dimensions 1 × 0.5 × 0.32mm3). By using the scanning
strategy described above, each group of sensing modules can
share the resistors in series with the PTs. With this choice,
the number of resistors needed to convert the photocurrents
into the voltages acquired by the A/D channels is reduced
from the number of PTs to the number of A/D channels
used during the scanning. Furthermore, these resistors can be
mounted directly near the A/D channels, by avoiding adding
components on the conformable part of the PCB. Since
no additional Integrated Circuits (ICs) with cumbersome
package are used for the conditioning electronics, the types of
components to mount on the flexible PCB, for each taxel, are
only three and small enough tomaintain an high flexibility of
the PCB.

The adopted scanning strategy, in addition to the reduc-
tion of the number of components, allows also a simpli-
fication of the wiring, by reducing the number of needed
layers. By generalizing the adopted interrogation technique
(see Figure 1), a total of 𝑛 sensing modules (corresponding to4𝑛 taxels) can be organized in𝑚 groups, each one constituted
by 𝑝 sensing modules. Since the sensing modules of each
group share 4 A/D channels, the number of external wires
needed to interrogate a sensor patch is equal to 4𝑚 + 𝑝
(plus one for the ground). As a consequence, to minimize
the number of wires needed for a sensor patch, the following
constrained optimization problem can be solved:

min
𝑚,𝑝

(4𝑚 + 𝑝)
subject to: 𝑚𝑝 = 𝑛, 𝑚, 𝑛, 𝑝 ∈N+. (1)

The conformable sensor patch presented here has 144
taxels, divided into 𝑛 = 36 sensing modules. By solving
the optimization problem (1), the results are 𝑚 = 3 groups
(corresponding to 4𝑚 = 12A/D channels) and 𝑝 = 12 digital
I/O, for a total of 24 wires plus one for the ground. With this
choice, the routing of a whole tactile sensor can be completed
by using a flexible PCB with only 4 layers.

Design of the routing has been carried out by using a
semiautomatic routing algorithm. The active surface of the
sensor patch (corresponding to the sensing elements) is about47 × 47mm2, while the 25 wires, needed to interrogate the
patch, are routed to a standard connector positioned on the
left side. Figure 2(a) reports a picture of the realized PCB
highlighting its high flexibility. The solution, after soldering
of all the components, maintains a high flexibility that
allows the sensor patch to be conformable to a surface with
minimum curvature radius of about 3 cm, which is sufficient
for covering robot surfaces such as arms, legs, and torso
(Figure 2(b)).

For applications where large surfaces have to be covered
with a high number of taxels, the distributed tactile sensor
proposed in this paper presents very attractive properties
also from the power consumption point of view. Each taxel
requires a voltage supply of 3.3V with a current of about1mA, for an instantaneous power consumption of 3.3mW.
Since no additional ICs are necessary, with just a few watts
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Figure 1: General electronic circuit of a sensor patch.
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Figure 2: Pictures of the realized flexible PCB before (a) and after
(b) soldering of optoelectronic components.

of power, thousands of taxels can be driven at the same
time. In general, 𝑘 taxels require power consumption equal
to 𝑘 ⋅ 3.3mW. For the sensor patch proposed in this paper,

constituted by 144 taxels, total instantaneous power con-
sumption of 475, 2mW would be needed if all taxels were
always switched on. In this case, the power consumption
would already be quite limited, but the interrogation tech-
nique described above allows a further power saving. In
particular, at each time instant, only one sensing module
is switched on for each group, corresponding to 4𝑚 taxels.
With the optimal number of groups 𝑚 = 3, only 12 taxels
are switched on at the same time, with a total instantaneous
power consumption of 39.6mW, resulting in a reduction of
one order of magnitude compared to the previous case. The
only limitation can be theminimum sampling frequency nec-
essary to interrogate the whole distributed sensor. For all the144 taxels of the proposed patch, with the selectedMCU, that
is, an ARM Cortex M4 STM32F303, a sampling frequency of150Hzwas obtained.Therefore, the proposed solution is very
attractive for battery-powered robotic systems.

2.3. Integration of the Conformable Sensor on a Robot Arm.
Since the sensor working principle depends on the deforma-
tions of the silicone layer, if the flexible PCB were conformed
to the target shape after bonding of the deformable layer,
a residual strain would affect the sensing modules causing
the sensor malfunctioning. Hence, in order to ensure the
correct operation of the sensor and to keep unaltered the
sensor properties, that is, repeatability, hysteresis error, and
accuracy, the flexible PCB has to be conformed to the surface
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(a) (b)

(c) (d)

Figure 3: Conformable sensor patch during assembly phases: (a) perspective view, (b) side view, (c) perspective view of the complete sensor
prototype, and (d) completed sensor prototype.

selected for the final assembly of the sensor patch before
the bonding of the silicone layer. To this aim, a mechanical
support, designed on the basis of the shape of the surface
selected for the finalmounting, has to be realized.Afterwards,
the PCB is bonded to this support, by conforming it to the
desired surface. Finally the silicone caps are bonded to the
curved PCB. The sensor used in this paper has been realized
to be mounted on a KUKA LWR4+. The details about the
design and realization of the mechanical support can be
found in [25].

Once the flexible PCB has been fixed to the mechanical
support by epoxy resin (see Figure 3(a)), the silicone caps are
bonded to each sensing module on the optoelectronic layer
(see Figure 3(b)), by obtaining a fully assembled patch (see
Figure 3(c)). In order to increase themechanical robustness of
thewhole sensor, the silicone caps of all sensingmodules have
been connected together by using a second silicone molding
(see Figure 3(d)). The final assembled sensor provided as raw
data 144 voltage signals, corresponding to a 12 × 12 tactile
map that can be directly used as pressure map. In addition,
after a suitable calibration detailed in [25], the sensor is
able to provide the estimation of the contact points and of
the contact force vectors. For all cases, properties such as
sensitivity, repeatability, hysteresis, and time response have
been analyzed with the methodology reported by the authors
in [24], by showing very similar results:

(i) sensitivity: 0.2N;
(ii) repeatability error: 6.77%;

(iii) hysteresis error: 10.27%;

(iv) response time: 0.001 s.

3. The Tactile Sensor as HMI

This section shows how the tactile sensor can be actually
used as an input device for sending commands to the robot,
for example, commands for changing control modality or
selecting a task to execute. Different recognition methods,
for example, Finite State Machine, Artificial Neural Network
[29, 30], Hidden Markov Model [31, 32], and features extrap-
olation [33], which differ in complexity and performance are
described in the literature [34], but most of them are applied
to inertial and camera systems.

In this work, three well-known recognition algorithms
have been redesigned taking into account the sensor trans-
duction principle and the sensor data collection. The first
one is used to recognize gestures that are applied with static
contact on the sensor surface, while the other two methods
are used to recognize dynamic and more complex touch
gestures. The sensor provides 288 bytes corresponding to
the voltage signals of the 144 taxels. Starting from the idea
behind the classic features extrapolation techniques, different
features are computed with the sensor raw data according
to the complexity of the gestures to recognize. Moreover,
a suitable preprocessing stage and a classifier have been
proposed considering the specific feature adopted for each
recognition algorithm.

3.1. Static Gestures Recognition. The first method is used to
simply show how the sensor information can be exploited
to recognize tactile gestures using a simple algorithm. The
sensor signals are organized in a 12×12matrix corresponding
to the sensor pressure map. The latter is used as recognition
feature. Since only a small set of gestures has been considered,
a simple algorithm such as the dot product-based recognition
[35] is used to recognize static tactile gestures. This can be
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Figure 4: Applied gestures and corresponding tactile maps.

achieved by defining an elementary set of tactile gestures
(codebook), that is, a set of modalities to touch the sensor
patch by a human hand. Only 4 out of the 7 tactile gestures
selected to test this kind of algorithm are reported in the left
side of Figure 4.

A tactile map corresponds to each tactile gesture that
can be represented with a 12 × 12 matrix constituted by
the signals from all the taxels; thus recognition can be
performed by resorting to algorithms typically used for image
processing applications. In fact, for each time instant, a static
representation of the tactile map, that is, an image of 12 ×12 pixels, can be obtained by properly preprocessing the
acquired raw data. In a preelaboration stage an image of
Boolean values (“0” and “1”) is obtained by thresholding
the sensor voltage signals. Moreover, a bounding box that
contains the detected gesture, depicted in the bit-map image
as a group of “1” elements, is identified and it is translated
in the upper-left corner of the bit-map image.The elaborated
gesture can now be used in the recognition process. Let x𝑖 be
the 144×1 vector that contains the 12 columns of the bit-map
image corresponding to the 𝑖th gesture to be recognized and
let y be the 144×1 vector that contains the columns of the bit-
map image corresponding to the acquired tactile image. If 𝑛
is the total number of the selected gestures, the dot product
is calculated as in (2), and the result provides a likelihood
measure between the vectors x𝑖 and y𝑗; that is,

𝑠𝑖 = 144∑
𝑗=1

x𝑖𝑗y𝑗, 𝑖 = 1, . . . , 𝑛. (2)

The higher 𝑠𝑖, the closer (in the Hamming sense) the two
vectors and the more alike the corresponding gestures. The
dot product-based recognition is by far the fastest and easiest

gesture recognition method and it is able to recognize letters
and digits. However, this method is not universal, it will often
have a problem separating circles and squares, but this is
the price for simplicity and speed. In Figure 4 four gestures
and the corresponding tactile maps are shown. Gestures
like vertical line, horizontal line, line along the main, and
secondary diagonal are considered. It is evident how the raw
data provide complete information about the contact that
occurs on the deformable layer of the sensor.

3.2. Dynamic Gestures Recognition. Two different methods
used to recognize dynamic gestures are presented. For the
first one, the pressure map obtained reorganizing the 144
tactile sensor signals in a 12 × 12 matrix has been chosen
as recognition feature, while the second one exploits the
information about the force contact point in order to rec-
ognize more complex gestures. Figure 5 reports a scheme
that highlights the training pipeline (right branch) and the
recognition pipeline (left branch).The sensor starts acquiring
the gesture applied by the user as soon as a contact on the
deformable layer is detected. The gesture data are collected
until the contact ends. In order to make the recognition
process independent of the particular sensor contact area
on which the gesture is applied, the data pass through a
preelaboration/normalization stage. The preprocessed ges-
ture is, then, compared to each gesture contained in a training
set, which is preliminarily collected. The gesture selection
is made on the basis of a maximum likelihood criterion.
The preelaboration/normalization phase and the error index
computation depend on the specific recognition feature used
in each implemented method.

For the sake of completeness, the Nearest-Neighbor
Algorithm [36] (NNA) used in the recognition methods is
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Figure 5: Schematization of training and recognition pipelines for
haptic gesture recognition.

briefly recalled here. Let us consider a generic interpolation
algorithm in the following linear form:

𝑓 (x) = ∑
z∈Z𝑞
𝑓𝑘𝜙 (x − k) , x = (𝑥1, 𝑥2, . . . , 𝑥𝑞) ∈ R𝑞, (3)

where an interpolated value 𝑓(x) at some coordinate x in a
space of dimension 𝑞 is expressed as a linear combination
of the samples 𝑓𝑘 evaluated at integer coordinates k =(𝑘1, 𝑘2, . . . , 𝑘𝑞) ∈ Z𝑞, the value of the function 𝜙(x − k)
being the interpolation weight. Typical values of the space
dimension correspond to bidimensional images (2D), with𝑞 = 2, and tridimensional volumes (3D), with 𝑞 = 3. In the
specific case, when all coordinates of x = k0 are integer, the
following formulation can be considered:

𝑓𝑘0 = ∑
z∈Z𝑞
𝑓𝑘𝜙 (k0 − k) , k0 ∈ Z𝑞, (4)

which represents a discrete convolution. On the basis of
the specific synthesis function 𝜙 used in the interpolation
process, several interpolation algorithms that differ in com-
plexity and accuracy can be identified [37]. The Nearest-
Neighbor Algorithm is the simplest interpolation technique
from a computational point of view used in image processing
for image scaling. The synthesis function associated with it is
the simplest, since it is made of a square pulse. For simplicity
its expression for a space of dimension 𝑑 = 1 is reported:

𝜙 (𝑥) = {{{
1, if 0 ≤ |𝑥| < 0.5
0, if 0.5 ≤ |𝑥| . (5)

The main interest of this synthesis function is its simplicity,
which results in the most efficient of all implementation. In
fact, for any coordinate x where it is desired to compute the
value of the interpolated function 𝑓, there is only one sample𝑓𝑘 that contributes, no matter how many dimensions 𝑞 are
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Figure 6: Preelaboration/normalization phase adopted for the first
recognition method.

involved. The price to pay is a severe loss of quality. The
algorithm performs image magnification by pixel replication
and image reduction by sparse point sampling, and it derives
its primary use as a tool for real-time magnification.

3.2.1. Map-Based Recognition Algorithm. The first recogni-
tion algorithm uses the sensor tactile map, suitably adapted
and elaborated, as recognition feature. As described in
Section 3.1, each tactile gesture corresponds a tactile map
that can be represented with a 12 × 12 matrix constituted
by the signals from all the taxels. For each time instant, a
static representation of the tactile map, that is, an image
of 12 × 12 pixels, can be obtained by properly processing
the acquired raw data and, in a preliminary stage, a binary
image is obtained by thresholding the sensor signals. During
the gesture acquisition, maps obtained in each time instant
are element-wise added (in the binary sense). At the end,
a representation, in terms of an image of 12 × 12 pixels, of
the route traced by the user finger on the contact surface of
the sensor is available. Since the gesture could be generally
traced anywhere on the available sensor contact area, a
preelaboration/normalization phase is necessary so that the
recognition algorithm can properly work independently of
that area. Starting from the map provided at the end of the
acquisition phase, a bounding box that contains the detected
gesture (see Figure 6), depicted in the bit-map image as
a group of “1” elements, is identified. The reduced image,
which represents the detected gesture, is rescaled in order to
obtain a new image of 12 × 12 pixels by applying the NNA.
The elaborated gesture can now be used in the recognition
process. The decision is made by evaluating 𝑛 × 𝑚 error
indexes obtained by comparing the elaborated gesture to the𝑛 gestures in the codebook, which have been preliminarily
acquired for 𝑚 times, collected in the training set, and then
the gesture corresponding to the lowest error index is selected
as the recognized gesture. The error indexes are computed
according to the Hamming distance (the Hamming distance
between twomatrices of equal size is the number of positions
at which the corresponding elements are different) between
the bit-mapmatrices.Thedescribed algorithm is summarized
with the pseudocode of Algorithm 1.

3.2.2. Centroid-Based Recognition Algorithm. The method of
the previous section is able to recognize in an efficient way
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Require: 144 tactile sensor signals
Ensure: Recognized gesture
(1) initialization
(2) while TRUE do
(3) TactileMap = extractTactileMap (sensorSignals)
(4) TactileMap+ = TactileMap (element-wise sum)
(5) if sensorNotTouched then
(6) ClippedTactileMap = getBoundingBox (TactileMap)
(7) scaledTactileMap = NNA (ClippedTactileMap)
(8) for each 𝑖th gesture in the codebook do
(9) 𝐻𝑖 = compare (scaledTactileMap, codebook𝑖) (in terms of Hamming distance)
(10) end for
(11) makeDecision (𝐻1, . . . , 𝐻𝑛)
(12) clear (TactileMap)
(13) end if
(14) end while

Algorithm 1: Pseudocode of the map-based recognition algorithm.

different touch gestures, for example, numbers, chars, and
geometric primitives. However, the use of a bit-map image
as recognition feature does not allow discriminating the
direction with which the gesture is made, for example, a line
from left to right and vice versa. This second method intends
to overcome this disadvantage exploiting the force contact
point provided by the sensor, which brings information
concerning both the area on which the touch gesture is
applied and the direction with which it is traced. By properly
processing the sensor raw data, it is possible to estimate the
spatial coordinate of the force contact point with respect to
a reference frame fixed on the tactile sensor (refer to [24]
for more details). Let us define g𝑥(𝑡) and g𝑦(𝑡) as the vectors
that contain the 𝑥 and 𝑦 components of the contact point,
respectively, whose size depends on the time needed by the
user to trace the gesture on the sensor surface. Both g𝑥(𝑡),
g𝑦(𝑡), and the time axis are acquired as soon as a contact
is detected on the sensor surface. The couple (g𝑥(𝑡), g𝑦(𝑡))
represents the gesture feature. To simplify the notation, the
dependence from the time 𝑡 has been neglected in the
following discussion. The normalization stage foresees two
successive feature elaborations. First, the vectors g𝑥 and g𝑦
are resampled exploiting the NNA in order to produce a
time-independent gesture feature (g𝑡𝑥, g𝑡𝑦). The latter is, then,
normalized to obtain a gesture feature independent of the
area of the sensor on which the gesture is traced; that is,

g𝑖 = g𝑡𝑖 −min g𝑡𝑖
max g𝑡𝑖 −min g𝑡𝑖

with 𝑖 = 𝑥, 𝑦. (6)

As in the map-based method, the decision is made by
evaluating 𝑛 × 𝑚 error indexes obtained by comparing the
elaborated gesture to the 𝑛 gestures in the codebook, which
are preliminarily acquired for 𝑚 times, collected in the
training set, and choosing the gesture corresponding to the
lower error index. In this case, the error indexes are calculated
as the Euclidean distance between the feature of the acquired

gesture (g𝑥, g𝑦) and the 𝑛 × 𝑚 features contained in the
codebook (ĝ𝑗𝑥, ĝ𝑗𝑦) with 𝑗 = 1, . . . , 𝑛 × 𝑚; that is,

𝐸𝑑𝑗 = 12 (√
𝑙∑
𝑘=1

(g𝑥 (𝑘) − ĝ𝑗𝑥 (𝑘))2

+ √ 𝑙∑
𝑘=1

(g𝑦 (𝑘) − ĝ𝑗𝑦 (𝑘))2) ,
(7)

where 𝑗 = 1, . . . , 𝑛 ×𝑚 and 𝑙 is the number of elements of the
vectors g𝑥 and g𝑦 chosen in the resampling phase.

The described algorithm is summarized with the pseu-
docode of Algorithm 2.

3.3. Assessment of the RecognitionMethods. In order to assess
the recognition algorithms presented so far, a set of 30 trials
for each gesture have been performed by 20 performers and
the performance is assessed in terms of the recognition rate,
namely, ratio between the number of correctly recognized
gestures and the total number of trials.

Table 1 reports a confusion matrix for the dot product-
based algorithm used to recognize only the 4 static touch
gestures in 4. The table reports the actual gesture on the
columns and the recognized gestures on the row. In partic-
ular, a recognition rate higher than 80% has been obtained
for each gesture.The algorithm is certainly very simple, but it
is able to recognize only gestures applied with static contacts
on the sensor surface. This characteristic represents a critical
disadvantage that limits the touch gestures applicable with a
human hand practically to the ones showed in Figure 4.

Table 2 and Figure 7 report the results for the map-
based algorithmused in the recognition of the dynamic touch
gestures in terms of recognition rate and the set of analyzed
gestures, respectively. Let us define the 5 analyzed gestures
as a for the diagonal, b for the secondary diagonal, c for the
horizontal line, d for the number 1, and e for the number 2.
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Require: 144 tactile sensor signals
Ensure: Recognized gesture
(1) initialization
(2) while TRUE do
(3) cp = extractContactPoint (sensorSignals) (as described in [24])
(4) if sensorNotTouched then
(5) resampledCP = NNA (cp)
(6) normalizedCP = normalize (resampledCP) (as defined in Eq. (6))
(7) for each 𝑖th gesture in the codebook do
(8) 𝐸𝑖 = compare (normalizedCP, codebook𝑖) (as defined in Eq. (7))
(9) end for
(10) makeDecision (𝐸1, . . . , 𝐸𝑛)
(11) clear (cp)
(12) end if
(13) end while

Algorithm 2: Pseudocode of the centroid-based recognition algorithm.

Table 1: Confusion matrix of the dot product-based gesture recognition algorithm.

Recognized/traced Horizontal line Vertical line Main diagonal Secondary diagonal
Horizontal line 86.6% 0.0% 6.7% 6.1%
Vertical line 0.0% 83.3% 8.3% 7.3%
Main diagonal 6.7% 8.3% 85.0% 0.0%
Secondary diagonal 6.7% 8.4% 0.0% 86.6%

Table 2: Confusion matrix of the map-based algorithm.

Recognized/traced a b c d e
a 95.3% 3.3% 0.0% 2.3% 2.3%
b 3.3% 93.3% 2.7% 6.7% 9.7%
c 0.0% 2.3% 95.3% 5.7% 2.7%
d 1.4% 1.1% 0.7% 85.3% 2.3%
e 0.0% 0.0% 1.3% 0.0% 83.0%
As said previously, the decision-making is not influenced by
the direction with which the gesture is traced on the sensor
surface, so a diagonal traced from the upper-left corner to the
bottom-right corner of the sensor is equivalent to a diagonal
traced from the right-bottom corner to the upper-left corner
and both are recognized as gesture a. In fact, the performers
have executed the tests tracing the gestures into the two
directions as shown in Figure 7 by the red arrows but the
classifier did not distinguish the direction. Nevertheless, the
accuracy can be considered satisfactory with success rates
above 80%.

The same analysis has been carried out for the centroid-
based algorithm. Table 3 and Figure 8 report the confusion
matrix and the analyzed gestures. The codebook is now
defined as follows. Let a be the diagonal traced from the
upper-left corner to the bottom-right corner, b the diagonal
traced from the bottom-right corner to the upper-left corner,
c the horizontal line traced from left to right, d the horizontal
line traced from right to left, and e the number 1 traced from
left to right. It is evident, from the confusion matrix reported
in Table 3, that the algorithm is able to correctly discrim-
inate the direction of the gesture. In order to evaluate the

dependency of the algorithm on the specific performer, the
standard deviation of the recognition rate has been computed
considering the results obtained with the 20 performers for
each gesture according to

𝜎ℎ = ( 1𝑁
𝑁∑
𝑖=1

(𝑅𝑖,ℎ − 𝜇ℎ)2)1/2 , ℎ = a, b, c, d, e, (8)

where 𝑁 is the number of performers, 𝑅𝑖,ℎ is the average
recognition rate achieved by the 𝑖th performer for the ℎth
gesture, and 𝜇ℎ is the average recognition rate of ℎth gesture
achieved by all performers computed as

𝜇ℎ = 1𝑁
𝑁∑
𝑖=1

𝑅𝑖,ℎ, ℎ = a, b, c, d, e. (9)

The results are reported in Figure 9. The centroid-based
algorithm shows a higher recognition rate for both simple
and complex gestures, that is, diagonals and numbers, and
it is proven to be more independent of the codebook pre-
liminarily acquired. Moreover, given that the discrete nature
of the features involved in the recognition process, that is,
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(a) Diagonal (b) Secondary diagonal

(c) Horizontal line (d) Number 1

(e) Number 2

Figure 7: Gestures analyzed for the map-based recognition algorithm.

Table 3: Confusion matrix of the centroid-based algorithm.

Recognized/traced a b c d e
a 100.0% 0.0% 11.3% 0.0% 2.3%
b 0.0% 100.0% 0.0% 11.3% 0.3%
c 0.0% 0.0% 86.0% 0.0% 2.7%
d 0.0% 0.0% 0.0% 88.7% 0.0%
e 0.0% 0.0% 2.7% 0.0% 94.7%
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(a) Diagonal from upper-left corner to bottom-
right corner

(b) Diagonal from bottom-right to upper-left
corner

(c) Horizontal line from left to right (d) Horizontal line from right to left

(e) Number 1

Figure 8: Gestures analyzed for the centroid-based recognition algorithm.

the bit-map image, and the coordinates of the contact point
depends on the spatial resolution of the sensor, gestures such
as horizontal lines, in some cases, are badly recognized for
the difficulty to trace a really straight line. Finally, the low
values of the standard deviations compared to the high value
of the average recognition rates demonstrate that almost
all algorithms are fairly independent of the performers.

The centroid-based method is totally independent of the
performer for the diagonal gestures that are recognized with
a 100% recognition rate. This feature is quite important since
it allows the algorithms to be used effectively without any
special training of the user.

The CPU time needed to execute the two algorithms is
very low due to their simplicity and efficiency. It has been
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Figure 9: Assessment of algorithm sensitivity to the performer: average and standard deviation of gesture recognition rates for the various
performers (see (8) and (9)).

evaluated implementing the two algorithms in C++ under a
Linux system with an i7 processor @2.8GHz and it is about0.05ms and 0.08ms for the map-based algorithm and for the
centroid-based algorithm, respectively.

4. Conclusions

This paper has presented a conformable distributed tactile
sensor able to measure 3D force vectors in multiple contact
points and to provide a distributed tactile map. The authors
show how the sensor data can be used to recognize haptic
gestures using readapted simple recognition techniques. The
recognition algorithms discussed in this work result to
be fairly independent of the performers and this feature
represents a good starting point for further experiments in
which the tactile sensor could be tested on a real robot and in
complex interactive tasks without any special training of the
user. Futureworkwill be devoted to investigatemore complex
gestures recognition methods that could be also evaluated
to handle larger tactile gesture sets, that, for example, could

include the symbols of the tactile languages used for blind-
deaf people. The possibility of recognizing the gesture in real
time and during the accomplishment of the gesture itself will
be also investigated.
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