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We present a novel solver for solving Quantified Boolean Formulae problem (QBF). In order to improve the performance, we
introduce some reasoning rules into the message passing algorithm for solving QBF. When preprocessing the formulae, the solver
incorporates the equality reduction and the hyperbinary resolution. Further, the solver employs the message passing method to
obtainmore informationwhen selecting branches. By using the unit propagation, conflict driven learning, and satisfiability directed
implication and learning, the solver handles the branches.The experimental results also show that the solver can solveQBF problem
efficiently.

1. Introduction

Quantified Boolean Formulae can be seen as an exten-
sion of the well-known canonical NP-complete problem of
Propositional Satisfiability (SAT) with existential or universal
quantifiers to every variable in the propositional formulae.
Given a Quantified Boolean Formula, the question of decid-
ing the satisfiability of the formula is called a Quantified
Boolean Satisfiability problem (QBF). QBF is an important
issue in artificial intelligence because it is the prototypical
PSPACE-complete problem. Many practical problems can be
transformed into QBF, for example, conformant planning [1],
verification [2], nonmonotonic reasoning [3], and reasoning
about knowledge [4].

Now most researchers make great efforts on designing
excellent QBF solvers in order to increase the efficiency for
solving QBF problem. WalkQSAT is the first incomplete
QBF solver using stochastic local search methods, and it
applies a SAT solver—walksat for selecting the next branch
[5]. WATCHEDCSBJ features watched data structure [6].
QuBE is an adaptation of the classic DPLL (Davis, Putnam,
Logemann, and Loveland) backtracking search algorithm.
Moreover, it adopts watched data structure and learning [7].
QSAT employs themaximumoccurrences inminimum sized
clauses (MOMS) heuristic [8]. Quaffle extends variable state
independent decaying sum (VSIDS) heuristic and conflict
driven learning [9].

In this paper, we propose a novel QBF solver based on
a DPLL algorithm, called EHSPQBF. The system combines
many advanced techniques together. In preprocessing, we
adopt the equality reduction and the hyperbinary resolution
to simplify the formulae. In choosing branches process, we
employ a message passing method—survey propagation. By
giving exact information, the approach selects branchesmore
exactly, which can decrease the search space and improve the
backtracking time. In branched treatment process, we utilize
conflict reasoning, conflict driven learning, and satisfiability
directed implication and learning to help pruning the search
space. Owing to these outstanding techniques, the ability of
solving QBF problems has greatly improved.

2. Quantified Boolean Formulae

We begin this section by presenting some notions in this
paper.A literal is either a Boolean variable V or its negation¬V.
If a literal is 𝑙, the negation of the literal is ¬𝑙. A clause is a dis-
junction of literals which does not contain a complementary
pair V and ¬V simultaneously. A propositional logic formula
in Conjunction Normal Form (CNF) is a conjunction of
clauses. A Quantified Boolean Formula (QBF) has the form

𝑄
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⋅ ⋅ ⋅ 𝑄
𝑛
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where 𝐸(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is a propositional logic formula in

CNF involving Boolean variables 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, and every

𝑄
𝑖
(1 ≤ 𝑖 ≤ 𝑛) is either an existential quantifier ∃

or a universal quantifier ∀. A variable is existential if the
restriction quantifier of the variable is ∃, and universal
otherwise. Any Boolean variable V can take a value true or
false. A truth assignment for a propositional logic formula
is a map that assigns each variable a value. The satisfying
assignment, called model, is the truth assignment that makes
the propositional logic formula evaluated to true. The partial
variable assignment is a map that assigns some variables
values.We say a formula composed of zero clause is an empty
formula, denoted by 𝐸 = ⌀, which is interpreted as true. An
empty clause is a clause containing zero literal, which means
that the clause is false.

The Quantified Boolean Formulae Satisfiability problem
is to decide whether a Quantified Boolean Formula is satisfi-
able. For example, given a QBF ∀𝑥

1
∃𝑥
2
((𝑥
1
∨ 𝑥
2
) ∧ (¬𝑥

1
∨

¬𝑥
2
)), the QBF is satisfiable if and only if for each truth

assignment to 𝑥
1
there exists a truth assignment to 𝑥

2
. In the

rest of the paper, we will use QBF to denote the formulae and
the satisfiability problems.

For a QBF of the form (1), because ∃𝑥
1
∃𝑥
2
𝐸(𝑥
1
, 𝑥
2
) ≡

∃𝑥
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2
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, 𝑥
2
),

we can group in the same set all consecutive variables having
the same quantifier. Therefore, equality (1) can be rewritten
into the following form:

𝑄
1
𝑋
1
⋅ ⋅ ⋅ 𝑄
𝑘
𝑋
𝑘
𝐸 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) (1 ≤ 𝑘 ≤ 𝑛) , (2)

where𝑋
𝑖
(1 ≤ 𝑖 ≤ 𝑘) is a set of propositional variables and all

such sets aremutual disjoint. In such a format, each quantifier
is applied to a set of variables rather than to a single Boolean
variable. Moreover, the sequence of quantifiers alternates;
an existential quantifier follows a universal quantifier and
vice versa. With the quantifier restricted, each variable has
a quantification level, which increases from the outermost
quantification set to the innermost quantification set; that is,
the variables belonging to the outermost quantification set
have quantification level 1 and so forth.

3. The Relationship between SAT and QBF

The SAT problem is a typical NP-complete problem, which
has a close relationship with QBF problem. More specifically,
SAT can be regarded as an especial form of QBF with only
existing existential quantifier, and QBF can be regarded as an
extended form of SAT with additional prefixes. In addition,
they are both prototypical problems for complexity classes.
SAT is an NP-complete problem while QBF is a PSPACE-
complete problem, which is inherently more difficult than
SAT. In the following, we will discuss the similarities and
dissimilarities between QBF and SAT.

Orders of Disposing Variables. When dealing with SAT, we
can select variables in a random order. While dealing with
QBF, wemust select variables in a sequence of quantifier level
that is, the variables whose quantifier level is minimal will
be assigned first and so on. As a matter of fact, the reason

of doing so is that the variables in QBF have a dependency
relationship. For example, given a QBF ∀𝑥

1
∃𝑥
2
((𝑥
1
∨ 𝑥
2
) ∧

(¬𝑥
1
∨ ¬𝑥
2
)), the value of an existential 𝑥

2
that makes the

formula true may depend directly on the value of a universal
𝑥
1
which is quantified prior to 𝑥

2
. Therefore, the key of

dealing with QBF is to select the variables in the sequence
of quantifier level.

Search Space. The search space of SAT is a tree while the
search space of QBF is an AND/OR tree. They both regard
the assignment of variables as weights and variables as nodes.
The difference is that QBF has two types of nodes: AND node
and OR node. In the AND/OR tree, the universal variables
correspond to the AND nodes and the existential variables
correspond to the OR nodes.

Hardness of the Problems.TheQBF is more difficult than SAT.
As we know, SAT is NP-complete while QBF is PSPACE-
complete. For a SAT, the algorithmwill stop when a satisfying
assignment is found.However, for aQBF, the algorithmneeds
to continue searching because of the universal quantifiers.

Because of the close relationship between SAT and QBF,
most of methods for QBF can be regarded as a generalization
of algorithms commonly for SAT. Therefore, we can solve
QBF with equality reduction and the hyperbinary resolution
which is really effective in solving SAT.

4. QBF Algorithm Framework

Recently, search-basedQBF solvers are based on an extension
to the DPLL algorithm. Now we give the DPLL algorithm for
QBF in Algorithm 1. In the algorithm, 𝐶

⌀
is an empty clause

and 𝐶all∀ is a clause composed of only universal variables.
TheDPLL algorithmworks on the principle of preprocessing,
choosing branches, branched treatment, and then recursively
solving the simplified QBF. In preprocessing process (line 1),
DPLL employs several reasoning rules to simplify QBF like
pure literal rule, unit literal rule, and so forth. In choosing
branches (variables) process (line 4), DPLL selects variables
in a fixed order; that is, the variables in the outermost
quantification set are chosen first and so on. In branched
treatment process (lines 5–8), DPLL searches AND/OR tree
depending on the chosen variable. If the chosen variable is
an existential variable, an OR node is explored; otherwise an
AND node is explored. DPLL terminates when the simplified
QBF is an empty formula (line 2), which means the input
formula𝑄 ⋅𝐸 is satisfiable; when the simplified QBF contains
an empty clause or there is a clause made of all universally
quantified variables (line 3), which means the input formula
𝑄 ⋅ 𝐸 is unsatisfiable.

In Algorithm 2, we present the basic algorithm of
EHSPQBF, which is based on DPLL algorithm. At first, we
explain the terms occurred in the algorithm. The term 𝐶

⌀

is an empty clause, and 𝐶all∀ is a clause composed of only
universal variables. In preprocessing process (line 1), we
simplify the input formula in CNF employing unit literal
rule, the equality reduction, and the hyperbinary resolu-
tion. In choosing branches process (line 9), we use survey
propagation as a heuristic. By giving exact information,
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Procedure DPLL (𝑄 ⋅ 𝐸)
(1) preprocess (𝑄 ⋅ 𝐸);
(2) if 𝐸 = ⌀ then return SAT;
(3) if (𝐶

⌀
∈ 𝐸) ∨ (𝐶all∀ ∈ 𝐸) then return UNSAT;

(4) V ← choosevariable (𝑄 ⋅ 𝐸);
(5) if (V is existential)
(6) then return DPLL ( 𝑄 ⋅ 𝐸|V=true) or DPLL (𝑄 ⋅ 𝐸|V=false)
(7) if (v is universal)
(8) then return DPLL (𝑄 ⋅ 𝐸|V=true) and DPLL (𝑄 ⋅ 𝐸|V=false)

Algorithm 1: DPLL for solving QBF.

Procedure EHSPQBF (𝑄 ⋅ 𝐸)
(1) preprocess (𝑄 ⋅ 𝐸);
(2) if (𝐸 = ⌀) then return SAT;
(3) if (𝐶

⌀
∈ 𝐸) ∨ (𝐶all∀ ∈ 𝐸) then return UNSAT;

(4) result = deduce();
(5) if (result = conflict)
(6) then analyze conflict();
(7) if (result = satisfaction)
(8) then analyze satisfaction();
(9) V ← SP choosevariable (𝑄 ⋅ 𝐸);
(10) if (V is existential)
(11) then return EHSPQBF (𝑄 ⋅ 𝐸|V=true) or EHSPQBF (𝑄 ⋅ 𝐸|V=false)
(12) if (v is universal)
(13) then return EHSPQBF (𝑄 ⋅ 𝐸|V=true) and EHSPQBF (𝑄 ⋅ 𝐸|V=false)

Algorithm 2: EHSPQBF algorithm.

the approach makes the choice of branch more exactly,
which can decrease the search space and improve the run-
time. In branched treatment process (line 4), we deduce
the formula using conflict reasoning rule. The result of the
deduction has three values: undetermined, satisfaction, and
conflict. If result is conflict (satisfaction), that is, 𝐸 evaluates
to 0 (resp., 1) under the current partial variable assignment,
the algorithm analyzes the conflict (resp., satisfaction); if the
result is undetermined, that is, 𝐸 evaluates neither 0 nor 1, the
algorithm continues to choose branches. In this process, we
employ the conflict driven learning and satisfiability directed
learning to reduce the search space.

5. Preprocessing via Reasoning Rules

Besides the unit literal rule, the preprocess stage also uses
more powerful reasoning rules, that is, the hyperbinary
resolution and the equality reduction [10]. As a matter of
fact, the hyperbinary resolution rule is a sequence of ordinary
resolution steps. Though they are of similar function in
simplifying the formulae, the hyperbinary resolution reduces
the space which the sequence intermediate clauses occupy.
And the equality reduction rule can further reduce the size
of the input formula. It first finds the equivalences, and then
it substitutes each equivalent variable, which can simplify the
input formula. Now we describe them in the following.

Definition 1. The hyperbinary resolution rule of inference
takes as input a 𝑚 + 1-ary clause (𝑙

1
∨ 𝑙
2
∨ ⋅ ⋅ ⋅ ∨ 𝑙

𝑚
∨ 𝑙) and

𝑚 binary clauses each of the form (¬𝑙
𝑖
∨ 𝑙


) (1 ≤ 𝑖 ≤ 𝑚),

where 𝑙
𝑖
(1 ≤ 𝑖 ≤ 𝑚) is existential variable; then it deduces

the clause (𝑙 ∨ 𝑙).

The advantage of the hyperbinary resolution is that it
can save the solving time. The hyperbinary resolution can
generate unit clauses or binary clauses in order to simplify
the input formula. In addition, if the deduced clause contains
only universal variables, the formula can be directly decided
the QBF instance is unsatisfiable. For example, consider a
formula 𝐹 = ∀𝑥∃𝑥

1
𝑥
2
𝑥
3
𝑥
4
𝑥
5
𝑥
6
(𝑥
1
∨𝑥)∧ (𝑥

2
∨𝑥)∧ (𝑥

3
∨𝑥)∧

(𝑥
4
∨𝑥)∧(𝑥

5
∨𝑥)∧(𝑥

6
∨𝑥)∧(¬𝑥

1
∨¬𝑥
2
∨¬𝑥
3
∨¬𝑥
4
∨¬𝑥
5
∨¬𝑥
6
).

If we apply the hyperbinary resolution rule to 𝐹, the rule
is able to obtain a deduced clause 𝑥 which contains only
one universal variable, and we can decide that the formula
is unsatisfiable. By simplifying the formula, the hyperbinary
resolution rule reduces the solving time.

Definition 2. The equality reduction of a QBF formula 𝐹 by a
pair of equivalent literals 𝑙

1
≡ 𝑙
2
is a rule of replacing 𝑙

1
by 𝑙
2

if 𝐹 satisfies
(1) 𝐹 contains the pair of binary clauses (¬𝑙

1
∨𝑙
2
) and (𝑙

1
∨

¬𝑙
2
);

(2) the quantification level of 𝑙
1
is greater than 𝑙

2
;

(3) 𝑙
1
and 𝑙
2
are both existential.
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Figure 1: A simple example of a factor graph.

Note that the QBF formula 𝐹 is unsatisfiable if there
is a universal in the clause ¬𝑙

1
∨ 𝑙
2
. Once that equality

reduction finds the equivalences, then it substitutes each
variable with its definition in the formula. For example, let
𝐹 = ∃𝑥

1
∀𝑥
3
𝑥
4
∃𝑥
2
(𝑥
1
∨ ¬𝑥
2
) ∧ (¬𝑥

1
∨ 𝑥
2
) ∧ (𝑥

1
∨ ¬𝑥
2
∨

𝑥
3
) ∧ (𝑥

2
∨ ¬𝑥
4
) ∧ (𝑥

1
∨ 𝑥
2
∨ 𝑥
4
). Since literals 𝑥

1
and 𝑥

2

are equivalent literals, we obtain the simplified QBF. 𝐹 is
∃𝑥
1
∀𝑥
4
(𝑥
1
∨ ¬𝑥
4
) ∧ (𝑥

1
∨ 𝑥
4
) by using equality reduction.

Notice that when the hyperbinary resolution rule applies to
𝐹

, the input formula can be further simplified.
Above all, we can find that the hyperbinary resolution

rule and equality reduction have the power to reduce the size
of the formula. They cannot only occupy less space but also
increase the efficiency for solving QBF.

6. Choosing Branches with
Survey Propagation

The survey propagation (SP) [11] method is a ground-
breaking development for solving SAT.Theoccurrencemakes
the SAT problems that we can deal with scale from with
ten thousand variables to with one million variables. As far
as we know, SP is the only algorithm successful at solving
randomSATproblemswith onemillion variables and beyond
in near-linear time in the hardest region. In this section, we
will discuss how to choose branches with the SP method. As
a message passing algorithm, SP passes message on a factor
graph which provides an easy graphical description to the
message passing procedures. In the following, we will address
the factor graph in detail.

6.1. Factor Graph. The factor graph is an undirected graph
(see Figure 1). It has two types of nodes: one represents
variables called “variable node” (circles in Figure 1) and the
other represents clauses called “function node” (squares in
Figure 1). A function node 𝑎 is connected to a variable node
𝑖 by an edge whenever the variable 𝑖 (or its negation) appears
in the clause 𝑎. In the graphical representation, we use a
full (dashed) line between 𝑎 and 𝑖 whenever the variable
appearing in the clause is 𝑖 (¬𝑖). For every variable node 𝑖,
we denote by 𝑉(𝑖) the set of function nodes to which it
is connected, by 𝑉

+
(𝑖) the subset of consisting of function

nodes where the variable appears unnegated, and by 𝑉
−
(𝑖)

the complementary set of 𝑉
+
(𝑖). V(𝑖) \ 𝑏 denotes the set V(𝑖)

without node 𝑏. Similarly, for each function node 𝑎, we denote
by𝑉(𝑎) = 𝑉

+
(𝑎)∪𝑉

−
(𝑎) the set of neighboring variable nodes.

For example, given a QBF ∀𝑥
1
∃𝑥
2
(𝑥
1
∨ 𝑥
2
) ∧ (¬𝑥

1
∨ ¬𝑥
2
),

we can represent the propositional logic formula with factor

graph in Figure 1, where clause 𝑎 represents 𝑥
1
∨𝑥
2
and clause

𝑏 represents ¬𝑥
1
∨ ¬𝑥
2
.

6.2. Message Passing. The survey propagation algorithm
passes two types of messages: one passed from a function
node to a variable node; the other passed from a variable node
to a function node.The update of bothmessages is realized by
the message update rule which is defined as follows.

(1) The message passed from a function node 𝑎 to a
variable node 𝑖: the message, called “survey”, is a real
number 𝜂

𝑎→ 𝑖
𝜖 [0, 1]:

𝜂
𝑎→ 𝑖

= ∏

𝑗∈𝑉(𝑎)\𝑖

[

Π

𝑢

𝑖→𝑎

Π

𝑢

𝑖→𝑎
+ Π

𝑠

𝑖→𝑎
+ Π

0

𝑖→𝑎

] . (3)

If𝑉(𝑎) \ 𝑖 is empty, then 𝜂
𝑎→ 𝑖

= 1. In equality (3), the
variable 𝑗 sends a particular symbol to clause 𝑎 saying
that the variable cannot satisfy the clause (“𝑢”), that
the variable can satisfy the clause (“𝑠”), or that it is
indifferent (“0”).

(2) The message passed from a variable node 𝑖 to a
function node 𝑎: each variable 𝐼 ∈ 𝑉 passes a triplet
of real numbersΠ

𝑖→𝑎
= (Π

𝑢

𝑖→𝑎
, Π

𝑠

𝑖→𝑎
, Π

0

𝑖→𝑎
) to each

of its clause neighbors 𝑎 ∈ 𝑉(𝑖):

Π

𝑢

𝑖→𝑎
=
[

[

1 − ∏

𝑏∈𝑉
𝑢

𝑎
(𝑖)

(1 − 𝜂
𝑏→ 𝑖

)
]

]

∏

𝑏∈𝑉
𝑠

𝑎
(𝑖)

(1 − 𝜂
𝑏→ 𝑖

) ,

Π

𝑠

𝑖→𝑎
=
[

[

1 − ∏

𝑏∈𝑉
𝑠

𝑎
(𝑖)

(1 − 𝜂
𝑏→ 𝑖

)
]

]

∏

𝑏∈𝑉
𝑢

𝑎
(𝑖)

(1 − 𝜂
𝑏→ 𝑖

) ,

Π

0

𝑖→𝑎
= ∏

𝑏∈𝑉(𝑖)\𝑎

(1 − 𝜂
𝑏→ 𝑖

) ,

(4)

where V𝑢
𝑎
(𝑖) and V𝑠

𝑎
(𝑖) denote neighbors which tend to make

variable 𝑖 dissatisfy or satisfy clause 𝑎. If a set like V𝑠
𝑎
(𝑖) is

empty, the corresponding product takes value 1. In the above
equalities, the variable 𝑖 sends a particular symbol to clause
𝑎 saying that the variable cannot satisfy the clause (“𝑢”), that
the variable can satisfy the clause (“𝑠”), or that it is indifferent
(“0”).

When SP converges to a fixed point set of messages 𝜂∗
𝑎→ 𝑖

,
one can use it to estimate the statistic characteristic (called
bias) of every variable. There are two types of biases: positive
bias and negative bias. The positive (negative) bias is the
probability that variable 𝑖 is restricted to 1 (0).The computing
formulae are as follows:

𝑊

(+)

𝑖
=

̂
Π

+

𝑖

̂
Π

+

𝑖
+
̂
Π

−

𝑖
+
̂
Π

0

𝑖

,

𝑊

(−)

𝑖
=

̂
Π

−

𝑖

̂
Π

+

𝑖
+
̂
Π

−

𝑖
+
̂
Π

0

𝑖

,

(5)
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where

̂
Π

+

𝑖
=
[

[

1 − ∏

𝑎∈𝑉
+
(𝑖)

(1 − 𝜂

∗

𝑎→ 𝑖
)
]

]

∏

𝑎∈𝑉
−
(𝑖)

(1 − 𝜂

∗

𝑎→ 𝑖
) ,

̂
Π

−

𝑖
=
[

[

1 − ∏

𝑎∈𝑉
−
(𝑖)

(1 − 𝜂

∗

𝑎→ 𝑖
)
]

]

∏

𝑎∈𝑉
+
(𝑖)

(1 − 𝜂

∗

𝑎→ 𝑖
) ,

̂
Π

0

𝑖
= ∏

𝑎∈𝑉(𝑖)

(1 − 𝜂

∗

𝑎→ 𝑖
) .

(6)

As a whole, SP gathers the statistical information which
can guide the choosing branches. In choosing branches
process, we select branches obeying quantification orders.
For variables in the same quantification level, we compute
positive and negative biases with SP. Then we fix the biased
variable in the same quantification level; that is, one variable
has the largest bias |𝑊(+)

𝑖
−𝑊

(−)

𝑖
|. Having selected the variable,

we assign the variable depending on the current quantifica-
tion level. If the current quantification level is existential, we
assign the biased value to the variable; otherwise we assign
the reverse biased value to the variable.

7. Branched Treatment

After choosing branches, we can performbranched treatment
on the chosen variable. The purpose of treatment is to decide
whether the current branch of search tree is satisfiable. In
branched treatment process, we employ some efficient tech-
nologies, such as conflict reasoning, conflict driven learning,
and satisfiability directed learning.

7.1. Conflict Driven Learning. Conflict driven learning uti-
lizes the knowledge learned from failures in certain search
space to help prune search in future spaces. If the current
branch of the search tree is not satisfied, we can perform
conflict driven learning. It is carried out by the analyze
conflict routine in Algorithm 3.

The analyze conflict routine analyzes the current status
and brings the search to a new space by backtracking. At
first, we explain some terms in the routine. As an algorithm
based on DPLL, EHSPQBF is a branch and search procedure.
Each branch has a decision level (𝑑𝐿). The first branch has
decision level 1 and so forth. And variables implied by a
decision variable will have the same decision level as the
decision variable. Now we introduce the analyze conflict
routine. At the beginning, it decides whether there exist
conflict clauses in the current QBF formula (line 1). If they
exist, we utilize function gen clause() for generating learned
clause (line 2). The learned clause can guarantee that the
decision level which the algorithm backtracks to is unique.
Then function add clause() performs conflict driven learning
when the result of deduction is conflict, which causes a
learned clause constructed and added to the database (line
3). At last, we decide whether the decision level that the
algorithm backtracks to 0 (line 4). If it is not 0, EHSPQBF
will backtrack to the decision level (line 5).The aim of conflict
driven learning is to memorize the conflict branch. If search

Routine analyze conflict()
(1) conflictcl = find conflict clause();
(2) newcl = gen clause (conflict cl);
(3) add clause (new cl);
(4) if (dl (new cl) ̸= 0)
(5) then backtrack (dl(new cl));
(6) end

Algorithm 3: Analyze conflict routine.

Routine analyze SAT()
(1) entity = find sat entity();
(2) if (entity = NULL)
(3) then entity = gen sat induced entity();
(4) if (!termnate condition (entity))
(5) then newen = consensus gen entity (entity);
(6) add newentity (newen);
(7) if (dl (newen) ̸= 0)
(8) then backtrack (dl (newen));
(9) end

Algorithm 4: Analyze SAT routine.

space has the same branch in the further, we can prune the
branch directly, which need not go on searching.

7.2. Satisfiability Directed Learning. Satisfiability directed
learning utilizes the knowledge learned from satisfactions
to reduce the number of satisfying leaves which need to be
visited. When the result of deduction is satisfaction, we can
perform satisfiability directed learning. It is carried out by the
analyze SAT routine inAlgorithm4. At first, we show relevant
definitions used in the routine.

Definition 3. (extended CNF) Let 𝐸(𝑥
1
, . . . , 𝑥

𝑛
) be a CNF. An

extended CNF is 𝐸 = 𝐸(𝑥
1
, . . . , 𝑥

𝑛
)∨𝐸𝑁

1
∨. . .∨𝐸𝑁

𝑚
, where

𝐸𝑁
𝑖
(1 ≤ 𝑖 ≤ 𝑚) is an entity, that is, a conjunction of literals.
Now let us introduce the detail of the routine. At the

beginning, it judges whether there exist satisfying entities
in the current QBF in extended CNF (line 1). If they
exist, the routine goes to line 4; otherwise, 𝑎 entity from
the current variable assignment is generated by function
gen sat induced entity() (lines 2-3). In lines 4-5, a learned
entity is not generated by function consensus gen entity()
until the generated entity meets the following conditions. (1)
Among all its universal variables, one and only one has the
highest decision level, supposing the variable is 𝑉; (2) 𝑉 is
at a decision level with a universal variable as the decision
variable; (3) all existential literals with quantification level
smaller than 𝑉’s are assigned true before 𝑉’s decision level.
The decision level of universal variable 𝑉 is the decision
level which the algorithm will backtrack to. Then function
add newentity() performs satisfiability directed learning (line
6). It occurswhen the result of deduction is satisfaction, which
causes a learned entity constructed and added to the database.
At last, we decide whether the decision level of variable 𝑉 is
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Table 1: Comparisons of EHSPQBF-EQR, EHSPQBF-HBR, and EHSPQBF.

Instances EHSPQBF-EQR EHSPQBF-HBR EHSPQBF
(3, 60, 80, 5, 0) 10.470 15.390 10.209
(3, 60, 80, 5, 1) 56.342 41.230 40.725
(3, 60, 80, 5, 2) 230.230 153.690 153.436
(3, 60, 80, 5, 3) 1.783 3.467 1.659
(3, 60, 80, 5, 4) 98.456 132.678 87.513
(3, 60, 80, 5, 5) 12.479 30.745 11.873

0 or not (line 7). If it is not 0, EHSPQBF will backtrack to the
decision level of variable 𝑉 (line 5). The aim of satisfiability
directed learning ismemorizing the satisfied branch. If search
space has the same branch in the further, we can decide the
branch is satisfiable directly and go on searching the other
branch of the universal variable.

8. Experimental Evaluation

In this section, to test the performance of the solver
EHSPQBF, three algorithms are compared. Our solver
EHSPQBF is written in C++. All experiments are carried
out on a DELL PowerEdge 2650 computer with 2 Intel Xeon
2.00GHz CPU and 1G RAM running RedHat ES3.0. Table 1
presents the results of the comparisons of the solvers. In
the table, EHSPQBF-HBR is the solver that removes the
hyperbinary resolution rule from EHSPQBF; EHSPQBF-
EQR is the solver that removes the equality reduction rule
from EHSPQBF. All instances are generated by a random
generator. (3, 60, 80, 5, 0) denotes a formula indexing 0 that
contains 3 quantification levels, 60 variables, 80 clauses, and
each clause length is not more than 5.

From the results of the EHSPQBF, we can see that
both hyperbinary resolution rule and equality reduction rule
contribute much compared with the results of EHSPQBF-
EQR and EHSPQBF-HBR. Consequently the run-time of the
algorithms decreases. Therefore, by introducing the hyper-
binary resolution rule and equality reduction rule, EHSPQBF
algorithm increases the efficiency for solving QBF problem.

9. Conclusions

In this paper, we present a novel QBF solver EHSPQBF.
In preprocessing, we adopt the equality reduction and the
hyperbinary resolution to simplify the formulae. When
choosing branches, the system uses survey propagation to
select next branch; when handling branches, the system
employs conflict reasoning and conflict driven learning as
well as satisfiability directed learning together. Experimental
results show that, as a heuristic, SP can choose branches
effectively. And other techniques such as conflict driven
learning also speed up the solving process. As a whole,
EHSPQBF is an efficient QBF solver.
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